ENHANCEMENT OF THE SORPTION PROPERTIES OF FOAM RUBBER BY INCORPORATING A SUITABLE ADSORBENT

By

T. O. Kumanayaka

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

FEBRUARY 2007
DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief does not contain any material previously published, written or orally communicated by another person except where due reference is made in the text.

T.O Kumanayaka
04/8216

Certified by

(Dr. Shantha Walpolage)
Supervisor
ACKNOWLEDGMENT

From the beginning I would like to offer my grateful thanks to Dr. Shantha Walpolage, Senior lecture, Department of chemical and Process Engineering, University of Moratuwa, for his kind and patience, supervision and excellent guidance during the entire course of this project.

My grateful thank also goes to Prof. Ajith de Alwis Head of the Chemical & Process Engineering Department, Dr Jagath Premachandra, Senior Lecturer and all other lectures of the Department of Chemical & Process Engineering, University of Moratuwa, who helped and encouraged me in various ways to complete this project successfully.

Then I'm very much thankful to the Wonderlight Consumer Products (Pvt.) Ltd. and Beco link (Pvt.) Ltd. for supplying raw materials for the project.

I wish to thank Mr. M.A Hemachandra, Miss. A.S. Wahalathamthri and Mr. M.G.S.K. De Silva and special thank goes to Mr. Janaka Madushanka for their support given me in various occasions during the project period.

I warmly remind my beloved parents and my husband Chamila Amaradiwakara for all the encouragement and the support given me as usual to success this project.

Finally I would like to thank my friends, especially Sashmial Dissanayaka, Poornima Jayasingha, Gayan Bandara & Chinthaka Narangoda who were with me and gave their kind co-operation through out this project.
CONTENTS

Acknowledgement i
List of Tables vi
List of figures viii
Abbreviations ix
Abstract x

CHAPTER 1: INTRODUCTION
1.1 Natural rubber latex foam 01
1.2 Uses of Latex foam 01
1.3 Filler incorporation to latex foam 02
1.4 Objectives of the research 03

CHAPTER 2: LITERATURE REVIEW
2.1 Polymer Latex 04
2.2 Natural Rubber latex 04
 2.2.1 Composition of field latex 04
 2.2.2 Preservation of natural rubber latex 05
 2.2.3 Concentration of natural rubber latex 06
2.3 Manufacture of natural rubber (NR latex foam) 07
 2.3.1 Manufacturing process of foam rubber 08
2.4 Foam Economies 20
2.5 Theoretical aspects of adsorption 21
 2.5.1 Factors affecting adsorption 21
 2.5.2 Adsorbents 22
2.6 Activated Carbon 22
 2.6.1 Manufacture of activated carbon 23
 2.6.2 Pore structure of activated carbon 25
 2.6.3 Activated carbon structure and surface chemistry 26
2.6.4 Application of activated carbon

2.7 Zeolite

2.7.1 Origin of zeolite

2.7.2 Structure of zeolite

2.7.3 Pore structure of zeolite

2.7.4 Applications of zeolite

2.8 Incorporation of adsorbent into natural rubber latex foam

2.9 Applications of modified NR foam

2.9.1 Applications in indoor air pollution

2.9.2 Steps to improve the indoor air quality

2.9.3 Modified NR foam applications in odour removing

2.9.4 Physical adsorption

CHAPTER 3: METHODOLOGY

3.1 Experimental design

3.2 Testing of adsorbents

3.2.1 Determination of pH

3.2.2 Determination of Avg. particle size

3.2.3 Determination of moisture content

3.3 Methods of dispersion preparation

3.3.1 Determination of the best preparation method

3.4 Preparation of adsorbent dispersion with maximum TSC.

3.4.1 Preparation of dispersion with varying TSC %

3.4.2 Determination of dispersion properties

3.5 Determination of the best dispersions for making a stable latex compound

3.5.1 Preparation of latex compound

3.5.2 Determination of the properties of the basic latex compound

3.5.3 Selection of the best adsorbent dispersion for making

Stable latex compound

28

29

29

32

33

34

35

35

37

37

38

39

40

40

40

41

41

42

42

43

45

45

47

49
3.6 Determination of the effect of dosage of adsorbent for stable NR foam
 3.6.1 Stability of the latex compound at partially foam stage
 3.6.2 Chemical stability towards gelling agents
 3.6.3 Structure analysis of foam with different dosage of adsorbent
3.7 Determination of physical properties
 3.7.1 Tensile strength
 3.7.2 Indentation hardness
 3.7.3 Density and shrinkage percentage
 3.7.4 Flame retardant property
3.8 Determination of sorption capacity of modified NR foam with adsorbents
 3.8.1 Determination ammonia gas sorption capacity
 3.8.2 Determination of CO2 sorption capacity
 3.8.3 Determination of Acetone sorption capacity

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Properties of selected adsorbents
4.2 Preparation of adsorbent dispersions
 4.2.1 Selection of the best preparation for zeolite powder
 4.2.2 Selection of the best preparation for activated powder
4.3 Preparations of adsorbent dispersions with maximum T.S.C
 4.3.1 Properties of dispersions with varying T.S.C. %
4.4 Incorporation of adsorbent dispersions to NR latex compound
 4.4.1 Properties of basic latex compound
 4.4.2 Effect of adsorbent dispersions for the stability of latex compound
4.5 Effect of dosage of adsorbent for preparing stable foam of NR latex
 4.5.1 Determination of stability of latex foam varying zeolite dosage at
 Partial foamed stage
 4.5.2 Chemical stability of latex compound with varying zeolite dosage
 4.5.3 Structure analysis of foam with varying zeolite dosage
4.6 Physical properties of foam samples produced by batch scale process
4.7 Measurement of sorption property of modified latex foam
 4.7.1 Ammonia gas sorption of foam with adsorbents 91
 4.7.2 Carbon dioxide sorption of foam with adsorbents 86
 4.7.3 Acetone sorption of foam with adsorbents 99

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions 102
5.2 Suggestions for further studies 103

REFERENCES 104
LIST OF TABLES

Table 2.1 A typical composition of field latex 05
Table 2.2 Composition of Centrifuged latex concentrates 07
Table 2.3 Effect of filler on some foam properties 20
Table 2.4 Chemical analysis of major elements in zeolite 29
Table 3.1 Formula for zeolite dispersions 42
Table 3.2 Formula for activated carbon dispersions 43
Table 3.3 Formula for latex compound with varying zeolite dosage 50
Table 3.4 Formula for latex compound with varying activated carbon dosage 50
Table 4.1 Properties of selected adsorbents 56
Table 4.2 Properties of Zeolite dispersions 57
Table 4.3 Properties of Activated carbons dispersions 58
Table 4.4 Properties of zeolite dispersions series 61
Table 4.5 Properties of activated carbon dispersions series 61
Table 4.6 Properties of compounded latex 65
Table 4.7 Results of coagulum formation test with 1% adsorbent dosage 65
Table 4.8 Results M.S.T of latex compounds with 1% adsorbent dosage 65
Table 4.9 Variation of chemical stability in latex compound with 1% adsorbent 65
Table 4.10 Normalized foaming heights of latex compound at partially foamed stage for different dosages of zeolite 69
Table 4.11 Normalized foaming heights of latex compounds at partially foamed stage for different dosages of activated carbon 70
Table 4.12 Gel times of latex compounds series of zeolite 72
Table 4.13 Gel times of latex compounds series of AC 73
Table 4.14 Structure analysis of foam with zeolite adsorbent 75
Table 4.15 Structure analysis of foam with AC adsorbent 79
Table 4.16 Tensile strength of foam samples 82
Table 4.17 Indentation hardness of foam samples 84
Table 4.18 Density and shrinkage % of foam samples 86
Table 4.19 Flame retardant property of foam samples 89
Table 4.20 Ammonia gas sorption % of foam modified with zeolite 91
Table 4.21 Ammonia gas sorption % of foam with 8% dosage of zeolite 92
Table 4.22 Ammonia sorption capacity of foam with 85 dosage of zeolite 93
Table 4.23 Ammonia sorption capacity of foam modified with AC 94
Table 4.24 Minimum CO₂ sorption % of foam with zeolite 96
Table 4.25 Minimum CO₂ sorption % of foam with AC 97
Table 4.26 Acetone sorption % of foam with zeolite 99
Table 4.27 Acetone sorption % of foam with AC 100
LIST OF FIGURES

