

STRUCTURAL BEHAVIOUR RELATED TO STRESS ANALYSIS OF JOINTS IN COLD-FORMED SQUARE HOLLOW SECTIONS පුස්තකාලය, ලිලංකා විශ්ව විද_හලශ, කටුබැද්ද මණඩපය, ලමාරටුව.

PERMANENT REFERENCE NUT TO DE REMOVED FROM THE LUNARY

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

, 715

Thesis submitted to the University of Sheffield for the Degree of Doctor of Philosophy in the Department of Civil and Structural Engineering of the Faculty of Engineering

Ъy

Sammu Raghu De Silva Chandrakeerthy, B.Sc. Eng. (Hons.) Cey.

September 1973

To my mother, RUPAWATHIE, and my sister, SRIYA, whose love and understanding have brought me happiness beyond all expectations.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk ί

"It is not until we attempt to bring the theoretical part of our training into contact with the practical that we begin to experience the full effect of what Faraday has called 'mental inertia' - not only the difficulty of recognizing, among the objects before us, the abstract relations which we have learned from the books, but the distracting pain of wrenching the mind away from the symbols to the objects, and from the objects back to the symbols. This, however, is the price we have to pay for new ideas".

James Clerk Maxwell, 1871.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

SUMMARY

Tubular sections possess great intrinsic advantages for structural application but exploitation of these has been hampered, initially by the lack of an efficient joining method and subsequently, after the adoption of welding, by lack of knowledge concerning joint performance.

An extensive investigation of hot-formed tubular joints has recently been carried out at Sheffield. The current investigation extends the study to include cold-formed steel sections, fabricated into N-joints.

To investigate the trends in experimental research, a comprehensive survey of previous work was conducted. Drawing on this experience, an experimental investigation was designed, testing 47 specimens over a range of geometrical parameters and using material from four different manufacturers. All tests were fully instrumented and automatically recorded for computer data processing. As well as giving an overall assessment of joint performance, the experimentation was able to identify and analyse the basic modes of load transfer and ultimate failure.

An extensive investigation of the material properties of the coldformed SHS was conducted, consisting of over 650 tensile tests, 160 hardness tests, 78 Charpy impact tests and 8 residual stress determinations. A particular feature studied was the variation of properties around the section perimeter. Tests showed that the material covered a wide range of stress-strain characteristics. Residual stresses were high. Ductility was low, but adequate, and there was no evidence of notch sensitivity at room temperature.

Previous theoretical research was reviewed, and a fundamental theoretical study was commenced, employing finite element techniques as the most suitable approach to the problem. Effort was concentrated on developing a folded plate / shell analysis program to describe the

iv.

elastic behaviour, as a starting point for a future investigation.

In the practical context, current design methods were critically reviewed. Selecting the ultimate load approach as most satisfactory, a regression analysis of all available data was used to formulate the proposed provisional design recommendations.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk ٧.

ACKNOW/LEDGEMENTS

The author expresses his sincere gratitude to the following: -

Professor B. Rawlings, Head of the Department, for providing excellent facilities, for giving an opportunity to do an industry orientated research project, and for his interest and concern.

Professor T.H. Hanna for his pleasant and friendly cooperation.

Dr. A.A. Wood for his guidance, inspiration and advice throughout the project, and later for the critical assessment and refinement of much of the ideas.

Dr. D.A. Nethercot, who joined the research team at a later stage, for his assistance in computing, analytical work and, above all, for making me 'computer conscious'.

Mr. Vic Harrison, of the technical staff, for his valuable contribution to the experimental work.

All technical staff, especially those of heavy structures group Messrs Ron Newman, Dai Thompson, Stewart Hill and Shaun Waters, and those from elsewhere Messrs Harry Hunter and Harry Cass.

Professor U.S. Kuruppu of University of Ceylon, Katubedda Campus, one of my teachers, for assisting me throughout my career, especially for his immense help, encouragement and guidance since I joined the academic staff.

Dr. David and Mrs Carol Ball, for their friendship and inspiration which proved to be a dominant part of my happy stay at Sheffield.

