GENETIC ALGORITHM OPTIMIZED K NEAREST NEIGHBOR CLASSIFICATION FRAMEWORK (gaKnn)

D. G. N. Dayaratne

This dissertation was submitted to the Department of Computer Science and Engineering of the University Of Moratuwa in partial fulfillment of the requirement'! for the Degree of MSc in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Srilanka

November 2008

Abstract

Data classification attempts to assign a category or a class label to an unknown data object based on an available similar data set with class labels already assigned. K nearest neighbor (KNN) is a widely used classification technique in data mining. KNN assigns the majority class label of its closest neighbours to an unknown object, when classifying an unknown object. The computational efficiency and accuracy of KNN depends largely on the techniques used to identify its K nearest neighbours. The selection of a similarity metric to identify the neighbours and the selection of the optimum K as the number of neighbours can be considered as an optimization problem. The optimizing parameters for KNN are value for K. weight vector, voting power of neighbours, attribute selection and instance selection. Finding these values is a search problem with a large search space .Genetic Algorithms (OA) are considered to provide optimum solutions for search problems with a large search space. The search space is defined by the application do main. There are multiple real world classification applications that can utilize a parameter optimized KNN. Due to this, there is various research work carried out on using Genetic Algorithms for optimizing KNN classification.

Even though multiple instances of research had been carried out on using GA to optimize KNN there is no software framework available, which could be easily adapted to various application domains. This research is aimed towards building a framework to carry out the optimization of KNN classification with the help of a Genetic Algorithm. The work includes identifying issues and best practices on designing a suitable framework. The developed framework provides a basic backbone for GA optimization of KNN while providing sufficient flexibility for the user, to extend it to specific application domains.

This work discusses the design and implementation of a minimalist gaKnn framework. It is expected that this would serve as a basis for future enhancements.

The work included in this report was done by me, and only by me, and the work has not been submitted for any other academic qualification at any institution.

D.G.N. Dayaratne 31st Dec, 2008

I certify that the declaration above by the candidate is true to the best of my knowledge and that this report is acceptable for evaluation for the MSc Research Project.

UOM Verified Signature

Dr. Shehan Perera (Supervisor)

7.

Acknowledgements

First of all, I would like to thank my supervisor Dr. Shehan Perera who initially proposed the idea to develop a Genetic Algorithm optimized K Nearest Neighbor classification framework. Without his guidance and invaluable suggestions this project would not have been a success.

Also I wish to acknowledge Mrs. Vishaka Nanayakkara MSc Coordinator for 2005 MSc batch/ Head of the Dept. of Computer Science & Engineering for her guidance and support. I would like to extend my sincere thanks to Dr. Sanath Jayasena MSc Coordinator for 2007 MSc batch for his invaluable mentoring and guidance to make this project a success.

The authors of the various references used, notably JGAP Java Genetic Algorithm Package are also acknowledged with gratitude.

Also I should mention my family and friends for their support and encouragement extended to me throughout the project. Without their support this would not have been a success.

Table of Contents

1	Inti	roduction	1
2	Lite	erature Review	3
	2.1	K-Nearest Neighbor Classification	3
	2.2	Genetic Algorithms	8
	2.3	Optimizing Weighted K-Nearest Neighbor with a Genetic Algorithm	10
	2.4	Usage of GA-KNN for Real World Applications	12
	2.5	GA Frameworks	13
	2.6	Background to the Existing gaKnn	15
	2.7	Framework Designing Aspects	16
3	Ме	thodology	18
	3.1	Problem Definition	18
	3.2	ApproachUniversity of Moratuwa, Sri Lanka	
	3.3	Scope Electronic Theses & Dissertations	19
4	De	sign and Implementation	
	4.1	Overall Design	24
	4.2	Module Details	27
	4.3	Sample Implementations	35
5	Re	sults and Evaluation	41
	5.1	Goals	41
	5.2	Testing Strategy	41
	5.3	Test Results	44
	5.4	Test Result Analysis	50
6	Со	nclusions and Future Work	55
	6.1	Conclusions and Contributions	55
	6.2	Future Work	56
7	Re	ferences	57

Appendix A: Attribute-Relation File Format (ARFF)	59
Appendix B: Introduction to JGAP Framework	61
Appendix C: Customizing gaKnn	63

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

-

· ·

List of Figures

Figure 2.1: KNN classifier	3
Figure 2.2: KNN algorithm	5
Figure 2.3: Effect of scaling attributes	6
Figure 2.4: Feature selection and instance selection for KNN classifier.	8
Figure 4.1: Overall design	24
Figure 4.2: KNN optimization	25
Figure 4.3: KNN classification	26
Figure 4.4: Main class diagram for data access	30
Figure 4.5: Algorithm for chromosome evaluation	31
Figure 4.6: Main class diagram for KNN optimization	32
Figure 4.7: Program flow for KNN optimization	33
Figure 4.8: Main class diagram for KNN classification	34
Figure 4.9: Program flow for KNN classification	35
Figure 5.1: GA optimization progress for the abalone data set with Method 1	44
Figure 5.2: GA optimization progress for abalone data set with Method 2	45
Figure 5.3: Weights for the abalone data set	46
Figure 5.4: GA optimization progress for adult data set with Method 1	47
Figure 5.5: Weights for the adult data set	48
Figure 5.6: GA optimization progress for gender training data set with Method1	48
Figure 6.1: Training time vs file size	53

List of Tables

Table 4.1: Data set details of adult data set	35
Table 4.2: Attribute details of adult data set	36
Table 4.3: Data set details of abalone data set	36
Table 4.4: Attribute details of abalone data set	37
Table 4.5: Data set details of gender training data set	37
Table 4.6: Attribute details of gender training data set	38
Table 5.1: Class distribution of abalone data set	42
Table 5.2: Classes of abalone data set	42
Table 5.3: Selected attributes of gender training data set	44
Table 5.4: Optimum parameters of abalone data set with Method 1	45
Table 5.5: Optimum parameters of abalone data set with Method 2	46
Table 5.6: Optimum parameters of adult data set with Method 2	47
Table 5.7: Optimum parameters for gender training data set Method 2	49
(Electronic Theses & Dissertations	
www.lib.mrt.ac.lk	

<u>.</u>

*www.*110.1111t.ac.1K

Symbols, Notations, Abbreviations and Acronyms

gaKnn	Genetic Algorithm Optimized Nearest Neighbor classification framework
KNN	K Nearest Neighbor
GA	Genetic Algorithm
WKNN	Weighted K Nearest Neighbor
SFS	Sequential Forward Selection
SBS	Sequential Backward Selection
JGAP	Java Genetic Algorithm Programming
ARFF	Attribute-Relation File Format

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

24

ix