WASTEWATER TREATMENT
FOR
THE DESICCATED COCONUT INDUSTRY
IN
SRI LANKA

AN ENVIRONMENTAL ENGINEERING DESIGN APPROACH

A DISSERTATION SUBMITTED TO
THE
DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF MORATUWA
SRI LANKA
IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE
OF
MASTER OF ENGINEERING

KARUNA SUSIL SENEVIRATNE
NOVEMBER 1996
This Thesis has not been previously prepared in whole or part to any University or Institution for a Higher Degree

K S Seneviratne

November , 1996
This thesis is an attempt to introduce a wastewater treatment system to treat wastewater generated in the production of Desiccated coconut in Sri Lanka.

In the preparation of this method of treatment based on biological treatment, attention was focused on the generation of liquid, gaseous and solid wastes and their impacts on the environment.

Alternative methods were discussed for end-of-pipe treatment of waste water, and in-plant measures to prevent and reduce waste generation also considered.

In conclusion, the proposed treatment system was evaluated in terms of economic and found that, it is economically viable.
ACKNOWLEDGEMENTS

I acknowledge with gratitude the kindness of Mr G K Amaratunga, Chairman, Central Environmental Authority, in giving me an opportunity to join this M.Sc Programme and enhance my knowledge in an area vital for man's survival.

I extend my gratitude and thanks for Prof (Mrs) N. Ratnayaka, Head, Department of Environmental Engineering, University of Moratuwa, under whose guidance and supervision this study was pursued, for her valuable criticisms and kind advice throughout with great enthusiasm.

Encouragement given by Dr S S Wickramasuriya, Dr. S Hettiarachchi, Dr Buvendralingam, Mr Pathinather and the Staff of University of Moratuwa, Sri Lanka and Dr V U Ratnayake, Mr. K G D Bandaratileka, Mrs R Ellepola, Mr M S D Munasinghe of Central Environmental Authority of Sri Lanka is acknowledged with sincere thanks.

There are many others to whom I am indebted for their kind and generous contributions for the successful completion of this task. To mention a few who should be singled out for special thanks.
Mr W A D D Wijesooriya, Deputy Director (NRM), (CEA) for his invaluable assistance extended to me at the time of need.

Mr K H Muthukudaarachchi, Asst. Director and Mr K G S Jayawrdana, Environmental Officer, CEA for their encouragement.

Ms Wasantha, Ms Chetika, Ms Achala, Mr Gunatileka, Mr Kularatne and Jagath for assisting in chemical analysis and the encouragement meted.

Ms Mano, Ms Visaka and others in the library of CEA for providing information on references.

Mr Rajaratnem, Ms Maduka, Ms Surangi, Ms Kamani and Ms Pushpa for producing this thesis in excellent print form.

Mr Ariyaratne, Mr Premadasa and Mr Jagath for their generous services.

My parents and wife for the encouragement.
TABLE OF CONTENTS

Abstract
Acknowledgements
Table of contents
List of Figures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>1 Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Production Process and its Contribution to National Economy</td>
</tr>
<tr>
<td>1.2</td>
<td>Waste Generation And Environmental Impacts</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Wastewater</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Solid Waste</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Air Emissions</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Environmental Impacts</td>
</tr>
<tr>
<td>1.3</td>
<td>Legislation and Institutional Frame Work</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Environmental Legislation & Related Ordinances</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Environmental Protection Licensing Procedure For Industries</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Development of Guidelines & Standards For pollution control</td>
</tr>
<tr>
<td>1.4</td>
<td>Objective & Scope of the Project</td>
</tr>
</tbody>
</table>
Chapter 2 Literature review & Theoretical Considerations

2.1 General

2.2 Pollution Control Measures

2.2.1 Pretreatment of Coconut Water

2.2.2 Anaerobic Process

2.2.3 Aerobic process

2.3 Process Theory Involved

2.3.1 Terminology & Definitions

2.3.2 Mathematical Relationships of Decomposition Under Aerobic Conditions

Chapter 3 Experimental procedure

3.1 General

3.2 Laboratory and pilot plant Procedure for the Development of Process Design Criteria

Chapter 4 Results

4.1 Coconut water Characteristics

4.2 Anaerobic treatment Pilot Plat Study

4.3 Aerobic Treatment Bench Scale Study

4.4 Anaerobic Treatment Unit

4.5 aerobic Treatment Unit
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Discussion of Results</td>
</tr>
<tr>
<td></td>
<td>5.1.1 Results of Anaerobic Treatment process</td>
</tr>
<tr>
<td></td>
<td>Pilot Plant Study</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Results of aerobic Process</td>
</tr>
<tr>
<td>5.2</td>
<td>Operations & Maintenance of the Plant</td>
</tr>
<tr>
<td>5.3</td>
<td>Economic Evaluation of Proposed Plant</td>
</tr>
<tr>
<td>6</td>
<td>Conclusions & Recommendations</td>
</tr>
<tr>
<td>6.1</td>
<td>Recommendation for the Further Study</td>
</tr>
</tbody>
</table>

Reference

Appendices
LIST OF FIGURES

1.1 Desiccated Coconut Production Process

2.1 Phase of Microorganism Development

2.2 Relationship of Bacterial growth phase to food supply in aerated system

4.1 COD Variation with time

4.2 Fixed bed type anaerobic pilot plant

4.3 Equipment for aerobic bench scale study

4.4 Proposed Waste water treatment Process Flow Diagram

4.5 Evaluation of reaction rate coefficient (K)