PREDICTION OF FLOW FIELD OF A CEILING FAN
BY FLOW SINGULARITY MODELING

Karunarathna Kuruppu Mudiyanselage Nalaka Priyadarsana
Samaraweera

(09/8100)

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Thesis submitted in partial fulfillment of the requirements for the degree
Master of Science

Department of Mechanical Engineering

University of Moratuwa
Sri Lanka

April 2012
DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (Such as articles or books)

K.K.M.N.P. Samaraweera
Date

Dr. A.G.T. Sugathapala
Date
The work is dedicated to my parents
ACKNOWLEDGEMENT
This Research was supported by University of Moratuwa Senate Research grant number SRC/LT/2010/02.

After gaining the experience in the master degree, I would like to thank number of people who have supported me. First of all, I would like to sincerely thank my supervisor Dr. A.G.T. Sugathapala, for his guidance at various stages of the research. Also I take this opportunity to give special thank for Prof. R.A. Attalage and Dr. R. Gopura, since their contribution was highly important when various difficulties occurred within the duration of the research.

The advice given by Mr. Tiwanka Wickramasooriya for the development of computational code is highly appreciated since those were very important for developing more efficient computational code. Also I like to remind the support given by Mechanical Engineering department of University of Moratuwa.

It is glad to recall the support given my colleagues, Gayan Sirimanna, Dulanjan Wijesinghe, Pubudu Welgama, Tharindu Dasun of University of Moratuwa.
Abstract

Three dimensional flow field of a ceiling fan is modelled numerically by assuming incompressible and inviscid flow. The fan blades modelled by vortex lattice method, in which surfaces are replaced by vortex boxes. The development of the wake is simulated by free wake method. Kutta condition, flow tangency at solid surfaces and zero fluid loading at the wake are taken as boundary conditions. The governing equations are solved by developing a computational code. The development of the flow field and the effects of the geometrical characteristics of fan blades and rotor parameters on the rotor performance are investigated. When the wake structure of the rotor evolves with time, the wake tends to flow upward at the root of the blade initially and wake instabilities, such as vortex pairing, occur in the tip vortex. But with time, the wake becomes ordered in the vicinity of the blade and wake distortions tend to flow downward. The wake contraction at the near wake was seen in fully developed wake structures. The comparison of the flow rates at different rotor speeds with that of experimental results shows a satisfactory agreement, indicating the validity of the present numerical model. Subsequently, effects of rotor speed, number of blades, blade aspect ratio, and blade profile on the ceiling fan performance are qualitatively and quantitatively analysed. Moreover numerical analysis is extended for investigating the effect of ceiling on the rotor performance. Presence of ceiling degrades the flow rate of a ceiling fan. It can be concluded that the present model is capable of modelling flow around ceiling fans including its aerodynamics performance.

Keywords: Ceiling fan, vortex lattice, free wake, near wake, ceiling effect
TABLE OF CONTENTS

Declaration of the candidate & Supervisor... i
Dedication... ii
Acknowledgements... iii
Abstract.. iv
Table of contents.. v
List of Figures .. viii
List of Tables... x
1 INTRODUCTION .. 1
 1.1 Background .. 1
 1.2 Project Overview .. 2
2 LITERATURE SURVEY ... 5
 2.1 Basic Characteristics of Ceiling Fans .. 5
 2.2 Regions of Flow Around Ceiling Fans ... 6
 2.3 Theoretical Models of Rotor Aerodynamics .. 8
 2.3.1 Overview .. 8
 2.3.2 Momentum theory .. 9
 2.3.3 Blade element theory .. 10
 2.3.4 Computational fluid dynamics techniques ... 11
 2.3.5 Flow singularity methods ... 12
 2.4 Fundamentals of Circulation .. 12
 2.5 Fundamental of Vorticity .. 13
 2.5.1 Vorticity .. 13
 2.5.2 Forms of vortices exist in the space .. 13
 2.5.3 Helmholtz theorems and evolution of vorticity 15
 2.5.4 The Biot-Savart law .. 16
 2.6 Incompressible Flow around Wings of Finite Span 17
 2.6.1 Lifting line theory ... 18
 2.6.2 Lifting surface theory ... 20
 2.7 Wake Modelling Methods ... 21
2.7.1 Rigid and prescribed methods .. 21
2.7.2 Free wake methods ... 22

