Improving Damping in Power System Oscillations using Fuzzy Logic Stabilizer

R.P. Sarath Chandrasena (PG/EE/21/99)

A thesis submitted to the Faculty of Engineering, University of Moratuwa in partial fulfillment of the requirement for the degree of

> Master of Engineering In Electrical Engineering

Under the supervision of

Professor J.R.Lucas Faculty of Engineering

University of Moratuwa

Dr. N.K.Wickramarachchi

Faculty of Engineering University of Moratuwa

Dr. H.J.C. Peiris

Faculty of Engineering University of Moratuwa

January 2004

73835

Abstract

In general, power system oscillations are damped out using power system stabilizer (PSS). Conventional power system stabilizers are based on linear control theory. Therefore, they provide optimal operation at the nominal operating point around which the system is linearised during their designing process.

Power systems are in general non-linear and their operating point can vary over a wide range. Power System parameters also change with time because its configuration changes with time continuously. Therefore, a conventional power system stabilizer cannot provide better performance over the whole operating range since it cannot support the deviation of its parameters. Hence, a controlling method, which can tolerate the small deviation in system parameters, is highly welcome.

Fuzzy Logic provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy or missing input information. So, a controller based on Fuzzy Logic (Fuzzy Logic Controller) is one of the most promising solutions to the above problem. Since, it can tolerate the changes in the system parameters, it may provide a better performance over a wide operating range. Hence, in this research project, a power system stabilizer based on Fuzzy Logic (FLPSS) has been designed and various tests have been conducted on it in order to check its effectiveness. The performance of the designed FLPSS has been compared with the performance of a particular conventional power system stabilizer and the FLPSS has shown better performance at each occasions.

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other academic qualification of an university or institute of higher learning except where acknowledgement is made in text.

R.P.S.Chandrasena January 2004 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

UOM Verified Signature

Professor J.R. Lucas Project Supervisor January 2004

UOM Verified Signature

Dr. N.K.Wickramarachchi Project Supervisör January 2004 2 LANT

Acknowledgement

First and foremost I must offer my sincere thanks to my supervisors Prof. J.R.Lucas and Dr. N.K.Wickramarachchi for their encouragement and priceless personal guidance throughout the course of completing this work. Then my special thank and gratitude is deserved by my former supervisor, Dr. H.J.C.Peiris for providing me with the inspiration and support at the beginning of this research project.

And I must also express my sincere thankfulness to the Head of the Department of Electrical and information Engineering, Faculty of Engineering, University of Ruhuna, Dr. W.L.S.Wickramaratne for providing me a peaceful environment to carry out this work until it became a success. I can never forget Dr. K.Gunawickrama, senior lecturer Department of Electrical and information Engineering, Faculty of Engineering, University of Ruhuna, from whom I always got advise throughout this project.

Finally, my beloved wife, Shiromi, without your love and support, this thesis would not have been possible.

iv

Table of Contents

Basic	Acron	ıyms	1V		
Chapter 1		Introduction	1		
-	1.1	Power system oscillations	1		
	1.2	Rotor angle stability	4		
		1.2.1 Small signal stability	4		
		1.2.2 Transient stability	5		
	1.3	Damping Power System Oscillations	6		
Chapter 2		Conventional Power System Stabilizers	7		
Ŷ	2.1	Introduction	7		
	2.2	Problems with CPSS	9		
Chap	ter 3	Designing a Fuzzy Logic Power System Stabilizer	11		
	3.1	Fuzzy Logic controller Structure	11		
	3.2	Fuzzy Logic ToolBox in MATLAB	13		
	3.3	FLPSS designing	14		
		3.3.1 Selection of control variables	14		
		3.3.2 Fuzzify inputs	14		
		3.3.3 Rule creation	16		
		3.3.4 Fuzzy inference.	18		
		3.3.5 Defuzzification.	20		
Chap	ter 4	FLPSS performance	22		
	4.1	Test 01	23		
	4.2	Test 02	28		
	4.3	Test 03	29		
	4.4	Test 04	30		
	4.5	Test 05	32		
	4.6	Test 06	34		
	4.7	Test 07	35		
Chap	ter 5	Conclusion	38		
Appe	Appendix A				
Appe	Appendix B				
Appe	Appendix C				
Bibli	Bibliography 5				

V

£

Basic Acronyms

CPSS	- Conventional Power System Stabilizer
DspeedD	- Derivative of the speed deviation
FIS	- Fuzzy Inference System
FLC	- Fuzzy Logic Controller
FLPSS	- Fuzzy Logic Power System Stabilizer
GUI	- Graphical User Interface
PSS	- Power System Stabilizer
speedD	- Speed Deviation

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk