FUEL WOOD AS AN ALTERNATIVE SOURCE OF THERMAL ENERGY IN THE RUBBER INDUSTRY IN SRI LANKA

Tilak Weragama

(9040)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree of
Master of Business Administration

Department of Management of Technology

University of Moratuwa
Sri Lanka

December 2011
DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce or distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters dissertation under my supervision.

Signature of the Supervisor

Date
Acknowledgement

I would like to express my appreciation to CEOs, DCEOs GMs, other senior managers and all employees in rubber estates in western province of Sri Lanka, belongs to the plantation companies I visited for their invaluable insights, advice, patience and encouragement throughout this research.

I had the opportunity to visit mass scale manufacturers in value added rubber industry in Sri Lanka. I wish to make this an opportunity to offer my gratitude to their top managements and all employees who permitted and helped me to collect data for this research. They were not reluctant to repetitively answer my clarification questions until I was pleased on accuracy of the data collected.

Special thanks to my friends for providing me the opportunity to build up new contacts with industry experts who were behind me throughout this research journey and the staff of the RRISL and UNDP officials for their assistance to find relevant text books and other resources.

Finally, great thanks to my supervisor, Prof. SWSB Dasanayaka for continuously encouraging and guiding me to find vital information, helping me to keep into the timeline by quickly making comments for my questions and reviewing the draft reports.
Abstract

Main purpose of this research is to switch the rubber industry in Sri Lanka from fossil fuels to fuel wood in the process of generation of thermal energy and consequently to reduce foreign exchange spending on oil imports and to protect the environment through energy efficiency, environmentally benign energy sources and energy conservation.

This study utilizes three key concepts: sustainable competitive advantage in cost of production, reduce emission of greenhouse gas and an Integrated National Plan to acquire bare land and grow a suitable fuel wood crop to fulfill the future demand. This study was carried out through a situational analysis and an in-depth questionnaire surveys in both raw and value added sectors in Sri Lankan rubber industry. The questionnaire survey was carried-out covering main plantation companies and key value added manufacturers.

This study shows that biomass application is already happening in raw rubber sector without using any fossil fuels. Problem exists in value added industry since a massive amount of thermal energy is required for their processes. This research has estimated the equivalent fuel wood quantity required by their machines to be switched in to fuel wood and a national level program is proposed to assure a strong and sustainable supply chain of fuel wood. This study only covers rubber industry in western province, concentrating on high-end consumers of thermal energy and hence SME sector was not covered.

Policy recommendations are proposed to assure a strong and sustainable supply chain of fuel wood. This starts from acquiring bare land, selecting a suitable fuel wood crop, a criterion to decide priority order for firms to be switched and sufficient financial assistance for selected firms. All these tasks have been treated as ongoing parallel activities.

Motivation and convincing programs are proposed to address all stakeholders on this switching by changing their mindsets from going for easy solutions to achieve sustainable competitive advantage and environmental conservation. This is to signify the future global requirements for environmental conservation and to take precautions in advance by taking early initiatives.

Key words: Rubber industry, Energy crops, Green house effect, Carbon footprint, Sri Lanka.
TABLE OF CONTENTS

Declaration i
Acknowledgement ii
Abstract iii
Table of Contents iv
List of Figures ix
List of Tables x
List of Graphs xi
List of Abbreviations xii
List of Appendices xv

CHAPTER 1 – INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Research Objectives 7
1.4 Research Questions 7
1.5 Significance of the Study 8
1.6 Organization of the Study 9
1.7 Limitations 11