My friends, family and relatives for their patience and encouragement which have been a source of strength in overcoming many difficulties and discouragements inherent in the process of researching. ٢

The many students I have met at home and abroad, who have made teaching a stimulating and a rewarding experience for me.

C.I.D.E.C.T. organisation for sponsoring the research, and especially the Technical Secretary, Mr. Walter Rose.

Finally someone who will never read this, 'George' the Sheffield University Computer, who did all the 'number-crushing' hard work.

I am truly thankful to all those mentioned and it is my earnest hope that what I have produced will go some way towards thanking all of them.

ć

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

			Page
Frontispiece			
Title			i
Dedication			ii ^
Quotation			iii
Summary			iv
Acknowledgemer	nts		vi
Contents			viii
List of figure	28		xx
Notation			xxix
Abbreviations			xxix
CHAPTER 1	INTRODUCTI	ON AND A GENERAL REVIEW OF THE	
	TUBULAR JO	INT PROBLEM	1
1.1	Introducti	onversity of Moratuwa, Sri Lanka.	2
1.2	General re	view of the tubular joint problem	7
1.3	Joints usi:	ng SHS made of cold-formed steel	17
1.4	Objectives	of the investigation	20
CHAPTER 2	REVIEW OF	PREVIOUS LITERATURE ON	
	EXPERIMENT	AL RESEARCH OF TUBULAR JOINTS	25 ·
2.1	Introducti	on	26
2.2	CHS to CHS	Joints	28
	2.2.1	General	28
	2.2.2	Parameters	30
	2.2.3	Mode of testing	32
	2.2.4	Evaluation of joint performance	34
	2.2.5	Results & Conclusions	35

•

viii

,

Page

2.3	CHS to RHS (CHS/RHS) and RHS to RHS				
	(RHS/RHS)	joints	38		
	2.3.1	General	38		
	2,3.2	Parameters	40		
	2.3.3	Mode of testing	42		
	2.3.4	Evaluation of joint performance	44		
	2.3.5	Results & Conclusions	45		
2.4	Work on joi	ints made of cold-formed steel	49		
	2.4.1	General	49		
	2.4.2	Parameters	49		
	2.4.3	Mode of testing	50		
	2.4.4	Evaluation of joint performance	50		
	2.4.5	Results & Conclusions	51		
2.5	Work on joi	nt behaviour in trusses	52		
	2.5.1 🦉 🖁	ectronic Theses & Dissertations wGeneralk	52		
	2.5.2	Objectives and the scale of tests	53		
	2.5.3	Test arrangement, loading & instrumentation	56		
	2.5.4	Conclusions & their limitations	60		
2.6	Conclusions research	from previous experimental	63		
CHAPTER 3	EXPERIMENTA	L INVESTIGATION	69		
3.1	Introductio	n	70		
3.2	General		71		
3.3	Test progra	mme	72		
3•4	General con	ditions in the test specimen	75		
3.5	Fabrication	of specimens	, 77		

Ϊ,

CHAPTER 3 - Continued				
3.6	Mode of tes	ting	78	
3.7	Test rig an	d the loading system	81	
3.8	Instrumenta	tion	83	
3.9	Test proced	ure	89	
3.10	Data analys	is	90	
CHAPTER 4	EXPERIMENTA	L RESULTS AND ANALYSIS	107	
4.1	Introduction			
4.2	General			
4.3	Modes of fa	ilure	109	
	4.3.1	50% Lap joints	109	
	4.3.2	100% Lap joints	111	

4.4

4.3.3 Gap joints Sri Lanka	111
4.3.4 Electronic These & Dissertations	112
Analysis of the individual failure types	113
4.4.1 Introduction	113
4.4.2 50% Lap joints	115
4.4.2.1 Failure type Ll	115
4.4.2.1.1 Strain and deformation measurements	115
4.4.2.1.2 Conclusions	117
4.4.2.2 Failure type L2	117
4.4.2.2.1 Strain and deformation measurements	117
4.4.2.2.2 Conclusions	119
4.4.2.3 Failure type L3	120
4.4.2.3.1 Strain and	
deformation measurements	120
4.4.2.3.2 Conclusions	122

