REVIEW OF TRANSMISSION NETWORK AND GRID CAPACITY LIMITATIONS FOR ABSORPTION OF DISTRIBUTED ENERGY GENERATION

K K P Perera

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa
Sri Lanka

February 2012
REVIEW OF TRANSMISSION NETWORK AND GRID CAPACITY LIMITATIONS FOR ABSORPTION OF DISTRIBUTED ENERGY GENERATION

Dissertation submitted in partial fulfillment of the requirements for the degree
Master of Science

Department of Electrical Engineering

University of Moratuwa
Sri Lanka

February 2012
Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

……………………..
K K P Perera

I/We endorse the declaration by the candidate.

……………………..
Prof. H Y R Perera Dr. H M Wijekoon Banda
Abstract

Grid connection of small generators to the distribution network to sell electricity to CEB has developed into a major business in Sri Lanka. Power purchase agreements, grid connection guidelines were also developed with the development of the industry. Limitations on the grid connection capability were also laid down. Two of the main limitations are as follows:

a) Maximum capacity of generation that can be connected to a Grid Substation with 2*31.5 MVA transformers is limited to 25MW.

b) Maximum capacity of total generators that may be connected to the system be limited to the lower of either, 6% of the peak power demand or 15% of the Off Peak power demand.

It is stated that these limitations are to be revised with time to be in line with the latest system parameters and configurations.

Since no study has yet been made to review these, an attempt is made to review the above limitations. This study is mainly focused on the first limitation.

On analyzing the grid substation capacity limitation, it is noted that a detail study of the pattern of generation and the details of the individual feeder loads need to be made. Since there is a minimum (guaranteed load) at each GSS, this load can be considered in arriving at the maximum amount of DGs that can be connected at each GSS.

Accordingly it is noted that the maximum capacity of DGs that can be connected at Balangoda and Ratnapura grid substations with (n-1) reliability criteria amount to 40 and 38 MVA respectively. These values are calculated with load values at each of the grid substations relating to year 2010. As the demand for electricity has been increasing at around 9% annually in Sabaragamuwa province these values will also subject to revision annually.

It is noted that transmission system is having its limitations mainly on the Lynx single circuit line from Polpitiya to Seethawaka. Present situation need to be analyzed further before any more DGs are to be connected to the system.
Acknowledgement

Thanks are due first to my supervisors Prof. Ranjith Perera and Dr. H M Wijekoon Banda for the guidance and motivation given. They provided their guidance even with their busy schedules without considering the time and place.

I like to thank Mr. Ajith Fernando, Deputy General Manager (Energy Purchases Branch) CEB and Mr. K A N Priyantha, Chief Engineer (Energy Purchases Branch) for providing me with necessary data on small power plants. Thanks are also due to Mr. P A N Shantha, Electrical Engineer (Lighting Hambanthota Project) for allowing me to use his transmission network analysis model in this study. I need to mention Mr. S R K Gamage, (Chief Engineer Planning) Region 1, for providing guidance and support in numerous ways.

There are a whole lot of individuals who are not mentioned here, but without their support, I may have not completed this study in this way. So let me thank all those as well for supporting me in various ways to complete this study.
Contents

Declaration ... i
Abstract ... ii
Acknowledgement ... iii
Contents ... iv
List of Tables .. v
List of Figures .. vi

Introduction ... 1
 1.1 Background ... 1
 1.2 History of Distributed Generation in Sri Lanka .. 2
 1.3 Motivation : ... 3
 1.4 Objective : .. 5
 1.5 Scope of Work ... 5
Generation, Transmission and Distribution System of CEB .. 6
 2.1 Ceylon Electricity Board... 6
 2.2 Generation ... 6
 2.3 Transmission ... 7
 2.4 Distribution ... 7
Behavior of DGs Connected to Individual GSS ... 9
 3.1 Renewable Energy Generation in Sri Lanka ... 9
 3.2 DGs connected to the Distribution network.. 12
Analysis of the loads at GSS with DGs .. 18
 4.1 Approach of the analysis ... 18
 4.2 Analysis of the Loads and connected DGs at Ratnapura GSS. 23
 4.3 Alternative approach to calculate the minimum load at a Grid Substation 25
 4.4 Rationale for the imposition of limitations for Grid Connection of DGs. 28
Impact of Distribution network losses in the presence of Distributed Generators 29
 5.1 Background ... 29
 5.2 Analysis Approach .. 29
Study of Transmission Network Capacity Limitations 32
 6.1 Background ... 32
 6.2 The Approach .. 32
 6.3 Modeling the transmission network .. 33
 6.4 Simulation Procedure .. 34
Results and Analysis ... 39
 7.1 Operational behaviour of DGs .. 39
 7.2 Grid Substation Capacity Limitations .. 40
 7.3 Impact on network losses with connection of DGs ... 42
 7.4 Transmission network capacity limitations .. 42
Conclusion and Recommendations ... 44
References: .. 45
List of Tables

Table 2.1: Ownership and capacity of power plants (2010 CEB statistical data)........ 6
Table 3.1 Grid connected Renewable energy plants as at 31/12/2010 11
Table 3.2 Commissioned DGs and their connected Grid Substations [1] 12
Table 4.1 Summary results of Balangoda GSS load flow analysis.................... 21
Table 4.2 Feeder connected loads at Balangoda GSS---------------------------- 22
Table 4.3 DGs connected to individual feeders at Balangoda GSS................. 22
Table 4.4 Summary results of Ratnapura GSS Load Flow analysis................ 24
Table 4.5 Minimum and Maximum loads connected to Ratnapura GSS feeders ... 24
Table 5.1 Variation of loads with time as a % of peak load..................... 30
Table 6.1 Line data ... 34
Table 6.2 Bus Data... 35
Table 6.3 MATLAB functions.. 36
Table 6.4 Minimum loads and connected DGs at Maximum power output..... 37
Table 7.1 Summary results of load flow study Seethawaka GSS.................. 40
Table 7.2 Summary results of load flow study Wimalasurendra GSS 40
Table 7.3 Summary results of load flow study Nuwara Eliya GSS............... 41
Table 7.4 Max. capacity of connection of DGs to GSS............................... 41
Table 7.5 Comparison of line power flows.. 43
List of Figures

Fig. 1.1: DG capacities connected and to be connected to CEB Network 3
Fig. 3.1 Development of Renewable energy projects over time 11
Fig. 3.2: Supply of energy from DGs ... 11
Fig. 3.3 Monthly plant factors of DGs connected to Ratnapura GSS in year 2009 13
Fig. 3.4 Operating pattern of Hydro power plants in Sabaragamuwa 14
Fig. 3.5 Monthly plant factors of DGs connected to Ratnapura GSS in year 2010 ... 15
Fig. 3.6 Variation of monthly PF of DGs connected to Balangoda GSS in year 2009 ... 16
Fig. 3.7 Variation of monthly PF of DGs connected to Balangoda GSS in year 2010 ... 17
Fig. 4.1 Total load profile of Balangoda GSS .. 20
Fig. 4.2 Load profile of Ratnapura GSS ... 25
Fig. 4.3 Load profile of Balangoda GSS ... 26
Fig. 4.4 Profile of Total load and Total Small power generation connected to Balangoda GSS on 04-05-2011 .. 27
Fig. 5.1 Variation of network losses with time ... 31
Fig. 6.1 Selected Bus bars of the transmission network .. 33