CHAPTER 2 - LITERATURE REVIEW

2.1 Literature Review 12
 2.1.1 Biomass in Sri Lanka 13
 2.1.2 Global Review of Natural Rubber Industry 15
 2.1.2.1 History & Overview 15
 2.1.2.2 Current sources 16
 2.1.2.3 Cultivation 16
 2.1.2.4 Collection 17
 2.1.2.5 Uses 19
 2.1.2.6 Pre-historic uses 20

iv
2.1.2.7 Manufacturing 20
2.1.2.8 Applications 20
2.1.2.9 Production of Natural Rubber 21
2.1.2.10 Top ten Rubber Producers 23
2.1.2.11 Consumption of Natural Rubber 24
2.1.2.12 Trends in Natural Rubber Supply and Demand in Asia 27
2.1.3 Natural rubber Production Process 29
 2.1.3.1 Processing of rubber sheet 33
 2.1.3.2 Processing of Crepe rubber 35
 2.1.3.3 Processing of crumb rubber 36
 2.1.3.4 Processing of latex concentrate 38
2.1.4 Heat requirement in Natural Rubber Production Process 39
 2.1.4.1 Smoking and Smoke Houses 39
 2.1.4.2 Furnace-Inside-Chamber 41
 2.1.4.3 Furnace-Outside-Chamber 42
 2.1.4.4 Rubber Wood 42
2.1.5 Value Added Rubber Industry in Sri Lanka 43
2.2 Greenhouse Effect 44
2.3 Greenhouse Gases 46
2.4 Global Carbon Cycle 46
2.5 Carbon Footprint 48
2.6 Kyoto Protocol, Carbon Offsetting, and Certificates 49
2.7 Carbon Trading 51
2.8 Role of Trees on Greenhouse Effect 52

CHAPTER 3 – SITUATIONAL ANALYSIS

3.1 Energy Balance in Sri Lanka 55
3.2 A Review on Biomass Utilization in Sri Lanka 57
 3.2.1 Firewood 59
 3.2.2 Crop Residues 61
 3.2.3 Animal Waste 62
3.3 Rubber Industry in Sri Lanka 62
3.3.1 Natural Rubber
 3.3.1.1 Consumption and Production
 3.3.1.2 Rubber Replanting Subsidy Scheme
 3.3.1.3 Thermal Energy Sources in Natural Rubber industry

3.3.2 Value Added Rubber
 3.3.2.1 Technology
 3.3.2.2 Certifications for Export
 3.3.2.3 Related Institutions/Associations
 3.3.2.4 Value chain for Rubber
 3.3.2.5 Exporters
 3.3.2.6 Information flows in the value chain

CHAPTER 4 – METHODOLOGY AND CONCEPTUAL FRAMEWORK OF THE STUDY

4.1 Conceptualization

4.2 Conceptual Framework of the Study
 4.2.1 Methodology
 4.2.2 Research Design

4.3 Sample Selection and Data Collection
 4.3.1 Sample Selection
 4.3.2 Data Collection
 4.3.2.1 Raw Rubber Sector
 4.3.2.2 Value Added Sector

CHAPTER 5- DATA ANALYSIS

5.1 Raw Rubber Sector
 5.1.1 Quantitative Analysis
 5.1.2 Qualitative Analysis

5.2 Value Added Sector
 5.2.1 Quantitative Analysis
 5.2.2 Cost Analysis of Firewood Production
 5.2.3 Qualitative Analysis
5.3 Key Issues of Switching to Biomass in Rubber Industry 87
5.4 Firewood Equivalent of Fossil Fuels 88
5.5 Glicricidia Sepium as a Short Rotation Crop 90
 5.5.1 Site Requirements 91
 5.5.2 Site Preparation 92
 5.5.3 Biomass Production 93
 5.5.4 Other Products 94
 5.5.5 Productivity 95
 5.5.6 Income Generation 96

CHAPTER 6 - FINDINGS, CONCLUSION AND POLICY RECOMMENDATION

6.1 Findings on this Research 99
6.2 Conclusion 100
6.3 Policy Recommendations 101
6.4 Agenda for Future Research 104

REFERENCES 106

APPENDICES

Appendix 1: Tables 109

Table 3.1- Indigenous Primary Sources of Energy 109
Table 3.2- Global Sources of Energy 110
Table 5.2- Qualitative Analysis on Production and R&D 110
Table 5.3- Qualitative Analysis on Maintenance & Organization 111
Table 5.7- Qualitative Analysis on Production and R&D 112
Table 5.8- Qualitative Analysis on Maintenance & Organizational Behaviour 113
Table 5.10 - Firewood Equivalent & Cultivation Plan 114
Appendix 2: Figures

Figure 6.1 – Proposed Mechanism for Integration and Co-ordination 115
Figure 6.2 – Primary and Secondary Activities of the Process 116

Appendix 3: Graphs

Graph 5.1 – Variation of Annual Yield 117
Graph 5.2 – Variation of Firewood Usage 117
Graph 5.3 – Variation of Cost of Firewood 118

Appendix 4: Questionnaires

Appendix 4A: Questionnaire 1 119
Appendix 4B: Questionnaire 2 127
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1.1</td>
<td>ILLUSTRATION OF GRID OF GREEN POWER</td>
<td>9</td>
</tr>
<tr>
<td>FIGURE 2.1</td>
<td>FLOW DIAGRAM OF TYPICAL NATURAL RUBBER (NR) PROCESSING AND MANUFACTURING</td>
<td>29</td>
</tr>
<tr>
<td>FIGURE 2.2</td>
<td>FLOW DIAGRAM FOR PROCESSING OF RUBBER SHEETS</td>
<td>34</td>
</tr>
<tr>
<td>FIGURE 2.3</td>
<td>FLOW DIAGRAMS FOR PROCESSING OF CREPE RUBBER</td>
<td>36</td>
</tr>
<tr>
<td>FIGURE 2.4</td>
<td>FLOW DIAGRAM FOR PROCESSING OF CRUMB RUBBER</td>
<td>37</td>
</tr>
<tr>
<td>FIGURE 2.5</td>
<td>FLOW DIAGRAM FOR PROCESSING OF LATEX CONCENTRATE</td>
<td>38</td>
</tr>
<tr>
<td>FIGURE 2.6</td>
<td>ILLUSTRATION OF GREENHOUSE EFFECT</td>
<td>45</td>
</tr>
<tr>
<td>FIGURE 2.7</td>
<td>GLOBAL CARBON CYCLE</td>
<td>47</td>
</tr>
<tr>
<td>FIGURE 3.1</td>
<td>ENERGY DEMAND BY SECTORS</td>
<td>55</td>
</tr>
<tr>
<td>FIGURE 3.2</td>
<td>SHARE OF PRIMARY ENERGY SUPPLY</td>
<td>57</td>
</tr>
<tr>
<td>FIGURE 3.3</td>
<td>VALUE CHAIN OF RUBBER</td>
<td>68</td>
</tr>
<tr>
<td>FIGURE 3.4</td>
<td>DETAILED VALUE CHAIN FOR RUBBER</td>
<td>69</td>
</tr>
<tr>
<td>FIGURE 3.5</td>
<td>INFORMATION FLOWS IN THE VALUE CHAIN</td>
<td>70</td>
</tr>
<tr>
<td>FIGURE 4.1</td>
<td>CONCEPTUAL FRAMEWORK</td>
<td>71</td>
</tr>
<tr>
<td>FIGURE 5.1</td>
<td>GLOBAL SUITABILITY OF GLIRICIDIA SEPIUM</td>
<td>92</td>
</tr>
<tr>
<td>FIGURE 6.1</td>
<td>PROPOSED MECHANISM FOR INTEGRATION AND CO-ORDINATION OF ENTIRE PROCESS</td>
<td>115</td>
</tr>
<tr>
<td>FIGURE 6.2</td>
<td>PRIMARY AND SECONDARY ACTIVITIES OF THE PROCESS</td>
<td>116</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1.1</td>
<td>ROI FROM BIOMASS FOR A PERIOD OF 5 YEARS</td>
<td>8</td>
</tr>
<tr>
<td>TABLE 2.1</td>
<td>GLOBAL PRODUCTION OF RAW RUBBER</td>
<td>22</td>
</tr>
<tr>
<td>TABLE 2.2</td>
<td>TOP TEN PRODUCERS OF RAW RUBBER</td>
<td>24</td>
</tr>
<tr>
<td>TABLE 2.3</td>
<td>GLOBAL CONSUMPTION OF RAW RUBBER</td>
<td>26</td>
</tr>
<tr>
<td>TABLE 2.4</td>
<td>NATURAL RUBBER PRODUCTION OF SRI LANKA AND ITS REGIONAL COMPETITORS</td>
<td>28</td>
</tr>
<tr>
<td>TABLE 2.5</td>
<td>ANNUAL RUBBER YIELDS (2010)</td>
<td>28</td>
</tr>
<tr>
<td>TABLE 2.6</td>
<td>CARBON EMISSION OF FUELS</td>
<td>49</td>
</tr>
<tr>