4.4.3

4•4•4

	Page
4.4.2.4 Failure type 14	122
4.4.2.4.1 Strain and deformation measurements	122
4.4.2.4.2 Conclusions	124
4.4.2.5 Failure type L5	125
4.4.2.5.1 Strain and deformation measurements	125
4.4.2.5.2 Conclusions	126
4.4.2.6 Overall conclusions	127
100% Lap joints	128
4.4.3.1 Failure type Hl	128
4.4.3.1.1 Strain and deformation measurements	128
4.4.3.1.2 Conclusions	129
4.1.3.2 Failure type H2	130
4.4.3.2.1 Strain and deformation measurements	130
4.4.3.2.2 Conclusions	131
4.4.3.3 Overall conclusions on modes of failure of 100% lap joint	s 132
Gap joints	132
4.4.4.1 Failure type Gl	132
4.4.4.1.1 Strain and deformation measurements	132
4.4.4.1.2 Conclusions	134
4.4.4.2 Failure type G2	134
4.4.4.2.1 Strain and deformation measurements	134
4.4.2.2 Conclusions	136
4.4.4.3 Failure type G3	136
4.4.4.3.1 Strain and deformation measurements	136

4.4.4.3.2 Conclusions 138

4.4.4.4
4.4. defo
hahad

CHAPTER 4 - Continued

4.5

4.6

4.7

4.8

4.9

4.10

+.4.4.4.1 Strain and leformation measurements 139 4.4.4.4.2 Conclusions 140 4.4.4.5 Failure type G5 141 4.4.4.5.1 Strain and deformation measurements 141 4.4.4.5.2 Conclusions 143 4.4.4.6 Overall conclusions on modes of failure of gap joints 143 Modes of load transfer 145 50% Lap joints 4.5.1 145 146 4.5.2 100% Lap joints 4.5.3 Gap joints 147 Performance of joints - Sti Lanka 149 ses & Dissertations Joint performance ratio 4.6.1 149 4.6.2 Test results 152 154 Scale effect

Failure type G4

Effect of parameters on ultimate load of a joint in cold-formed steel and a comparison of ultimate loads of cold-formed joints with that of hot-formed joints

4 .8.1	General	155
4.8.2	Effect of parameters on ultimate loads in cold-formed joints	157
4.8.3	Effect of parameters on ultimate loads in hot-formed joints	159
4.8.4.	Comparison in behaviour of ultimate loads on joints in cold-formed and in hot-formed steel	160
Influence o	f residual stresses	161
Conclusions		

Page

139

155

			rage
CHAPTER 5	THE INVE	STIGATION OF THE MATERIAL PROPERTIES	
	IN COLD-1	FORMED SHS AND THEIR IMPORTANCE	248a
5.1	Introduc	tion	249
5.2	Survey of of cold-	f past research into material properties formed sections	249
	5.2.1	Introduction	249
	5.2.2	Effect of cold-forming on material properties	250
	5.2.3	Effect of cold-forming on structural behaviour of simple structural elements	256
	5°2 ° 4	Performance of simple joints in thin low ductility steels	262
	5.2.5	Importance of ductility in metallic structures	264
	5.2.6	Importance of residual stresses in cold-formed sections	269
	5.2.7	Conclusions	270
5•3	Material	property tests and their importance	271
	5.3.1	General	271
	5.3.2	Simple tension test	272
	5.3.3	Charpy impact test	274
	5•3•4	Hardness tests	276
5•4	Test prog	gramme and experimental results	277
	5.4.1	General	277
	5.4.2	Detailed test series	277
		5.4.2.1 Introduction	277
		5.4.2.2 Tension tests	278
		5.4.2.2.1 General	278
		5.4.2.2.2 Results	279
		5.4.2.2.3 Shape of stress-strain curves for different products	282
		5.4.2.2.4 A selected example showing variation of stress-strain properties around the periphery	284
		5.4.2.3 Charpy impact tests	285

