# SMART METERING FOR DEMAND MANAGEMENT AND ENERGY CONSERVATION

Kahambiliyawaththa Subasinghage Kasun Weranga

(118007 C)



of Science of Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

July 2012

#### DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Signature:

Date:



The above candidate has carried out research for the Masters under my supervision.

Signature of the supervisor:

Date:

Prof. S.P. Kumarawadu

Signature of the supervisor:

Date:

Dr. D. P. Chandima

# To my



Parents University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

#### ACKNOWLEDGEMENT

I specially thank my supervisors, Prof. S. P. Kumarawadu and Dr. D. P. Chandima for their unwavering guidance, support and advice for carrying out this research work successfully.

I would like to take this opportunity to extend my thanks to Dr. Rohan Munasinghe, Dr. Harsha Abeykoon for being the members of the progress review committee for my research. Without their guidance and advice this work wouldn't have been a success at the end.

I am also grateful to the engineering and technical staff at CEB meter testing lab in Piliyandala for arranging equipments to calibrate my digital meter. I would sincerely express my gratitude to management of Dankotuwa porcelain industry for the permission granted to take electrical demand readings at the preliminary energy audit. I should also thank to Mr. Wickrama Kanattawatta who helped me on proof reading. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Finally, my thanks go to various other personnel without whose help this work wouldn't be a success.

#### ABSTRACT

This research study focuses on demand management and energy conservation through smart metering. The discussion here is based study on smart metering and implementation of new methodologies to promote energy conservation via two way interaction. Smart metering, a key element of the so-called smart grid, has been touted as a great bright hope that will enable residential and industrial electric customers to cut their usage, thereby reducing greenhouse gases as well as their monthly bills. Smart meters are still evolving and many developers try to add new features to provide more interaction between the consumer and the supply authority.

Improved measurement technology by displaying all per phase information and three phase information on LCD at the meter side, automatic meter reading, power quality and exported energy measuring capability are the main features of the implementation. Electricity demand forecasting for 15 minutes, maximum demand warning for industrial consumers, energy and cost forecasting for better energy conservation are the originality of this research.

The digital meter was developed using ADE7758 energy measuring chip and 18F452 PIC microcontroller. The data are sent to a remote server via SMS using SIM900 GSM module.PCF 8583 real time clock IC was used to read the time and generate alarm signals. The phase information, frequency, active energy, exported energy, power quality measurements, electrical demand, date and time are sent to the server. The server handles the incoming SMS, processes the data, displays and stores the required information. Energy consumption and its cost, average daily energy consumption and cost prediction for the month are calculated in the server side. University of Moratuwa, Sri Lanka.

The demand forecasting appointing is developed for industrial smart metering applications. Electricity demand within 15 minutes is forecasted by analyzing demand pattern. The warning signal is generated when the demand is higher than the user specified value. Therefore if there is a sudden increase in demand this methodology helps to identify and warn the consumer via SMS. The expected demand within 15 minutes, percentage value of the expected demand as a ratio to user specified demand and remaining time to reach the demand are calculated and sent to the consumer to take any actions to drop down the demand. This warning signal will be beneficial to the industrial consumers who are interested in save on maximum demand charge through proper load management.

Keywords: smart metering, demand management, energy conservation, three phases, automatic meter reading, remote server, electricity and cost forecasting, demand forecasting, maximum demand warning, Industrial consumers

## TABLE OF CONTENTS

| Declaration of the Candidate & Supervisor i |                    |                                                                             |    |  |
|---------------------------------------------|--------------------|-----------------------------------------------------------------------------|----|--|
| Dedication                                  |                    |                                                                             |    |  |
| Acknowledgements ii                         |                    |                                                                             |    |  |
| Abstra                                      | Abstract           |                                                                             |    |  |
| Table of                                    | Table of content v |                                                                             |    |  |
| List of Figures vi                          |                    |                                                                             |    |  |
| List of                                     | Tables             |                                                                             | X  |  |
| List of                                     | abbrevi            | iations                                                                     | xi |  |
| 1.                                          | Introdu            | action                                                                      | 1  |  |
|                                             | 1.1                | What is Smart Metering                                                      | 1  |  |
|                                             | 1.2                | Energy Conservation and Cost Reduction through Smart Metering               | 2  |  |
|                                             | 1.3                | Techniques Used for Demand Side Management                                  | 3  |  |
|                                             |                    | 1.3.1 Educating the consumer                                                | 3  |  |
|                                             |                    | 1.3.2 Incenting the consumer                                                | 4  |  |
|                                             |                    | 1.3.3 University of Moratuwa, Sri Lanka.                                    | 4  |  |
|                                             | 1.4                | Electronic Theses & Dissertations<br>Carbon Benefits through Smart Metering | 5  |  |
|                                             | 1.5                | Smart Meter Projects in the World                                           | 5  |  |
|                                             | 1.6                | Energy Conservation through Smart Metering in Sri Lanka                     | 6  |  |
|                                             | 1.7                | Design of a Smart Meter with New Features                                   | 7  |  |
|                                             | 1.8                | Introduction of Demand Forecasting Algorithm for Smart Meters               | 8  |  |
| 2.                                          | Digital            | meter sub system                                                            | 9  |  |
|                                             | 2.1                | Current Sensing Unit                                                        | 10 |  |
|                                             | 2.2                | Voltage Sensing Unit                                                        | 10 |  |
|                                             | 2.3                | Basic Operation of the Energy Chip                                          | 10 |  |
|                                             | 2.4                | RMS Voltage and Current Calculation                                         | 11 |  |
|                                             | 2.5                | RMS Voltage Measurement                                                     | 11 |  |
|                                             | 2.6                | RMS Current Measurement                                                     | 13 |  |
|                                             | 2.7                | Active Power Calculation                                                    | 15 |  |
|                                             | 2.8                | Active Energy Calculation                                                   | 16 |  |

|    | 2.9   | Reactive Power Calculation                                 | 18 |
|----|-------|------------------------------------------------------------|----|
|    | 2.10  | Reactive Energy Calculation                                | 19 |
|    | 2.11  | Apparent Power Calculation                                 | 19 |
|    | 2.12  | Power Factor Calculation                                   | 20 |
|    | 2.13  | Frequency Calculation                                      | 20 |
|    | 2.14  | Power Quality Measurements                                 | 20 |
|    | 2.15  | Communication with the MCU                                 | 21 |
|    | 2.16  | Power Supply Unit                                          | 21 |
|    | 2.17  | Data Backup                                                | 22 |
|    | 2.18  | Real Time Clock                                            | 22 |
|    | 2.19  | Smart Meter Firmware                                       | 22 |
|    |       | 2.19.1 The main program                                    | 22 |
|    |       | 2.19.2 TIMER0 interrupt routine                            | 25 |
|    |       | 2.19.3 INTCON interrupts routine                           | 27 |
|    | 2.20  | Data Transmission                                          | 30 |
| 3. | Them  | University of Moratuwa, Sri Lanka.                         | 33 |
| 5. | E     | Electronic Theses & Dissertations                          | 33 |
|    | 3.2   | The Graphical User Interface                               | 34 |
|    | 3.3   | Bill Generation, Cost Prediction and Customer Update       | 35 |
|    |       |                                                            |    |
| 4. | Dema  | nd forecasting and maximum demand warning                  | 37 |
|    | 4.1   | Demand Variation Analysis for Dankotuwa Porcelain Industry | 39 |
|    | 4.2   | Demand Forecasting for 15 Minutes Interval                 | 55 |
|    | 4.3   | Mathematical Model using Polynomial Extrapolation          | 55 |
|    | 4.4   | Replacement of Instantaneous Values with Average Values    | 59 |
|    | 4.5   | Curve Fitting Using Interpolation                          | 60 |
|    | 4.6   | Algorithm of Demand Forecast for PIC Microcontroller       | 62 |
| 5. | Resul | ts                                                         | 64 |
|    | 5.1   | Test Results (Digital Meter and the Main Server)           | 64 |
|    | 5.2   | Electricity consumption results                            | 72 |

|    | 5.3  | Demand Forecasting Results                           | 74 |
|----|------|------------------------------------------------------|----|
|    |      | 5.3.1 Calculated results                             | 74 |
|    |      | 5.3.2 Simulated results                              | 77 |
|    |      |                                                      |    |
| 6. | Conc | lusions and Recommendations                          | 82 |
|    | 6.1  | Smart Metering for Better Energy Conservation        | 82 |
|    | 6.2  | Contribution of the Research Work for Smart Metering | 83 |
|    | 6.3  | Limitations and Future Work                          | 84 |
|    |      |                                                      |    |
|    | Refe | rence List                                           | 85 |



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

## LIST OF FIGURES

| Figure 2.1                                                   | Block diagram of the digital meter                                             | 9  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------|----|
| Figure 2.2                                                   | AVRMS data variation against the reference meter voltage                       |    |
| Figure 2.3                                                   | RMS voltage variation with respected to the reference meter                    |    |
| Figure 2.4                                                   | Figure 2.4 AIRMS data variation against the reference meter current            |    |
| Figure 2.5 RMS current variation against the reference meter |                                                                                | 15 |
| Figure 2.6                                                   | AWATTHR data variation with the reference meter active power.                  | 17 |
| Figure 2.7                                                   | Smart meter firmware (main program loop)                                       | 24 |
| Figure 2.8                                                   | Smart meter firmware (TIMER0 interrupt routine)                                | 26 |
| Figure 2.9                                                   | Smart meter firmware (INTCON interrupt routine)                                | 29 |
| Figure 2.10                                                  | Schematic of SIM-900 GSM module                                                | 30 |
| Figure 3.1                                                   | Serial port listener                                                           | 33 |
| Figure 3.2                                                   | The GUI at the server side                                                     | 34 |
| Figure 4.1                                                   | The variation of monthly maximum demand 2009 - 2011                            | 40 |
| Figure 4.2                                                   | Daily load profiles over 19-24 April 2011<br>Electronic Theses & Dissertations | 41 |
| Figure 4.3                                                   | The variation of average demand with time in session1                          | 43 |
| Figure 4.4                                                   | Average and polynomial demand variation with time in session1                  |    |
|                                                              | (Wednesday)                                                                    | 44 |
| Figure 4.5                                                   | Average and polynomial demand variation with time in session1                  |    |
|                                                              | (Thursday)                                                                     | 44 |
| Figure 4.6                                                   | Average and polynomial demand variation with time in session1                  |    |
|                                                              | (Friday)                                                                       | 45 |
| Figure 4.7                                                   | Average and polynomial demand variation with time in session1                  |    |
|                                                              | (Monday)                                                                       | 45 |
| Figure 4.8                                                   | The variation of average demand with time in session2                          | 46 |
| Figure 4.9                                                   | Average and polynomial demand variation with time in session2                  |    |
|                                                              | (Wednesday)                                                                    | 47 |
| Figure 4.10                                                  | Average and polynomial demand variation with time in session2                  |    |
|                                                              | (Thursday)                                                                     | 47 |

| Figure 4.11 | Average and polynomial demand variation with time in session2                                                                         |    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|----|
|             | (Friday)                                                                                                                              | 48 |
| Figure 4.12 | Average and polynomial demand variation with timein session2                                                                          |    |
|             | (Monday)                                                                                                                              | 48 |
| Figure 4.13 | The variation of average demand with time in session3                                                                                 | 49 |
| Figure 4.14 | Average and polynomial demand variation with time in session3                                                                         |    |
|             | (Wednesday)                                                                                                                           | 50 |
| Figure 4.15 | Average and polynomial demand variation with time in session3                                                                         |    |
|             | (Thursday)                                                                                                                            | 50 |
| Figure 4.16 | Average and polynomial demand variation with time in session3                                                                         |    |
|             | (Friday)                                                                                                                              | 51 |
| Figure 4.17 | Average and polynomial demand variation with time in session3                                                                         |    |
|             | (Monday)                                                                                                                              | 51 |
| Figure 4.18 | The variation of average demand with time in session4                                                                                 | 52 |
| Figure 4.19 | Average and polynomial demand variation with time in session4                                                                         |    |
| <i></i>     | (Wednesday)                                                                                                                           | 53 |
| Figure 4.20 | Average and polynomial demand variation with time in session4<br>Electronic Theses & Dissertations<br>(Thursday)<br>www.lib.mrt.ac.lk | 53 |
| Figure 4.21 | Average and polynomial demand variation with time in session4                                                                         |    |
|             | (Friday)                                                                                                                              | 54 |
| Figure 4.22 | Average and polynomial demand variation with time in session4                                                                         |    |
|             | (Monday)                                                                                                                              | 54 |
| Figure 4.23 | Algorithm for demand forecast and warning signal generation                                                                           | 62 |
| Figure 5.1  | Phase voltage variation with the time                                                                                                 | 65 |
| Figure 5.2  | Phase current variation with the time                                                                                                 | 66 |
| Figure 5.3  | Frequency variation with time                                                                                                         | 67 |
| Figure 5.4  | The Active power variation in each phase with the time                                                                                | 67 |
| Figure 5.5  | Reactive power variation with time                                                                                                    | 68 |
| Figure 5.6  | Power factor variation with time                                                                                                      | 69 |
| Figure 5.7  | Active energy variation with time                                                                                                     | 70 |
| Figure 5.8  | Apparent power variation with the time                                                                                                | 71 |
| Figure 5.9  | Average apparent power variation with time                                                                                            | 72 |

| Figure 5.10 | Monday 24 <sup>th</sup> April 2011 session1 demand variation       | 74 |
|-------------|--------------------------------------------------------------------|----|
| Figure 5.11 | Actual and forecasted demand variation with time                   | 76 |
| Figure 5.12 | Results obtained using extrapolation when $D_u=1000kVA$            | 78 |
| Figure 5.13 | Results obtained using extrapolation when $D_u=1200kVA$            | 78 |
| Figure 5.14 | Results obtained using extrapolation when $D_u=1250 \text{ kVA}$   | 79 |
| Figure 5.15 | Results obtained using interpolation when $D_u=1000kVA$            | 81 |
| Figure 5.16 | Results obtained using interpolation when D <sub>u</sub> =1200 kVA | 81 |

# LIST OF TABLES

# Page

| Table 2.1   | Data transmission format (per phase and total energy information)               | 31 |
|-------------|---------------------------------------------------------------------------------|----|
| Table 2.2   | Data transmission format (maximum demand and power quality                      |    |
|             | measurements)                                                                   | 32 |
| Table 2.3   | Data transmission format (warning signal)<br>University of Moratuwa, Sri Lanka. | 32 |
| Table 3.1   | Time Dfeetronic Theses & Dissertations                                          | 35 |
| Table 4.1 📚 | Sessions of peak demands k                                                      | 42 |
| Table 4.2   | Sample points                                                                   | 61 |
| Table 5.1   | Loading pattern                                                                 | 64 |
| Table 5.2   | Energy consumption details under time of use                                    | 72 |
| Table 5.3   | Details of demand variation                                                     | 75 |
| Table 5.4   | Results obtained using extrapolation                                            | 79 |
| Table 5.5   | Results obtained using interpolation                                            | 80 |

### LIST OF ABBREVIATIONS

| Abbreviation | Description                                                              |
|--------------|--------------------------------------------------------------------------|
|              |                                                                          |
| А            | Ampere                                                                   |
| AT           | Asynchronous Terminal                                                    |
| CEB          | Ceylon Electricity board                                                 |
| GSM          | Global System for Mobile Communications                                  |
| GUI          | Graphical User Interface                                                 |
| hrs          | Hours                                                                    |
| Hz           | Hertz                                                                    |
| I2C          | Inter-Integrated Circuit                                                 |
| kVA          | kilo Volt Ampere                                                         |
| kVAh         | kilo Volt Ampere hour                                                    |
| kVAmin       | kilo Volt Ampere minutes                                                 |
| kvarh        | kilo var hour                                                            |
| kW           | University of Moratuwa, Sri Lanka.                                       |
| kWh          | Electronic Theses & Dissertations<br>kilo Watt hour<br>www.lib.mrt.ac.lk |
| LCD          | Liquid Crystal Display                                                   |
| LKR          | Sri Lanka Rupees                                                         |
| min          | Minutes                                                                  |
| MCU          | Micro Controller Unit                                                    |
| MOV          | Metal Oxide Varistor                                                     |
| MV           | Medium Voltage                                                           |
| P.F          | Power Factor                                                             |
| RMS          | Root Mean Square                                                         |
| RTC          | Real Time clock                                                          |
| SMS          | Short Message Service                                                    |
| SPI          | Serial Peripheral Interface                                              |
| TOU          | Time of Use                                                              |
| V            | Volt                                                                     |
| W            | Watt                                                                     |
|              |                                                                          |