<td>TABLE 2.7</td>
<td>INDIGENOUS PRIMARY SOURCES OF ENERGY</td>
<td>109</td>
</tr>
<tr>
<td>TABLE 2.8</td>
<td>GLOBAL SOURCES OF ENERGY</td>
<td>110</td>
</tr>
<tr>
<td>TABLE 2.9</td>
<td>USAGE OF DIFFERENT TYPES OF BIOMASS</td>
<td>59</td>
</tr>
<tr>
<td>TABLE 2.10</td>
<td>SECTOR-WISE CONSUMPTION OF FUEL WOOD OVER LAST 30 YEARS</td>
<td>60</td>
</tr>
<tr>
<td>TABLE 2.11</td>
<td>FUEL WOOD SUPPLY BY SOURCE FROM YEAR 2000 TO 2002</td>
<td>60</td>
</tr>
<tr>
<td>TABLE 2.12</td>
<td>FIREWOOD CONSUMPTION BY INDUSTRY FROM 2000 TO 2002</td>
<td>61</td>
</tr>
<tr>
<td>TABLE 2.13</td>
<td>PADDY HUSK PRODUCTION FOR LAST DECADE (2001 – 2010)</td>
<td>62</td>
</tr>
<tr>
<td>TABLE 3.1</td>
<td>INDIGENOUS PRIMARY SOURCES OF ENERGY</td>
<td>109</td>
</tr>
<tr>
<td>TABLE 3.2</td>
<td>GLOBAL SOURCES OF ENERGY</td>
<td>110</td>
</tr>
<tr>
<td>TABLE 3.3</td>
<td>USAGE OF DIFFERENT TYPES OF BIOMASS</td>
<td>59</td>
</tr>
<tr>
<td>TABLE 3.4</td>
<td>SECTOR-WISE CONSUMPTION OF FUEL WOOD OVER LAST 30 YEARS</td>
<td>60</td>
</tr>
<tr>
<td>TABLE 3.5</td>
<td>FUEL WOOD SUPPLY BY SOURCE FROM YEAR 2000 TO 2002</td>
<td>60</td>
</tr>
<tr>
<td>TABLE 3.6</td>
<td>FIREWOOD CONSUMPTION BY INDUSTRY FROM 2000 TO 2002</td>
<td>61</td>
</tr>
<tr>
<td>TABLE 3.7</td>
<td>PADDY HUSK PRODUCTION FOR LAST DECADE (2001 – 2010)</td>
<td>62</td>
</tr>
<tr>
<td>TABLE 3.8</td>
<td>TRENDS IN SRI LANKA’S RAW RUBBER SECTOR</td>
<td>65</td>
</tr>
<tr>
<td>TABLE 3.9</td>
<td>2001/2010</td>
<td></td>
</tr>
<tr>
<td>TABLE 4.1</td>
<td>OPERATIONAL VARIABLES</td>
<td>75</td>
</tr>
<tr>
<td>TABLE 5.1</td>
<td>QUANTITATIVE ANALYSIS OF RAW RUBBER SECTOR</td>
<td>81</td>
</tr>
<tr>
<td>TABLE 5.2</td>
<td>QUALITATIVE ANALYSIS ON PRODUCTION AND R&D</td>
<td>110</td>
</tr>
<tr>
<td>TABLE 5.3</td>
<td>QUALITATIVE ANALYSIS ON MAINTENANCE & ORGANIZATION</td>
<td>111</td>
</tr>
<tr>
<td>TABLE 5.4</td>
<td>FUEL CONSUMPTION OF THE INDUSTRIES</td>
<td>84</td>
</tr>
<tr>
<td>TABLE 5.5</td>
<td>CALCULATION OF UNIT SELLING PRICE OF FIREWOOD</td>
<td>85</td>
</tr>
<tr>
<td>TABLE 5.6</td>
<td>COST COMPARISON: FIREWOOD VS. FURNACE OIL</td>
<td>86</td>
</tr>
<tr>
<td>TABLE 5.7</td>
<td>QUALITATIVE ANALYSIS ON PRODUCTION & R&D</td>
<td>112</td>
</tr>
<tr>
<td>TABLE 5.8</td>
<td>QUALITATIVE ANALYSIS ON MAINTENANCE & ORGANIZATIONAL BEHAVIOUR</td>
<td>113</td>
</tr>
<tr>
<td>TABLE 5.9</td>
<td>COMPARISON BETWEEN RUBBER AND GLIRICIDIA</td>
<td>89</td>
</tr>
<tr>
<td>TABLE 5.10</td>
<td>FIREWOOD EQUIVALENT & CULTIVATION PLAN</td>
<td>114</td>
</tr>
<tr>
<td>TABLE 5.11</td>
<td>NUTRIENT CONTRIBUTION OF GLIRICIDIA</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF GRAPHS