Ì

Page

CHAPTER 5 - Continued

General	285
Results & Conclusions	286
rinell hardness tests	288
General	288
Results & Conclusions	289
esidual stress measure- ents	291
General	291
Results & Conclusions	293
series	294
	General Results & Conclusions rinell hardness tests General Results & Conclusions esidual stress measure- ents General Results & Conclusions series

5.5 Conclusions

5.4.3

CHAPTER 6 REVIEW OF PREVIOUS LITERATURE ON THEORETICAL

	RESEARCH	OF TUBULAR J	OINTS	343	
6.1	Introduc	Introduction			
6.2	Early and	rly analytical techniques			
	6.2.1	General		345	
	6.2.2	T-joints		345	
		6.2.2.1	CHS/CHS T-joints	345	
		6.2.2.2	CHS/RHS T-joints	347	
6.3	Methods 1	based on clas	sical thin shell theory	348	
	6.3.1	General	`	348	
<i>,</i>	6.3.2	T-joints		350	
		6.3.2.1	CHS/CHS T-joints	350	
6.4	Finite d:	ifference tec	hniques	355	
	6.4.1	General		355	
	6.4.2	T-joints		356	
		6.4.2.1	CHS/RHS T-joints	356	
		6.4.2.2	RHS/RHS T-joints	358	

CHAPTER 6 - Continued

	6.4.3	Four member	join ts				360
		6.4.3.1	CHS/RHS	four n	nember	joints	360
		6.4.3.2	RHS/RHS	four n	member	joints	366
6.5	Finite ele	ement techniq	ues				369
	6.5.1	General					3 69
	6.5.2	T-joints					369
		6.5.2.1	RHS/RHS	T-joir	nts		369
	6.5.3	Four member	joints				371
		6.5.3.1	CHS/RHS	four n	nember	joints	371
6.6	Observed tr	rends in anal;	ytical re	esearch	1		373
5.7	Conclusions	3					375
CHAPTER 7	THEORETICAL	INVESTIGATI	ON				381
7.1	Introductio	Introduction ersity of Moratuwa, Sri Lanka.					
7.2	The need fo	or theoretical	l researc	h			382
7.3	Selection of	of a method of	f analysi	s			384
7.4	The finite element technique					386	
	7.4.1	Introduction	n				386
	7.4.2	Basic steps	in finit	e elem	ent an	alysis	388
		7.4.2.1 the evaluati stress matri	Choice o ion of th ices for	of the e stif the el	elemen fness ement	t and and	3 88
		7.4.2.2 stiffness na	The asse atrix of	mbly o the st	f the ructur	overall e	390
		7.4.2.3 loads	The allo	cation	of the	e nodal	391
		7.4.2.4 boundary cor	The spec nditions	ificat	ion of		391
		7.4.2.5 equations to displacement	Solution determi s	of the	e matr: unknow	ix WI	392
		7.4.2.6 stresses	Evaluati	on of ·	the in	ternal	392

xv.

Page

CHAPTER 7 - (Continued		Page
	7.4.3	Convergence of solutions	393
		7.4.3.1 Convergence requirements	393
		7.4.3.2 Justification for the use of non-conforming elements	394
		7.4.3.3 Tests for convergence	395
7.5	Proposed a	approach to joint analysis	395
7.6	Additional plate/shel	procedures necessary for folded	399
	7.6.1	Introduction	399
	7.6.2	Evaluation of the stiffness matrix of the shell element in local coordinates	400
	7.6.3	Assembly of the stiffness matrix	404
		7.6.3.1 Special transformation procedures for folded plate structures	406
	7.6.4	Allocation of nodal loads	409
	7.6.5	w Specification of boundary conditions	409
	7.6.6	Solution of the equations	409
	7.6.7	Evaluation of internal stresses	409
7.7	Developmen	at of the computer program	410
7.8	Possible u	ses of the three programs developed	413
7•9	Conclusion	B	414
CHAPTER 8	EXISTING D	ESIGN RECOMMENDATIONS AND THEIR	
	SHORTCOMIN	GS	423
8.1	Introducti	on	424
8.2	Design of	tubular joints	425
	8.2.1	T-joints	425
	8.2.2	CHS/CHS four member joints	426
	8.2.3	CHS/RHS and RHS/RHS four member joints	427

CHAPTER 8 -	CHAPTER 8 - Continued		Page	
8.3	Effect of eccentric	f secondary stresses due to city of the joints	429	
	8.3.1	General	429	
	8.3.2	Compression chord subjected to secondary moments due to eccentricity at the joint	429	
	8.3.3	Tension chord subjected to secondary moments due to eccentricity at the joint	431	
8.4	Advantage design re	es and short-comings of tubular joint ecommendations	432	
	8.4.1	T-joints	432	
	8.4.2	CHS/CHS four member joints	433	
	8.4.3	CHS/RHS and RHS/RHS four member		
		joints	434	
8.5	Conclusio	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	436	
CHAPTER 9	EVOLUTION	OF THE DESIGN RECOMMENDATIONS	440	
9.1	Introduct	ion	441	
9.2	Trends in	a structural design philosophy	441	
	9.2.1	Trends in the overall design of structures	441	
	9.2.2	Trends in the development of design procedures for conventional joints in steel structures	449	
9.3	Selection basis for	of a method to form a rational RHS/RHS joint design	453	
9•4	Previous ultimate	attempts on the prediction of loads and their short-comings	456	
9•5	General a 9.5.1 9.5.2	pproach Introduction Selection of the 'best' regression equation	458 458 460	
- ·	9.5.3	Method adopted in this investigation	464	
·	9.5.4	Residuals and their importance	465	
	9•5•5	Regression and functional relationship	167	

CHAPTER 9 - Continued Page 469 9.6 The multiple regression analysis 469 9.6.1 General 9.6.2 50% Lap joints 471 9.6.2.1 Model 1 471 9.6.2.2 Model 2 472 9.6.2.3 Model 3 475 9.6.2.4 Model 4 477 9.6.3 Gap joints 478 9.6.3.1 Model 1 478 9.6.3.2 Model 2 478 9.6.3.3 Model 3 479 9.6.3.4 Model 4 481 Recommended models 9.7 483 50% Lap joints 9.7.1 483 9.7.2 Gap joints 483 Maintenance and development 9.7.3 of the models 484 9.8 Models for hot-formed joints 485 9.9 Factor of safety 486 9.10 Provisional design recommendation and conclusions 491 CHAPTER 10 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 522 APPENDIX A Residual stress measurements 527 APPENDIX B Derivation of stiffness and stress matrices for plane stress triangular element 531 APPENDIX C Derivation of stiffness and stress matrices for plate flexure triangular element 536 C.1 General 536

Page

C.2	Area coordinates	536
C.3	General approach to derivation of element stiffness and stress matrices	537
C.4	Alterations to the general approach for area coordinate formulation	540
C.5	Derivation of stiffness and stress matrices for a triangle with three degrees of freedom per node.	542
Regress	ion analysis	546

REFERENCES

t,

APPENDIX D

.

549

· .

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

.

.

•

•

FIGURE		
1.1	Gusset plate joint with a single line of load transfer	21
1.2	Gusset plate joint with two lines of load transfer	21
1.3	Relative distribution of principal stresses for different tubular joints	22
1.4	Secondary stresses in a directly connected tubular joint	23
1.5	Some forms of strengthening tubular joints	24
2.1	Modes of testing used by Bouwkamp	65
2.2	Modes of testing used by Kurobane	66
2.3	Modes of testing used by Sheffield and Corby investigators	67
2.4	Test arrangements used for truss tests	68
3.1	Joint in N-type girder used in the tests	92
3.2	Different joint configurations investigated	93 .
3.3 (a)	Lap joints	94
(ъ)	Lap joints (Continued)	95
3.4	Gap joints	96
3•5	Investigation of scale effect	97
3.6	Tack welding procedure	9 8
3.7	Welding procedure	99
3.8	Types of end conditions	100
3.9	Mode of testing	101
3.10	Typical test arrangements	102

ł

XX.