Figure 2.1 Structure of Isoprene 04
Figure 2.2 Schematic diagram of graphite lattice with a turbostratic structure 23
Figure 2.3 Structure of carbonized and activated carbon 24
Figure 2.4 Microscopic pore structure of activated carbon 25
Figure 2.5 Functional groups on activated carbon surface 27
Figure 2.6 Basic zeolite structure 30
Figure 2.7 Crystallographic structure of zeolite 31
Figure 2.8 Pore structure of zeolite 32
Figure 3.1 Ball milled machine 41
Figure 3.2 Mechanical stability tester 48
Figure 3.5 Experimental design for ammonia sorption 54
Figure 4.1 pH variations of dispersions 62
Figure 4.2 Particle size analysis of dispersions 63
Figure 4.3 Coagulum content of latex compound with different adsorbents 66
Figure 4.4 M.S.T of latex compound with different adsorbents 67
Figure 4.5 Gel time of latex compound with different adsorbents 68
Figure 4.6 Normalized foaming heights of latex compound with zeolite 70
Figure 4.7 Normalized foaming heights of latex compound with AC 71
Figure 4.8 Gel time of latex compound with zeolite 73
Figure 4.9 Gel time of latex compound with AC 74
Figure 4.10 Foam samples with zeolite 78
Figure 4.11 Foam samples with zeolite 80
Figure 4.12 Tensile strength of foam samples 83
Figure 4.13 Indentation hardness of foam samples 85
Figure 4.14 Density of foam samples 87
Figure 4.15 Shrinkage % of foam sample 88
Figure 4.16 Flammability of foam samples 90
Figure 4.17 Ammonia sorption of foam with zeolite 92
Figure 4.18 Saturation & re sorption of foams with zeolite 93
Figure 4.19 Ammonia sorption % of foams with AC 94
ABBREVIATIONS

TSC Total solid content
MST Mechanical stability time
AC Activated carbon
ABSTRACT

Natural rubber latex is a colloidal dispersion of cis 1,4-polyisoprene in an aqueous medium. Chemicals are added to NR latex mainly as dispersions, emulsions and solutions at the compounding stage of latex to enhance the processing characteristics and to achieve the desired properties of the final product. The addition of various chemicals into latex as one of the above method should be able to maintain the colloidal stability of the latex. The colloidal stability of the latex compound is governed by the particle size, physical nature, viscosity, pH and the stability of the dispersions.

In this study an attempt was made to enhance the sorption properties of NR latex foam by introducing a suitable adsorbent into the latex compound. There was an early attempt on incorporation of activated carbon into the natural rubber latex foam. From this investigation it was found instead of activated carbon zeolite mineral can be used as an adsorbent with minimizing the problems compared to activated carbon incorporation. Stable dispersion of 36 % zeolite can be prepared by mixing the zeolite with dispersing agent and water. The mechanical agitation in ten minutes is sufficient to prepare the zeolite dispersion with satisfying the basic requirements of a stable dispersion. According to the chemical and mechanical stability studies on the latex compound, it has revealed up to 8% (on dry weight) dosage of zeolite dispersion can be incorporated into latex compound without disturbing the fine, continuous cell structure of NR foam. The similar investigation was carried out with the activated carbon and compared with zeolite foam samples. Activated carbon dispersion prepared as 25 % stable dispersion and incorporated into NR foam up to 5% (on dry weight) dosage.

The results of the experiment reveals that NR latex foam with Zeolite has a significant sorption properties for ammonia and carbon dioxide gases compared to foam with activated carbon whereas organic matter sorption is higher in foams with Activated carbon adsorbent. This sorption property of foams with zeolite can be used to generate a pleasant indoor environment by reducing odour and pollutant gases.