INVESTIGATING THE COMPETITIVENESS
OF NATURAL RUBBER LATEX-FILMS
AS A POTENTIAL SUBSTITUTE
FOR COMMON THIN-FILM PLASTIC PACKAGING
MATERIALS

SHALIKA ASANKA SIRIWARDHANA

DIVISION OF POLYMER TECHNOLOGY
DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING
FACULTY OF ENGINEERING
UNIVERSITY OF MORATUWA
November 2010

(This thesis was composed as the final dissertation of the M.Sc. in Polymer technology)
Declaration

Hereby I wish to declare that this research thesis is prepared from my own research work, of which a part or whole has not been submitted for any other academic qualification, or at any other institution. Information derived from published or unpublished work carried out by others has been acknowledged, cited or referred in the text.

Name of the student: Shalika Asanka Siriwardhana

Date: 02nd December 2010

Project Supervisor: Dr. Jagath Premachandra

Signature of the student:

Signature of the supervisor:

Date:
Acknowledgement

It is with heartfelt thankfulness to remember the incomparable level of support, supervision, and guidance provided by my supervisor, Dr. Jagath Premachandra, at the Department of Chemical and Process Engineering, University of Moratuwa, throughout this research project. The continuous advices and corrections he made, has been an enormous strength in making this achievement.

The invaluable support and courage I received from Dr. Shantha Walpalage, is also remembered with heartfelt gratitude. The direction he has shown, has navigated me through the research to make a highly successful outcome.

It is unforgettable to recollect the invaluable direction I received from Dr. Shantha Amarasinghe, Prof. Ajith De Alwis, Dr. Mrs Shantha Egodage, and all the staff members of the Department of Chemical And Process Engineering at the University of Moratuwa, in shaping my research to comply with the highest standards.

I am obliged for the continuous corporation and assistance extended to me, by Dr. Lakshman Nethsighe, at Dipped Products Plc, Pannipitiya, Sri Lanka, who introduced me to the polymer industry and motivated me towards innovative thinking which fuelled me in designing this research.

Finally, I am proud to recall the continuous support and encouragement given by my beloved wife, Ranmuthumalie, and my Uncle Mr. Lionel De Silva, towards overcoming various hardships and making this accomplishment.

Shalika Siriwardhana
Department of Chemical and Process Engineering
Faculty of Engineering
University of Moratuwa
November 2010
Table of contents

Chapter One – Introduction
1.1. The responsibility of a package ... 3
1.2. Background of the issues associated with plastic packaging 4
1.3. Research on Natural Rubber Films ... 5
1.4. Different applications of rubber films ... 6
1.5. Objectives of the Research ... 7

Chapter Two – Experimental
2.1. Materials used ... 9
2.2. Process equipment and instruments ... 9
2.3. Procedure for development of the packaging material 10
 2.3.1. Compounding formulation ... 10
 2.3.2. Compound and process related parameters 14
 2.3.3. Preparation of the main compound 18
 2.3.4. Special precautions and procedural measures 20
2.4. Physical conditions ... 22
2.5. Compound management ... 22
 2.6. Specifications for curing ... 23
 2.6.1. Consideration of temperature and heat, in compounding stage... 23
 2.6.2. Temperature in .ring .. 24
 2.6.3. Curing and timing ... 24
 2.6.4. Dipping process .. 27
 2.6.5. Curing process .. 28
2.7. Additional Processes ... 29
2.8. Sampling procedure .. 32
2.9. Testing for Mechanical Performance of samples 34
 2.9.1. Tensile Strength and Percentage Elongation at Break (% EB) 35
 2.9.2. Resistance against Abrasion ... 35
 2.9.3. Resistance Against Blade-cut ... 36
 2.9.4. Tear resistance ... 36
 2.9.5. Puncture resistance .. 37
Chapter Three - Results and discussion

3.1. Outcome of test results ... 40
3.2. Indicative parameters in test results ... 41
3.3. Observations on process parameters and studies on the formulation 42
 3.3.1. Extent of maturation for Prevulcanized compounds 42
 3.3.2. Studying the curing pattern ... 44
 3.3.3. Effects of the coagulant concentration 45
 3.3.4. Investigation of the effects of the filler content 46
 3.3.5. Effect of surface temperature of the formers 48
 3.3.6. Viscosity measurements ... 49
 3.3.7. Studying the effects of TSC .. 50
 3.3.8. Factors affecting the thickness ... 51
 3.3.9. Thickness variation along the longitudinal axis of the rubber film ... 52
3.4. Physical performance of the product .. 54
 3.4.1. Tensile strength ... 54
 3.4.2. The elongation at break (% EB) ... 55
 3.4.3. Resistance against abrasion ... 57
 3.4.4. Blade-cut resistance ... 59
 3.4.5. Tear resistance ... 61
 3.4.6. Puncture resistance .. 63
3.5. Observations on barrier properties and blooming 64
 3.5.1. Results from the air / water leakage test 65
 3.5.2. Blooming and material migration 66
3.6. Analysing the overall competency of the rubber material 67
3.7. The convenience of implementing the process 69
Chapter four – Conclusions and suggestions

4.1. Conclusions .. 70

4.2. Suggestions for future developments .. 71
 4.2.1. Applications and commercial considerations 71
 4.2.2. Curing system and vulcanization ingredients 71
 4.2.3. Fillers .. 71
 4.2.4. Other additives .. 72
 4.2.5. Former design ... 72
 4.2.6. Dipping facilities ... 72
 4.2.7. Latex Production, supply and quality .. 72
 4.2.8. Industrial Collaborations ... 73
 4.2.9. Regulations .. 73

Bibliography ... 74
List of Figures

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>The global packaging consumption, by region, 2003-2009</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Dipping tank used for pilot-scale production runs.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Ceramic formers being used in the preparation of rubber sacks</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Standard MST measuring Instrumentation and set-up.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Effects of movements in the pH towards the behaviour of the compound</td>
<td>15</td>
</tr>
<tr>
<td>Figure 6</td>
<td>The Experimental set-up for Viscosity Measurement, using a Ford-Cup.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Set-up for the preparation of compounds in temperature controlled tanks</td>
<td>23</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Temperature profile of the curing oven, used for the research.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 9</td>
<td>The flow chart which illustrates the sequence of steps involved in the preparation of rubber articles for packaging applications.</td>
<td>26</td>
</tr>
<tr>
<td>Figure 10</td>
<td>The mechanism of supplying hot air to the dipped formers, to cure the gelled rubber films formed on flat ceramic formers</td>
<td>28</td>
</tr>
<tr>
<td>Figure 11</td>
<td>The air leakage test apparatus used to measure the existence of pin-holes of the rubber sack.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 12</td>
<td>The apparatus used to observe water leakage from the rubber sack.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Effect of the swelling index on the tensile strength of the films in Toluene</td>
<td>43</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Effect of the swelling index to the Elongation at Break</td>
<td>43</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Variation of the Tensile Strength vs. curing time in the oven.</td>
<td>45</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Variation of the film-thickness against the concentration of Coagulant</td>
<td>45</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Effect of the filler content on the tensile strength</td>
<td>46</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Effect of the filler content on the resistance against tear</td>
<td>47</td>
</tr>
</tbody>
</table>
Figure 19. Effect of the filler content on the resistance against blade-cut 47

Figure 20. Variation of the time for sedimentation of dispersions against the average viscosity of the compound, 49

Figure 21. Variation of the thickness of the film, depending on the dwell time of the formers in the compound 51

Figure 22. Variation of the average thickness of the film, with the change in the withdrawal time 51

Figure 23. Variation of the thickness of the dipped article, along its profile 52

Figure 24. Variation of thickness of the rubber sack along its profile as a result of 3 different withdrawal speeds. 53

Figure 25. Comparison of the tensile strength of the rubber material, with that of other common polymeric materials used as thin-film general purpose packaging materials. 54

Figure 26. Comparison of Elongation at Break (% EB) for few common thin-film packaging materials. 55

Figure 27. Variation of the Percentage Elongation at Break, for the rubber material, with different phr values of filler being used 55

Figure 28. Comparison of the resistance against abrasion, for commonly used films. 57

Figure 29. Analysis of the average blade-cut cycles and the average Blade-cut Index exhibited by four thin-film materials 59

Figure 30. The tear resistance of various materials compared with rubber, while taking different thickness values into consideration. 61

Figure 31. Comparison of puncture-resistance of some commonly used as flexible packaging materials along with the NR latex film 63

Figure 32. Illustration of percentages of instances where pin-holes appeared, against the concentration of Surfactant used in the coagulant. 65
List of Tables

Table 1. Basic Formulation for the compound used for dipping 19
Table 2. Formulation for the same dipping compound but, specially presented to be used with the Curing Dispersion Master batch. 19
Table 3. Formulation for the Calcium-based coagulant 27
Table 4. Basic criteria for EN388 Physical testing for protective gloves, which is the closest analogy to the product profile. 35
Table 5. Parameters tested for the final product and its significance for the research. 41
Table 6. Variation of compound properties with the changes in swelling index as a measure of the extent of prevulcanization of compounds. 42
Table 7. The effect of concentration of the coagulant on the film-thickness and its characteristics, (timing and other parameters were kept constant) 45
Table 8. Effects of temperature of the former surface on the properties of dipped films 49
Table 9. Effect of Percentage TSC on the nature and behaviour of compounds 50
Table 10. Comparison of the average tear resistance against their thickness, for the rubber film, along with some major polymers used for flexible packaging. 61
Table 11. Effect of the surfactant in the coagulant, on the possibility of creating pin-holes and the quality of the rubber film. 64
Table 12. The percentage of instances where water leakage and air leakage was observed for five different contestant materials most commonly used in thin-film packaging. 65
Investigating the competitiveness of natural rubber latex films, as a potential substitute for common thin-film-plastic packaging materials.

Abstract

This report is based on an Industrial research, performed as an initiative effort, to introduce dip-coated Natural Rubber (NR) latex films, to compete with some common thin-film, flexible, plastic, packaging materials. While identifying some of the most sensitive global issues associated with such plastic packaging materials, Natural rubber latex was qualified in terms of many of its unique properties, essentially being a renewable resource. Sample production and testing were carried out at an industrial research and development facility where a comparative analysis was made to establish relative mechanical performance of rubber against Polyvinylchloride (PVC), Polypropylene (PP), and Polyethylene (PE) films. It was shown that the natural rubber films being produced exhibited comparable performance levels in terms of tensile strength and resistance against abrasion, while the films over-performed the tested thermoplastic films with respect to percentage elongation at break, resistance against abrasion, tear, blade-cut, and puncture, including resistance against macro-level water and air leakage. Accordingly, it was suggested that Natural rubber (NR) films having a minimum thickness of 0.3 mm, possessed potential prospects as a competitor for the selected categories of Polyethylene, Polypropylene, and Polyvinylchloride films, having a thickness range of 0.04mm to 0.11mm, in terms of mechanical performance criteria being considered.