UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA LB/DON/40/2011

DEE OSIT?

MODELING OF POWER TRANSMISSION LINES FOR LIGHTNING BACK FLASHOVER ANALYSIS A CASE STUDY: 220kV BIYAGAMA -KOTMALE TRANSMISSION LINE

Master of Science Dissertation

M.CHANAKA

Department of Electrical Engineering

University of Moratuwa, Sri Lanka

621.3 10 621.3 (043)

TH

December 2010

University of Moratuwa 96441

96441

96 HHI

MODELING OF POWER TRANSMISSION LINES FOR LIGHTNING BACK FLASHOVER ANALYSIS A CASE STUDY: 220KV BIYAGAMA - KOTMALE TRANSMISSION LINE

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science

by

MALLIKARACHCHIGE CHANAKA

Supervised by: Prof. H.Y.R. Perera

Eng. K.P.K. Shanthi

Department of Electrical Engineering University of Moratuwa, Sri Lanka

December 2010

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

•••••••

M. Chanaka

30th December 2010

We endorse the declaration by the candidate.

UOM Verified Signature

Prof. H.Y.R. Perera

Eng. K.P.K. Shanthi

Declarationi
Abstractv
Dedicationvi
Acknowledgementvii
List of Figures
List of Tablesx
CHAITER - 1
Introduction1
1.1 Historical overview of lightning1
1.2 The lightning phenomena2
1.2.1 Charge separation of thunder clouds2
1.2.2 Electric fields and energy in thunder clouds
1.2.3 Leader formation and breakdown mechanism
1.2.4 Types of lightning
1.2.5 Frequency of occurrence of lightning
1.3 Lightning data of Sri Lanka
1.4 Introduction to transmission system of Sri Lanka
1.5 Lightning effects on power transmission lines.
1.6 Lightning Parameters
1.6.1 The quantity of lightning activity in a given area
1.6.2 The distribution of the crest current of a lightning flash
1.6.3 The wave shape of a lightning flash
1.6.4 Total charge delivered by a lightning stroke
1.7 Selected transmission line for the study
1.7.1 Transmission Towers and configuration
1.7.2 Insulators and arc horn gaps
1.7.3 Phase conductors
1.7.4 Earthing of towers
CHAPTER - 2 15
Problem identification15
2.1 Introduction
2.2 Preliminary studies
2.2.1 The relationship between monthly Isokeraunic level and line failures16
2.2.2 Line sections having higher probability of insulator failures
2.3 Back flashover effects on transmission lines
2.3.1 Earth faults at power frequency voltage due to back flashover events18
2.4 Prevention of Back flashover events
2.5 Project objectives

CONTENTS

CHAPTER - 3	20
Methodology	20
3.1 EMTP/PSCAD modeling and simulation	20
3.2 Proposed electromagnetic transient model for 220kV Biyagama-Kotmale	
transmission line	21
3.3 Electromagnetic fast front transient sub models for transmission line elemen	ts22
3.3.1 Frequency dependent (Phase) model representing Transmission line	
sections and spans	22
3.3.2 Loss-Less Constant Parameter Distributed Line (CPDL) model represen	iting
the transmission towers	23
3.3.3 Tower grounding resistance model	25
3.3.4 Line insulators and back flashover model	26
3.3.5 Line termination model	28
3.3.6 Surge arrester model	29
3.3.7 Lightning stroke current generator model	31
3.3.8 Power frequency phase voltage generator model	33
3.4 Selection of a Transmission Line Arrester (TLA)	34
	26
CHAPTER - 4	
Application of the methodology	36
4.1 Introduction Electronic. Theses. & Dissertations	36
4.2 Power Systems CAD (PSCAD) modeling tool	36
4.2.1 PSCAD Graphical User Interface (GUI) window	36
4.3 Creation of sub models in PSCAD	38
4.3.1 Transmission line model	38
4.3.2 Transmission tower model	40
4.3.3 Tower grounding resistance model	40
4.3.4 Line insulator string with back flashover model	41
4.3.5 Power frequency phase voltage generator model	42
4.3.6 Line end termination model	43
4.3.7 Surge Arrester model	43
4.3.8 Lightning surge generator model	48
4.4 Assembly of sub models and data signal coordination	49
4.5 Method of simulation	49
4.5.1 Multiple Run component and variable settings	49
4.5.2 Simulation criteria	51
4.5.3 Project simulation settings	53
CHAPTER - 5	54
Results and analysis	51
5.1 Introduction	

5.2 Back flashover minimum current variation results and analysis	55
5.2.1 Results of simulations without arrester protection (Step-1)	55
5.2.2 Results of simulations with arrester protection (Step-2)	58
CHAPTER - 6	62
Conclusion and recommendations	62
6.1 Conclusion	62
6.2 Recommendations	62
REFERENCES	63
Annex-1 Present Transmission system of Sri Lanka	Al
Annex-2 Transmission system of Sri Lanka (Single line diagram)	A2
Annex-3 220kV Biyagama – Kotmale transmission line parameters	A3
Annex-4: A typical transmission tower used in the selected transmission line	:A4
Annex-5: Tower schedule	A5
Annex-6 Grounding Resistance variation of towers due to soil ionization effe	ect A6
Annex-7 Simplified selection procedure of an ABB surge arrester	A7-1

Abstract

Performance of power transmission lines has a great impact on reliability aspects of a particular power supply system of a country. Unreliable power transmission lines can even lead to total power failures resulting with great financial losses. The lightning back flashover effects are recognized as one of the major causes of transmission line outages.