3 DEVELOPMENT OF A THEORETICAL MODEL FOR FLOW AROUND
CEILING FANS ... 25
3.1 Problem Specification ... 25
3.1.1 Typical configuration .. 25
3.1.2 Coordinate system ... 26
3.1.3 Rotor parameters and performance characteristics 26
3.2 Development of the Theoretical Model .. 27
3.2.1 Overview .. 27
3.2.2 Mathematical treatment on flow singularity modelling 27
3.2.3 Boundary conditions .. 30
3.2.4 Establishment of vortex panel configuration 32
3.2.5 Velocity induced by a vortex box .. 33
3.3 Numerical Implementation ... 34
3.3.1 Overview .. 34
3.3.2 Blades and wake discretization .. 35
3.3.3 Wake adaption procedure .. 35
3.3.4 Ceiling effect .. 38
3.4 Development of the Computational Code ... 39

4 RESULTS AND DISCUSSION .. 43
4.1 Wake Evolution and Characteristics .. 43
4.2 Evaluation of Discretization Criteria .. 46
4.3 Validation of the Wake Adaption Procedure .. 49
4.4 Establishment of Effect of Rotor and Blade Characteristics 54
4.4.1 Rotational speed .. 54
4.4.2 Number of blades .. 55
4.4.3 Aspect ratio ... 57
4.4.4 Twist angle .. 60
4.4.5 Ceiling effect .. 61

5 CONCLUSIONS AND RECOMMENDATIONS 63
5.1 Conclusions ... 63
5.2 Recommendations for Future Work ... 63
REFERENCE LIST ... 65
BIBLIOGRAPHY .. 69
LIST OF FIGURES

Figure 2.1 : Different types of fans ... 5
Figure 2.2 : Flow regions around a ceiling fan .. 7
Figure 2.3 : Tip vortex formation (Jain, et al, 2004) ... 7
Figure 2.4 : A sketch of a rotor wake of momentum theory 9
Figure 2.5 : Forms of vortices in 3D ... 15
Figure 2.6 : Velocity induced by the vorticity distribution on a point 16
Figure 2.7 : Fluid spills out from lower to upper surface 18
Figure 2.8 : Horseshoe vortex structure of finite wing 19
Figure 2.9 : Blade and wake discretization by vortex boxes 21
Figure 2.10 : A rotor wake comprises tip, root and inboard vortices (Gray 1956) ... 22
Figure 3.1 : Typical configuration of ceiling fan in enclosed area 25
Figure 3.2 : Coordinates system ... 26
Figure 3.3 : Layout of the space comprises a ceiling fan and its wake 28
Figure 3.4 : Kutta condition for different trailing edges 32
Figure 3.5 : Bound vortex placement for a planer aerofoil 32
Figure 3.6 : Establishment of the vortex box .. 33
Figure 3.7 : Velocity induced by the straight vortex line on a point 34
Figure 3.8 : The discretization of a typical twisted tapered rotor blade into panels .. 35
Figure 3.9 : The method of placing vortex boxes .. 37
Figure 3.10 : Flow chart of the code ... 41
Figure 4.1 : Evolution of the wake structure ... 44
Figure 4.2 : Fully developed wake structure .. 45
Figure 4.3 : Thrust Coefficient variation with wake turns 46
Figure 4.4 : Effect of chord panels on the lift distribution along the blade span 47
Figure 4.5 : Effect of span panels on the lift distribution along the blade span 48
Figure 4.6 : Effect of angle increment on the lift distribution along the blade span . 48
Figure 4.7 : Analyse of wake contraction .. 50
Figure 4.8 : Outboard vortex bundling ... 51
Figure 4.9 : Variation of flow rate with RPM ... 52
Figure 4.10 : Axial velocity profile at 2.54 cm below the rotor 54
Figure 4.11: Variation of performance index with rotational velocity of the rotor. 55
Figure 4.12: Analysing effect of number of blades. 56
Figure 4.13: Variation of aerodynamic performance index with number of blades. 57
Figure 4.14: Effect of Aspect Ratio ... 59
Figure 4.15: Analyse of inflow distribution .. 61
Figure 4.16: Variation of flow coefficient with the ceiling gap 62
LIST OF TABLES

Table 2.1 : Characteristics of a typical ceiling fan.. 6