Page

		Page
3.11	Arrangement of strain gauges and deflection transducers	103
3.12	- ditto -	104
3.13	Datalogger	105
3.14	Pumping unit of the loading system	106
4 . 1(a)	Test results - Lap joints	165
(b)	Test results - Lap joints (Continued)	166
4.2(a)	Test results - Gap joints and scale effect series	167
(b)	Test results - Gap joints and scale effect series (Continued)	168
4.3	Tensile failure	169
4.4	50% Lap joints - Modes of failure	170
4•5	Detailed illustration - Failure type Ll	171
4.6	A typical specimen after failure - Failure type Ll	172
4.7	Detailed illustration - Failure type L2	173
4.8	A typical specimen after failure - Failure type L2	174
4.9	Detailed illustration - Failure type L3	175
4.10	A typical specimen after failure - Failure type L3	176
4.11	Detailed illustration - Failure type L4	177
4.12	A typical specimen after failure - Failure type L4	178
4.13	Detailed illustration - Failure type L5	179
4.14	A typical specimen after failure - Failure type L5	180
4.15	Illustration of the variations of modes of failure with parameters for 50% Lap and Gap joints	181
4.16	100% Lap joints - Modes of failure	182
4.17	Detailed illustration - Failure type Hl	183
4.18	A typical specimen after failure - Failure type Hl	184
4.19	Detailed illustration - Failure type H2	185
4.20	A typical specimen after failure - Failure type H2	186

Ĺ

Page

4.21	Gap joints - Modes of failure	187
4.22	Detailed illustration - Failure type Gl	188
4.23	A typical specimen after failure - Failure type Gl	189
4.24	Detailed illustration - Failure type G2	190
4.25	A typical specimen after failure - Failure type G2	191
4.26	Detailed illustration - Failure type G3	192
4.27	A typical specimen after failure - Failure type G3	193
4.28	Detailed illustration - Failure type G4	194
4.29	A typical specimen after failure - Failure type G4	195
4.30	Detailed illustration - Failure type G5	196
4.31	A typical specimen after failure - Failure type G5	197
4.32	Strain measurements (Vertical) - Failure type Ll	198
4.33	Strain measurements (Diagonal) - ditto -	199
4.34	- ditto - (Boom) - ditto -	200
4•35	Deformation measurements - Failure type Ll	201
4.36	Strain measurements (Vertical) - Failure type L2	202
4° <i>3</i> 7	- ditto - (Diagonal) - ditto -	203
4.38	- ditto - (Bocm) - ditto -	20L
4.39	Deformation measurements - Failure type L2	205
4.40	Strain measurements (Vertical) - Failure type L3	206
4.41	- ditto - (Diagonal) - ditto -	207
4.42	- ditto - (Boom) - ditto -	208
4.43	Deformation measurements - Failure type L3	209
4.44	Strain measurements (Vertical) - Failure type L4	210
4•45	- ditto - (Diagonal) - ditto -	211
4.46	- ditto - (Boom) - ditto -	212

<

.

		Page
4°47	Deformation measurements - Failure type L4	213
4.48	Strain measurements (Vertical) - Failure type L5	21/4
4.49	- ditto - (Diagonal) - ditto -	215
4.50	- ditto - (Boom) - ditto -	216
4.51	Deformation measurements - Failure type L5	217
4•52	Strain measurements (Vertical) - Failure type Hl	218
4.53	- ditto - (Diagonal) - ditto -	219
4•54	- ditto - (Boom) - ditto -	220
4•55	Deformation measurements - Failure type Hl	221
4.56	Strain measurements (Vertical) - Failure type H2	222
4•57	- ditto - (Diagonal) ditto -	223
4•58	- ditto - (Boom) - ditto -	224
4•59	Deformation measurements - Failure type H2	225
4.60	Strain measurements (Vertical) - Failure type Gl	226
4.61	- ditto - (Diagonal) - ditto -	227
4.62	- ditto - (Boom) - ditto -	228
4.63	Deformation measurements - Failure type Gl	229
4.64	Strain measurements (Vertical) - Failure type G2	230
4.65	- ditto - (Diagonal) - ditto -	231
4.66	- ditto - (Boam) - ditto -	232
4.67	Deformation measurements - Failure type G2	233
4.68	Strain measurements (Vertical) - Failure type G3	234
4.69	- ditto - (Diagonal) - ditto -	235
4.70	- ditto - (Boom) - ditto -	236
4.71	Deformation measurements - Failure type G3	237
4•72	Strain measurements (Vertical) - Failure type G4	238
4.73	- ditto - (Diagonal) - ditto -	239
4•74	- ditto - (Boam) - ditto -	240

I

XXI	V	•

4.75	Deformation measurements - Failure type G4	241
4•76	Strain measurements (Vertical) - Failure type G5	242
4.77	- ditto - (Diagonal) - ditto -	243
4.78	- ditto - (Boan) - ditto -	244
4.79	Deformation measurements - Failure type G5	245
4.80	50% Lap joints - Modes of load transfer	246
4.81	100% Lap joints - Modes of load transfer	247
4.82	Gap joints - Modes of load transfer	248
6 7	Reports of studin hand-mine and studin a scine	
7 •⊥	on stress-strain characteristics of structural	206
		290
5.2(a)	stress with various factors of Laka	297
5.2(Ъ)	Qualitative variation of fracture energy with various factors	297
5.3	Mechanical testing of materials	298
5•4	Some typical tensile specimens	299
5.5	Results of the detailed test series (STELCO - T10)	300
	- ditto - (Continued)	301
5.6	Results of the detailed test series (STELCO - T11)	302
	- ditto - (Continued)	303
5•7	Results of the detailed test series (HOESCH - T 17)	304
5. 8	- ditto - (HOESCH - T 18)	305
5.9	Results of the detailed test series (KLOCKNER - T46)	306
	- ditto - (Continued)	307
5.10	Results of the detailed test series (KLOCKNER - T43)	308
5.11	- ditto - (FERROTUBI - T6)	309
5.12	- ditto - (FERROTUBI - T7)	310

Page

.

.

		Page
5.13	Typical values of material properties of hot-formed hollow sections	311
5.14	Longitudinal and transverse variations of Y.S., U.T.S. and $\%$ elongation (STELCO - T10)	312
5.15	- ditto - (STEICO - T11)	313
5.16	- ditto - (HOESCH - T17)	31/4
5.17	- ditto - (HOESCH - T18)	315
5.18	- ditto - (KLOCKNER - T46)	316
5.19	- ditto - (KLOCKNER - T43)	317
5.20	- ditto - (FERROTUBI - T6)	31 8
5.21	- ditto - (FERROTUBI - T7)	319
5.22	Load-extension curves (flats)	320
5.23	- ditto -	321
5.24	Load-extension curves (welds)	322
5.25	- ditto - (corners)	323
5.26	Variation of load-extension plots around the periphery	324
5.27	Charpy impact test results	325
	- ditto - (Continued)	326
5.28	Reference test series for Charpy impact tests	327
5.29	Flowchart for the selection of ball diameter etc. for Brinell hardness tests	328
5.30(a)	Brinell hardness test results	329
(Ъ)	- ditto - (Continued)	330
5.31	Variation of Brinell hardness around the periphery of SHS	331
5.32(a)	Results of residual stress measurements (T10, T11, T46)	332
	- ditto - (Continued)	333
5.32(Ъ)	Results of Residual stress measurements (T43, T6, T7)	334
	- ditto - (Continued)	335

Ĺ

I

•

) . ,

٢

.

		Page
5•32(c)	Results of Residual stress measurements (T17, T18)	336
5.33	Residual stress variations	337
5.34	Sherman's residual stress measurements	338
5 .35(a)	General test series results	339
(ъ)	- ditto - (Continued)	340
(c)	- ditto - (Continued)	341
(a)	- ditto - (Continued)	342
6.1	Compression branch loaded with uniform deflection load	377
6.2	Tubular connection	378
6.3	Idealisation used in T-joint analysis by Redwood	379
6.4	Idealisation used in N-joint analysis by Dasgupta	380
7.1(a)	Nodal displacements and forces of the shell element	415
(ъ)	Construction of stiffness matrix for the shell element	415
7.2	Assembly of the overall stiffness matrix in a folded plate structure	416
7•3	Separation of in-plane and bending displacements	417
7.4(a)	A simplified flowchart to illustrate the working of the folded plate/shell program	418
(Ъ)	Description of the functions of the subroutines used in folded plate/shell program	419
7.5	Test problem	420
7.6	Cylindrical shell with fixed ends, subjected to uniform internal pressure	421
7.7	Simply supported box girder bridge under unsymmetrical loading which produces torsional effects	422
8.1	Bouwkamp's design curves for CHS/CHS joints	438
8.2	Design curve developed by Eastwood and Wood for CHS/RHS RHS/RHS gap joints	and 439

••

.

,

xxvii.

9.1	Variation of collapse load with respect to yield load for different structures using I - sections	494
9.2	Cold-formed test results	495
	- ditto - (Continued)	496
9•3	Cold-formed lap joints - Model 1	497
9.4	Scatter of residuals - Lap joints - Model 1	498
9•5	Comparison of observed and estimated values of P - Lap joints - Model 1	499
9.6	Cold-formed lap joints - Model 2	500
9•7	Scatter of residuals and a comparison of observed and estimated values of Log_e^P - Lap joints - Model 2	501
9.8	Comparison of observed and 'actual estimated' values of P-Lap joints - Model 2	502
9•9	Cold-formed Lap joints - Model 3	503
9.10	Scatter of residuals - Lap joints - Model 3	504
9.11	Comparison of observed and estimated values of P - Lap joints - Model 3	505
9.12	Cold-formed Lap joints - Model 4	506
9 .1 3	Scatter of residuals and a comparison of observed and estimated values of Log _e P - Lap joints - Model 4	507
9.14	Comparison of observed and 'actual estimated' values of P-Lap joints - Model 4	50 8
9.15	Cold-formed gap joints - Model 2	509
9.16	Scatter of residuals and a comparison of observed and estimated values of Log _e P - Gap joints - Model 2	510
9.17	Comparison of observed and 'actual estimated' values of P - Gap joints - Model 2	511
9.18	Cold-formed gap joints - Model 3	512
9.19	Scatter of residuals and a comparison of observed and estimated values of P - Gap joints - Model 3	513
9.20	Cold-formed gap joints - Model 4	5V4
9.21	Scatter of residuals and a comparison of observed and estimated values of Log _e P - Gap joints - Model 4	515

1

xxviii.

		0
9.22	Comparison of observed and 'actual estimated' values of P - Gap joints - Model 4	516
9.23	Hot-formed lap joints - Adopted model	517
9.24	Hot-formed gap joints - Adopted model	518
	- ditto - (Continued)	519
9•25	Hot-formed joints test results	520
	- ditto - (Continued)	521

A.1 Geometry of a curved strip

ģ

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Page

530

Ę

NOTATION

a ₁	-	Width of the chord member			
₫ ₂	. 🛥	Width of the compression branch member (vertical)			
a ₃	40	Width of the tension branch member (diagonal)			
t ₁	-	Thickness of the chord member			
^t 2	-	Thickness of the compression branch member (vertical)			
t ₃	-	Thickness of the tension branch member (diagonal)			
^F у ₁	-	Yield stress of the chord member			
Fy ₂	-	Yield stress of the compression branch member (vertical)			
^F у ₃	-	Yield stress of the tension branch member (diagonal)			
g	-	Width of the gap of separation between the vertical and the diagonal			
Prel.	-	Pre-load of the chord member			
P	-	Ultimate load of the joint			
E	-	Modulus of elasticity			
L/R	-	Slenderness ratio			
I	-	Second moment of area of cross-section about the neutral axis			
Ì	-	Poisson's ratio			

ABBREVIATIONS .

SHS / -	Structural	hollow	section
---------	------------	--------	---------

- CHS Circular hollow section
- RHS Rectangular hollow section
- RSJ Rolled steel joists