Several types of solutions are presently available to address the issue of lightning back flashovers. However the modern concept of transmission line mounted surge arresters is of great popularity due to its excellent performance, ease of installation and the low cost compared to the other traditional solutions.

This report describes a case study which was carried out on one of critical 220kV power transmission lines of the Sri Lankan transmission network, having several past records of lightning back flashover related outages resulting with total system failures.

The study described in this report is mainly focuses on the way of analyzing the back flashover events by transient modeling and subsequent simulation of the selected transmission line in an electromagnetic transient computer program. The study uses the Power System CAD (PSCAD) software program as the software tool for the purpose of modeling and simulation of selected 220kV Biyagama-Kotmale power transmission line.

Simulation of the created transmission line model is carried out with and without Transmission Line Arrester (TLA) model to evaluate the improvements in lightning back flashover performance after installation of TLAs in the selected transmission line.

The result of the simulations shows that the installation of 02nos.of TLAs at top phases of each selected towers improves the lightning performance of the selected power transmission line.

Acknowledgement

Thanks are due first to my supervisors, Professor H.Y.R. Perera and Eng. K.P.K. Shanthi, for their great insights, perspectives, guidance and sense of humor. My sincere thanks goes to the officers in the Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the course coordinators and rest of the staff who serve in the Department of Electrical Engineering office.

My special thanks goes to Dr. Dharshana Muthumuni who spent his valuable time to guide me and providing valuable information required for this study.

I would like to express my sincere gratitude to Eng. L.A.S. Fernando, Eng. (Mrs.) N Amarasiri, Eng. W.W.R. Pitawala, Eng. W.D.A.J. Chandrakumara, Eng. N.L.A.A. Chandranath, Eng. W.A. Jayalath and Eng. U. Ranathunga working at Ceylon Electricity Board for their excellent support and the encouragement towards the success of this academic work.

Further my heartfelt thanks goes to Eng. L.A.A.N. Perera, Eng. K.P.D.S.K. Dharmadasa and Eng. D.L.P. Munasinghe for their valuable help and the continuous encouragement.

Finally, I would like to thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success. I could not be able to done it without your support.

M.Chanaka

29th December 2010

List of figures

Figure Description

Figure 1.1 – Benjamin Franklin's famous kite experiment in 17521
Figure 1.2 – Charge distribution of thunder clouds and types of lightning2
Figure 1.3 – Progression of the Downward Leader and formation of the Return Stroke
Figure 1.4 Jack groupic Level (IKL) map of Sri Lanka [5]
Figure 1.5 Induced charges on a power transmission line
Figure 1.6 – Lightning Stroke Current Probability Distribution [6]
Figure 1.7 – Dighting Stoke Current Flobability Distribution [6]10
Figure 1.8 — Single line diagram of Victoria complex with Biyagama Kotmale line 12
Figure 1.6 – Single line diagram of victoria complex with Bryagama-Rounaic line 1.2
Ketmale and
Figure 2.1 Comparison of monthly line failures with IKI
Figure 3.1 — Complete transmission line model proposed for the analysis 21
Figure 3.2 – Erequency Dependent (Phase) Model in PSCAD and its connection
arrangement 22
Figure 3.3 – Constant Parameter Distributed Line (CPDL) Model for Towers 23
Figure 3.4 – Elashover voltage-time characteristic of 220 kV line insulation with 2m
Arc-horn gap
Figure 3.5 – Insulator string and back flashover model
Figure 3.6 – Basic logic diagram for back flashover control module
Figure 3.7 – Grounding arrangement of a typical end termination model
Figure 3.8 – Frequency dependent surge arrester model
Figure 3.9 – V-I Relationship for nonlinear resistors A_0 and A_1 [12]
Figure 3.10 – Standard waveforms for lightning surge voltage and current
Figure 3.11 – System and Arrester parameter matching configuration [13]
Figure 3.12 – Selection procedure of electrical parameters for ABB surge arresters
[13]
Figure 4.1 – Typical working window of PSCAD software
Figure 4.3 – Transmission line parameter input window
Figure 4.2 – Transmission line model (Remote end method)
Figure 4.5 – Typical tower model created in PSCAD
Figure 4.4 – General Line Geometry Data input
Figure 4.7 - Insulator string capacitor and Back flashover Breaker models40
Figure 4.6 – Tower grounding resistance model40
Figure 4.8 - Back flashover control module implemented in PSCAD41
Figure 4.9 – Power frequency phase voltage generator model
Figure 4.10 - Line termination model created in PSCAD
Figure 4.11 - Surge arrester model created in PSCAD

.45
.46
.46
.47
.47
.48
.48
.49
.54
.55
.56
.56
.57
.57
.58
.58
. 59
.60
.60

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.45
.46
.46
.47
.47
.48
.48
.49
.54
.55
.56
.56
.57
.57
.58
.58
.59
.60
.60

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of tables

Table	Description	Page
Table 1.1 -	- Range of values for lightning parameters [6]	8
Table 1.2 -	- CEB Specifications for a single insulator disc [4]	13
Table 2.1 -	- Monthly line failures and IKL	
Table 3.1 -	- Calculated parameters for a typical tower model	25
Table 4.1 -	- Initial I, V values for A_0 and A_1 [11]	45
Table 4.2 -	- Range of values used for variables in Multiple Run component	50
Table 4.3 -	- Detailed simulation criteria for Step-1	52
Table 4.4 -	- Detailed simulation criteria for Step-2	53

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk