A NEAR REAL TIME SYSTEM TO DETERMINE A COST-EFFECTIVE IDD TRAFFIC ROUTING PLAN

MSC IN COMPUTER SCIENCE

MERENNAGE AROSFA ANTHONY
CHANDANA FERNANDO

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,
UNIVERSITY OF MORATUWA,
SRI LANKA.
A NEAR REAL TIME SYSTEM TO DETERMINE A
COST-EFFECTIVE IDD TRAFFIC ROUTING PLAN

MERENNAGE AROSHA ANTHONY CHANDANA FERNANDO

This dissertation was submitted to the Department of Computer Science and
Engineering of the University of Moratuwa in partial fulfilment of the
requirements for the Degree of MSc in Computer Science.

Department of Computer Science and Engineering,
University of Moratuwa,
Sri Lanka.
I hereby declare, that the work included in this dissertation in whole has not been submitted for any other academic qualification at any known institution to me.

Merennage Arosha Anthony Chandana Fernando

Dr. Sanath Jayasena, (Supervisor)
ABSTRACT

International telecommunication has become a very important sector in the present day communication. IDD traffic is one of the main sources of revenue for national telecommunication service providers (Telcos). Hence, it has to be managed properly and driven effectively to gain maximum profit.

Telcos usually deal with multiple international operators (carriers) e.g. SingTel, Telstra, in order to use latter’s networks for international traffic. These carriers offer different charging structures which vary with the time, volume and the destination.

Most Telcos incur high costs due to lack of a proper system to analyse and forecast an optimised IDD routing plan.

Therefore, a system which is capable of producing a cost-effective routing plan by analysing the current IDD usage pattern and the traffic cost would be much beneficial for all Telcos.

The objective of this research work is to find a suitable methodology for Telcos to produce a cost-effective routing plan for the IDD traffic in near real time.

In our approach, the main tasks are,
- Forecasting the IDD traffic pattern to each destination
- Determining the optimised routing plan.

Forecasting the future traffic was based on past traffic, current IDD traffic trend and the subscriber growth rate of Telcos.

A Genetic Algorithm (GA) was used to obtain the optimised routing plan. Dynamic behaviour of the problem domain was successfully addressed in the GA structure. The GA parameters, population size, number of generations and the GA operations (crossover, mutation and reproduction) ratio were determined experimentally.

Experimental results show that our solution is capable of producing a cost-effective routing plan in near-real-time which reduces the cost by 30% to 50% against the manual routing plan.

Our solution could be used by national Telcos to save significant costs in the international traffic and to pass some of that cost savings to their customers.
ACKNOWLEDGEMENT

I would first like to thank my supervisor; Dr. Sanath Jayasena for his continued and valued advice throughout the entire research process. If not for his support, this project would not have been a success. I admire his qualities and the ability to listen with patience, when working with me.

I would also like to thank my wife Shamalka, my kids Shenuka & Avindya, and my parents Milson & Asilda for tolerating me and sacrificing so much during the period of this research project and for encouraging me continuously.

Additionally, I cannot forget the help rendered by Professor N. Rajkumar who is a very close family friend whose ideas for this research project and advice during the dissertation were invaluable to me. His experience on research projects and the plethora of literature provided by him were very useful and highly appreciated during the initial stages of the project.

Further, I would like to thank Ms. Kusum Liyanage for providing valuable information pertaining to International Telecommunication Business Practices. (Interconnect settlement procedure and making agreements with international carriers)

In conclusion I wish to acknowledge my friends, Mr. Suranga Ratnapala for helping me during the prototype development. Mr. Sanjeewa Ratnayaka for helping me to acquire real test data from telecoms, together with Mr. Kassapa Jayasinghe for his assistance in drawing figures and illustrations for the dissertation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>VIII</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 1 – INTRODUCTION</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Background</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1. International Settlements</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2. Planning IDD Routes</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3. Need for a Proper Methodology</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Description of the Research</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1. Traffic Pattern Forecast</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2. Cost-effective Routing Plan</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2 - LITERATURE REVIEW</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Interconnect Business in Telecommunications</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1. What is Interconnection?</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2. Why is Interconnection important?</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3. What are the widely accepted Interconnection related principles?</td>
<td>6</td>
</tr>
<tr>
<td>2.1.4. What are the key interconnection issues faced by new entrants?</td>
<td>8</td>
</tr>
<tr>
<td>2.1.5. Other Issues related to Interconnection</td>
<td>11</td>
</tr>
<tr>
<td>2.2. Telco’s Current Practice and Methods on IDD Route Planning</td>
<td>12</td>
</tr>
<tr>
<td>2.3. Dynamic Graphs</td>
<td>13</td>
</tr>
<tr>
<td>2.4. Optimisation Tools</td>
<td>15</td>
</tr>
<tr>
<td>2.5. Genetic Programming</td>
<td>16</td>
</tr>
<tr>
<td>2.6. Genetic Algorithms</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3 - METHODOLOGY OF STUDY</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Traffic Pattern Forecast</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1. Determine the Total Traffic (forecasted) for the Entire Month</td>
<td>23</td>
</tr>
<tr>
<td>3.1.2. Adjust the Traffic for the Rest of the Month</td>
<td>24</td>
</tr>
</tbody>
</table>
3.1.3 Allocate Traffic to the Operators with Commitment 25
3.2 Cost-effective Routing Plan 25
3.3 Genetic Algorithm (GA) 27
3.4 The Proposed Solution 28

CHAPTER 4 - RESULTS AND ANALYSIS 31
4.1 Experimental Data Selection 31
4.2 Genetic Algorithm Parameter Selection 33
4.3 Observations and Results 33
 4.3.1 Results for Input Data Set – 1 34
 4.3.2 Results for Input Data Set – 2 38
 4.3.3 Results for Input Data Set – 3 42
 4.3.4 Results for Large Population Sizes 45
4.4 Findings 46
4.5 Summary of Results 46
 4.5.1 Summary of Results for Optimisation Point – 1 47
 4.5.2 Summary of Results for Optimisation Point – 2 48
 4.5.3 Summary of Results for Optimisation Point – 3 49
 4.5.4 Summary of Results for Optimisation Point – 4 50
4.6 GA Structure – Analysis of the Parameter Selection 51
4.7 Solution Comparison 52

CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS 56
5.1 Conclusions 56
 5.1.1 Future Traffic Prediction 56
 5.1.2 Cost-effective Routing Plan 56
 5.1.3 Results in Near Real Time 57
5.2 Recommendations 57
5.3 Future work 59

LIST OF REFERENCES 60
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Interconnection as a Business</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Generic Genetic Algorithm</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Mutation Operation</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Crossover Operation</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Reproduction Operation</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Chromosome</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Cost Reduction with different GA parameters – Check (1)</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Cost Reduction with different GA parameters – Check (2)</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Cost Reduction with different GA parameters – Check (3)</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Cost Reduction with different GA parameters – Check (4)</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Experimental Results Set</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>(1-1)</td>
<td>34</td>
</tr>
<tr>
<td>(Input Data Set 1 - Optimizing point is at the beginning – With the full traffic for the entire traffic period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 4.2</td>
<td>(1-2)</td>
<td>35</td>
</tr>
<tr>
<td>(Input Data Set 1 - Optimizing point is within the first half – approximately 25% of the traffic done in the traffic period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 4.3</td>
<td>(1-3)</td>
<td>36</td>
</tr>
<tr>
<td>(Input Data Set 1 - Optimizing point is in the middle of the traffic period – approximately 50% of the traffic done in the traffic period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 4.4</td>
<td>(1-4)</td>
<td>37</td>
</tr>
<tr>
<td>(Input Data Set 1 - Optimizing point is within the latter half – approximately 75% of the traffic done in the traffic period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 4.5</td>
<td>(2-1)</td>
<td>38</td>
</tr>
<tr>
<td>(Input Data Set 2 - Optimizing point is at the beginning – With the full traffic for the entire traffic period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 4.6</td>
<td>(2-2)</td>
<td>39</td>
</tr>
<tr>
<td>(Input Data Set 2 - Optimizing point is within the first half – approximately 25% of the traffic done in the traffic period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 4.7</td>
<td>(2-3)</td>
<td>40</td>
</tr>
<tr>
<td>(Input Data Set 2 - Optimizing point is in the middle of the traffic period – approximately 50% of the traffic done in the traffic period)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 4.8</td>
<td>(2-4)</td>
<td>41</td>
</tr>
<tr>
<td>(Input Data Set 2 - Optimizing point is within the latter half – approximately 75% of the traffic done in the traffic period)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.9 Experimental Results Set (3-1) 42
(Input Data Set 3 - Optimizing point is at the beginning – With the full traffic for the entire traffic period)

Table 4.10 Experimental Results Set (3-2) 43
(Input Data Set 3 - Optimizing point is within the first half – approximately 25% of the traffic done in the traffic period)

Table 4.11 Experimental Results Set (3-3) 44
(Input Data Set 3 - Optimizing point is in the middle of the traffic period – approximately 50% of the traffic done in the traffic period)

Table 4.12 Experimental Results Set (3-4) 45
(Input Data Set 3 - Optimizing point is within the latter half – approximately 75% of the traffic done in the traffic period)

Table 4.13 Experimental Results with Large Population Sizes 45
(Results obtained with large population sizes)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCOM</td>
<td>British Telecom (International Carrier)</td>
</tr>
<tr>
<td>BVSNL</td>
<td>Baharat Sanchar Nigam Limited (International Carrier)</td>
</tr>
<tr>
<td>CCBS</td>
<td>Customer Care and Billing System</td>
</tr>
<tr>
<td>CDR</td>
<td>Call Detail Record</td>
</tr>
<tr>
<td>EXDB</td>
<td>Oracle 10g Express Edition</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithms</td>
</tr>
<tr>
<td>GHz</td>
<td>Giga Hertz</td>
</tr>
<tr>
<td>IDD</td>
<td>International Direct Dialling</td>
</tr>
<tr>
<td>MB</td>
<td>Mega Bytes</td>
</tr>
<tr>
<td>MSC</td>
<td>Mobile Switching Centre</td>
</tr>
<tr>
<td>OSS</td>
<td>Operational Support System</td>
</tr>
<tr>
<td>PLSQL</td>
<td>Procedural Language/Structured Query Language (Oracle)</td>
</tr>
<tr>
<td>POI</td>
<td>Point of Interconnect</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switch Telephone Network</td>
</tr>
<tr>
<td>QOS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RIO</td>
<td>Reference Interconnection Offer</td>
</tr>
<tr>
<td>TRC</td>
<td>Telecom Regulatory Commission</td>
</tr>
</tbody>
</table>