GRAPH 2.1 - GLOBAL PRODUCTION OF RAW RUBBER 23
GRAPH 2.2 - GLOBAL CONSUMPTION OF RAW RUBBER 27
GRAPH 3.1 - MARKET ANALYSIS OF RUBBER IN 2001-2010 65
GRAPH 5.1 - VARIATION OF ANNUAL YIELD 117
GRAPH 5.2 - VARIATION OF FIREWOOD USAGE 117
GRAPH 5.3 - VARIATION OF COST OF FIREWOOD 118
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>AIR DRIED SHEET</td>
</tr>
<tr>
<td>ANRPC</td>
<td>ASSOCIATION OF NATURAL RUBBER PRODUCING COUNTRIES</td>
</tr>
<tr>
<td>ARRPEEC</td>
<td>ASIAN REGIONAL RESEARCH PROGRAM IN ENERGY, ENVIRONMENT AND CLIMATE</td>
</tr>
<tr>
<td>BET</td>
<td>BIOMASS ENERGY TECHNOLOGIES</td>
</tr>
<tr>
<td>CBSL</td>
<td>CENTRAL BANK OF SRI LANKA</td>
</tr>
<tr>
<td>CDM</td>
<td>CLEAN DEVELOPMENT MECHANISM</td>
</tr>
<tr>
<td>CEA</td>
<td>CENTRAL ENVIRONMENTAL AUTHORITY</td>
</tr>
<tr>
<td>CEB</td>
<td>CEYLON ELECTRICITY BOARD</td>
</tr>
<tr>
<td>CER</td>
<td>CERTIFIED EMISSION REDUCTION</td>
</tr>
<tr>
<td>CHP</td>
<td>COMBINED HEAT AND POWER</td>
</tr>
<tr>
<td>CP</td>
<td>CLEANER PRODUCTION</td>
</tr>
<tr>
<td>CPC</td>
<td>CEYLON PETROLEUM CORPORATION</td>
</tr>
<tr>
<td>CPPIPMP</td>
<td>CENTRL PLANNING, INTEGRATION & PROGRESS</td>
</tr>
<tr>
<td>CRITA</td>
<td>COLOMBO RUBBER TRADERS ASSOCIATION</td>
</tr>
<tr>
<td>DCS</td>
<td>DEPT. OF CENSUS & STATISTICS</td>
</tr>
<tr>
<td>DRC</td>
<td>DRY RUBBER CONTENT</td>
</tr>
<tr>
<td>ECC</td>
<td>EXPERT CONSULTANCY COMMITTEE</td>
</tr>
<tr>
<td>ERU</td>
<td>EMISSION REDUCTION UNIT</td>
</tr>
<tr>
<td>FAO</td>
<td>FOOD AND AGRICULTURE ORGANIZATION</td>
</tr>
<tr>
<td>FFEC</td>
<td>FINANCIAL FEASIBILITY EVALUATION COMMITTEE</td>
</tr>
<tr>
<td>GHG</td>
<td>GREEN HOUSE GASES</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GOSL</td>
<td>GOVERNMENT OF SRI LANKA</td>
</tr>
<tr>
<td>GRG</td>
<td>GENERAL RUBBER GOODS</td>
</tr>
<tr>
<td>GRP</td>
<td>GENERAL RUBBER PRODUCTS</td>
</tr>
<tr>
<td>GS</td>
<td>GRAMA SEVAKA</td>
</tr>
<tr>
<td>GTC</td>
<td>GIGA TONS OF CARBON</td>
</tr>
<tr>
<td>ICS</td>
<td>IMPROVED COOKING STOVE</td>
</tr>
<tr>
<td>IDB</td>
<td>INDUSTRIAL DEVELOPMENT BOARD</td>
</tr>
<tr>
<td>IPP</td>
<td>INDEPENDENT POWER PRODUCERS</td>
</tr>
<tr>
<td>IRSG</td>
<td>INTERNATIONAL RUBBER STUDY GROUP</td>
</tr>
<tr>
<td>ITI</td>
<td>INDUSTRIAL TECHNOLOGY INSTITUTE</td>
</tr>
<tr>
<td>JI</td>
<td>JOINT IMPLEMENTATION</td>
</tr>
<tr>
<td>LAPC</td>
<td>LAND ACQUIRING & PLANNING COMMITTEE</td>
</tr>
<tr>
<td>LIOC</td>
<td>LANKA INDIAN OIL COMPANY</td>
</tr>
<tr>
<td>LPG</td>
<td>LIQUIFIED PETROLEUM GAS</td>
</tr>
<tr>
<td>MT</td>
<td>METRIC TONS</td>
</tr>
<tr>
<td>NERDC</td>
<td>NATIONAL ENGINEERING RESEARCH AND DEVELOPMENT CENTRE</td>
</tr>
<tr>
<td>NR</td>
<td>NATURAL RUBBER</td>
</tr>
<tr>
<td>PAAC</td>
<td>PUBLIC ADDRESS & AWARENESS COMMITTEE</td>
</tr>
<tr>
<td>PCFFE</td>
<td>PROJECT COMMITTEE FOR FINAL FEASIBILITY EVALUATION</td>
</tr>
<tr>
<td>PSFC</td>
<td>POLICY & STRATEGY FORMULATION COMMITTEE</td>
</tr>
<tr>
<td>RDD</td>
<td>RUBBER DEVELOPMENT DEPARTMENT</td>
</tr>
<tr>
<td>REC</td>
<td>REGIONAL EXECUTION COMMITTEES</td>
</tr>
<tr>
<td>RRI</td>
<td>RUBBER RESEARCH INSTITUTE</td>
</tr>
<tr>
<td>RRISL</td>
<td>RUBBER RESEARCH INSTITUTION OF SRI LANKA</td>
</tr>
<tr>
<td>RSS</td>
<td>RIBBED SMOKED SHEET</td>
</tr>
</tbody>
</table>
SBU STRATEGIC BUSINESS UNIT
SGF SUSTAINABLY GROWN FUEL WOOD
SEASL SUSTAINABLE ENERGY AUTHORITY OF SRI LANKA
SLEDB SRI LANKA EXPORT DEVELOPMENT BOARD
SME SMALL AND MEDIUM ENTERPRISES
SMERMA THE SME RUBBER MANUFACTURERS ASSOCIATION
SR SYNTHETIC RUBBER
SRC SHORT ROTATION CROPS
SRI THE SRI LANKA SOCIETY OF RUBBER INDUSTRY
TFEC TECHNICAL FEASIBILITY EVALUATION COMMITTEE
TSR TECHNICALLY SPECIFIED RUBBER
UNDP UNITED NATION’S DEVELOPMENT PROGRAM
UNEP UNITED NATION’S ENVIRONMENT PROGRAM
UOM UNIVERSITY OF MORATUWA
VER VERIFIED EMISSION REDUCTION
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Tables</td>
<td>110</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Figures</td>
<td>116</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Graphs</td>
<td>118</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Questionnaires</td>
<td>120</td>
</tr>
</tbody>
</table>