LB/DON/51/03

6: 26 APR 2004

Optimum Design Of Plate Girders

Ms. A.N.Weeratunga

Supervised by

Dr.(Mrs.) M.T.P.Hettiarachchi

624 "03" 624.0722 (548.7)

Department of Civil Engineering University of Moratuwa Sri Lanka

78152

This thesis was submitted to the department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of M.Sc. in Structural Engineering. 2003 / March University of Moratuwa

78152

78152

eclaration

F,

I Arosha Narmadha Weeratunga, sincerely and truly declare that the work included in the thesis in part or whole, has not been submitted for any other academic qualification at any institution.

AMbuliy (A. N. Weeratunga) 06/06/2003

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Λ

UOM Verified Signature ^K Superview 06 06 2003.

Steel plate girders are generally used to span long distances and support heavy loads. They consist of top and bottom flanges connected to a vertical web. The flanges are connected to the web by fillet welds. Plate girders could be custom designed to suit client's requirements. They are often used in situations where rolled steel sections of the required sizes are not available. The designer has the option of selecting suitable dimensions for the flanges and web from a vast range of possibilities. Smaller flange areas could be achieved with deep girders. However deep girders could suffer from shear buckling of the web; a problem that could be overcome by providing either a thick web or stiffening the web. Thick webs result in heavy sections while the thin web option though resulting in material savings could result in a more expensive solution due to high fabrication costs.

The objective of this study is to assist the structural designer achieve a cost effective steel plate girder by providing design guidelines. The study was limited to parallel flanged steel plate girders made of Grade 43 steel and used in buildings.

Electronic Theses & Dissertations

Optimum dimensions of flanges and webs have been obtained for both stiffened and unstiffened steel girders of simply supported spans ranging from 3m to 25m, subject to uniformly distributed loads, and point loads of varying magnitudes. The design loads used are those for girders supporting a reinforced concrete slab and subject to office type imposed loads. The girders are designed non-compositely. The design checks for the plate girder were carried out using software developed in-house. The optimum design is selected on the basis of total cost (i.e. material and fabrication costs).

The variation of steel tonnage and the total cost of steel girders for the different parameters selected are presented in tabular and graphical format.

From the results obtained optimum span-to-depth ratios were selected under different girder types with their relevant spans.

This is of particular important to Sri Lanka where rolled steel sections need to be imported much in advance of construction and last minute modifications will thus prove to be difficult. This problem could be overcome by having a steel plate girder custom designed, and fabricated locally, which will be well cost effective.

First, my sincere thanks to Dr.(Mrs.) M.T.P.Hettiarachchi, for her untiring contribution to the development of this project and guiding me through out the project to make it a memorable success. I admire her as a wonderful, understanding and amicable supervisor.

A special thank to Mr. Nimal Gunawardena, General Manager, Dockyard General Engineering Services (Pvt.) Ltd. at Colombo 12 who arranged for me a valuable visit to dockyard and also, to all the officers of the Dock-yard who helped me in obtaining all information.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

I also thank Dr. A.D.C. Jayanandana, Dr. S.A.S. Kulathilake, Research Co-ordinator and Prof. A.K.W. Jayawardena, the Head, Department of Civil Engineering providing me help and constructive criticism in development of this project.

Thank you to Prof.(Mrs.) N.Ratnayake, Director, Postgraduate Studies, for her valuable advice and also to Asian Development Bank for funding me through out the project.

I would like to thank my friends who helped me in numerous ways to improve the quality of the project.

Finally, I want to thank my family for their unflinching support and encouragement over the year to pursue my goals.

Arosha Weeratunga March 2003

Abstract Acknowledgement Contents at a Glance Table of Contents List of Tables, Figures, and Gr	raphs	1X A1 1A 111 111
Chapter 1 INTRODUCTION		1
Chapter 2 LITERATURE RE	VIEW ON GIRDERS	8
Chapter 3 DESIGN METHOD	University of Moratuwa, Sri Lanka.	19
Chapter 4 COST ANALYSIS		33
Chapter 5 ANALYSIS AND	DISCUSSION	41
Chapter 6 OPTIMUM BEAN	A LAYOUT	68
		-

.

ł

*

Apper	dix	84

List of tables,	, figures and graphs	
1 Introductio	n	
1.1 Backg	round	
1.2 Girder	types	
1.3 Suitab	inity of plate girders in building floors of Sri Lanka.	
1.4 what i	tive	
1.5 00,000	.1 How was the project planed?	
1.5	.2 An overview of the project planned.	
2 Literature 1 2.1 Introdu 2.2 Review 2.3 Review 2.4 Review 2.5 Review 2.6 Review 2.8 Review 2.9 Concl	review on girders uction w on different shapes of flanges and webs w on different types of loadings on flanges and webs w on development of tension field theory. w on introduction of stiffeners to the girder. w on design methods on girders. w on typical span-to-depth ratios for different girders usion	
3 Design Met	hodology round	
3 Racka	.1 Design load effects	
3.1 Backg 3.1	.2 Variations and Limitations considered	
3.1 Backg 3.1 3.1		
3.1 Backg 3.1 3.1 3.1	.3 Girder types	
3.1 Backg 3.1 3.1 3.1 3.1	.3 Girder types 3.1.3.1 Unstiffened girders	
3.1 Backg 3.1 3.1 3.1 3.1	.3 Girder types 3.1.3.1 Unstiffened girders 3.1.3.2 Stiffened girders	
3.1 Backg 3.1 3.1 3.1 3.1 3.1	.3 Girder types 3.1.3.1 Unstiffened girders 3.1.3.2 Stiffened girders omputer program	
3.1 Backg 3.1 3.1 3.1 3.1 3.1 3.2 The c 3.2	.3 Girder types 3.1.3.1 Unstiffened girders 3.1.3.2 Stiffened girders omputer program .1 Introduction 2 Flow chart for girder design	
3.1 Backg 3.1 3.1 3.1 3.1 3.2 The c 3.2 3.2	 .3 Girder types 3.1.3.1 Unstiffened girders 3.1.3.2 Stiffened girders omputer program .1 Introduction .2 Flow chart for girder design 3.2.2.1 Main flow chart 	
3.1 Backg 3.1 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2	 .3 Girder types 3.1.3.1 Unstiffened girders 3.1.3.2 Stiffened girders omputer program .1 Introduction .2 Flow chart for girder design 3.2.2.1 Main flow chart 3.2.2.2 Unstiffened girder flow chart 	

ł

.

VII

4	Cost	Analysis	33
	4.1	Introduction	34
	4.2	Cost calculation	34
		4.2.1 Material cost	34
		4.2.2 Fabrication cost	36
		4.2.3 Overheads	36
	4.3	Cost evaluation	38

*

5 Analysis and Discussion	41
5.1 Loadings on plate girders	42
5.2 Secondary girder analysis	43
5.2.1 Variations considered	44
5.2.2 Optimum solutions	45
5.3 1G -type plate girders	46
5.3.1 Variations considered	47
5.3.2 Optimum solutions	49
5.4 2G -type plate girders	51
5.4.1 Variations considered	52
5.4.2 Optimum solutions	54
5.5 3G -type plate girders, University of Moratuwa, Sri Lanka,	56
5.5.1 Variations considered	57
5.5.2 Optimum solutions	59
5.6 4G -type plate girders	61
5.6.1 Variations considered	62
5.6.2 Optimum solutions	63

6	Optimum Beam Layout		65
	6.1 Introduction		66
	6.2 Cost analysis to determine optimum	beam layout for a panel	69
	6.3 Conclusion		73

7	Conclusions and Recommendations	74
	7.1 Comparison between unstiffened and stiffened girders	75
	7.2 Conclusion	79
	7.3 Recommendations	80

÷	V	1	I	۱	
	 . •				

References

Appendix

84

82

A	A Design examples					84					
	A.1.1	Plate	girder	design	witho	ut using s	tiffe	ners			84
	A.1.2	Plate	girder	design	using	stiffeners	but	without	utilizing	tension	
		field	actior	ı							88

A.1.3 Plate girder design using stiffeners and utilizing tension field action 97

B Design tables

109

B.1 Secondary girders	109
B.2 1G-type girders	117
B.2.1 Unstiffened girders	117
B.2.2 Stiffened girders	125
B.3 2G-type girders	137
B.3.1 Unstiffened girders	137
B.3.2 Stiffened girders	145
B.4 3G-type girders University of Moratuwa, Sri Lanka.	157
B.4.1 Unstiffened girders & Dissertations	157
B.4.2 Stiffened girders	165
B.5 4G-type girders	177
B.5.1 Unstiffened girders	177
B.5.2 Stiffened girders	183

IS OF HURB, TELLES & CHATLES

Figures

Figure 1:1 Typical cross-section of a girder 2 Figure 1:2 Unstiffened plate girder. 4 Figure 1:3 Stiffened plate girder. 4 Figure 1:4 Different types of girders & their various spans considered 7 Figure 2:1 Sectional views and front views of the tapered plate girder. 10 Figure 2:2 Cross-sections and the section through the web of the girder. 11 Figure 2:3 Basler's assumed plastic tensile zone. 13 Figure 2:4 Komatsu's failure model. 13 Figure 2:5 Variation of shear strength with web slenderness. 16 Figure 2:6 Simplified moment/shear interaction diagram. 17 Figure 3.1 Governing dimensions of flange, web and stiffeners of girder section 21 Figure 3.2 Floor slab plan for girder types 21 Figure 3.3 Floor slab plan for effective load areas 22 Figure 3.4 Flow chart for girder unstiffened girder 23 Figure 3.5 Simply supported beams 25 Figure 3.6 Flange-to-web weld 25 Figure 3.7 Girder for 2G type 26 Figure 3.8 Cross-section of load bearing stiffenera. Sri Lanka. 26 Figure 3.9 Cross-section of intermediate stiffener 26 Figure 3.10 Flow chart for stiffened girder 27 Figure 3.11 28 Figure 3.12 28 Figure 3.13 29 Figure 3.14 29 Figure 4.1 Stiffened girder. 38 Figure 5.1 Plan view of secondary girders. 43 Figure 5.2 Line diagram of the secondary girder. 44 Figure 5.3 Plan view of main girder. 46 Figure 5.4 Line diagram of the main girder. 46 Figure 5.5 Plan view of main girder. 51 Figure 5.6 Line diagram of the main girder. 51 Figure 5.7 Plan view of main girder. 56 Figure 5.8 Line diagram of the main girder. 56 Figure 5.9 Plan view of main girder. 61 Figure 5.10 Line diagram of the main girder. 61

IX

<u>Tables</u>

Table 2-1	Typical span-to-depth ratios for different girder types	18
Table 3-1	Variations on spans and span / depth ratios	23
Table 4-1	Various Material cost of steel plates.	35
Table 4-2	Material cost of steel plates used for the analysis.	35
Table 4-3	Number of joints required for butt-weld	37
Table 4-4	Unit cost of cutting and welding of steel plates	37
Table 5-1	Loadings on secondary girders.	43
Table 5-2	Optimum solutions for secondary girders.	45
Table 5-3	Loadings on one point load girders.	46
Table 5-4	Optimum solutions for 1G-type unstiffened girders.	49
Table 5-5	Optimum solutions for 1G-type stiffened girders.	50
Table 5-6	Loadings on two point load girders.	51
Table 5-7	Optimum solutions for 2G-type unstiffened girders.	54
Table 5-8	Optimum solutions for 2G-type stiffened girders.	55
Table 5-9	Loadings on three point load girders.	56
Table 5-10	Optimum solutions for 3G-type unstiffened girders.	59
Table 5-11	Optimum solutions for 3G-type stiffened girders.	60
Table 5-12	Loadings on two point load girders.	61
Table 5-13	Optimum solutions for 4G-type unstiffened girders.	64
Table 5-14	Optimum solutions for 4G-type stiffened girders.	64
Table 6-1	Total cost for 12m x 8m panel, by using different options	73
Table 7-1	Variations of Load, Weight and span/depth of secondary girders.	75
Table 7-2	Variations of Load, Weight and span/depth of 1G-type for stiffened and	
	unstiffened girders, www.lib.mrt.ac.lk	76
Table 7-3	Variations of Load, Weight and span/depth of 2G-type for stiffened and	
	unstiffened girders.	77
Table 7-4	Variations of Load, Weight and span/depth of 3G- type for stiffened and	
	unstiffened girders.	78
Table 7-5	Variations of Load, Weight and span/depth of 4G-type for stiffened and	
	unstiffened girders.	78
Table 7-6	Optimum span-to-depth ratios for different girder types.	79
Table B:1	Analysis for span = $3m$	109
Table B.7	Analysis for span = $4m$	111
Table B:3	Analysis for span = $5m$	113
Table B:4	Analysis for span = $6m$	115
Table B.5	Analysis for span = $6m$	117
Table B:6	Analysis for span = $8m$	119
Table B.7	Analysis for span = $10m$	121
Table B:8	Analysis for span = $12m$	123
Table B:9	Analysis for span = $6m$	125
Table B-10	0 Analysis for span = 8m	128
Table B·1	1 Analysis for span = $10m$	131
Table B·1	2 Analysis for span = $12m$	134
14010 D.11	- relations for span rain	• • •

.

Table B:13 Analysis for span = 9m	137
Table B:14 Analysis for span = 12m	139
Table B:15 Analysis for span = 15m	141
Table B:16 Analysis for span = 18m	143
Table B:17 Analysis for span = 9m	145
Table B:18 Analysis for span = 12m	148
Table B:18 Analysis for span = 15m	151
Table B:19 Analysis for span = 18m	154
Table B:20 Analysis for span = 12m	157
Table B:21 Analysis for span = 16m	159
Table B:22 Analysis for span = 20m	161
Table B:23 Analysis for span = 24m	163
Table B:24 Analysis for span = 12m	165
Table B:25 Analysis for span = 16m	168
Table B:26 Analysis for span = 20m	171
Table B:27 Analysis for span = 24m	174
Table B:28 Analysis for span = 15m	177
Table B:29 Analysis for span = 20m	179
Table B:30 Analysis for span = 25m	181
Table B:31 Analysis for span = 15m	183
Table B:32 Analysis for span = 20m	186
Table B:33 Analysis for span = 25m	189

IX I

<u>Graphs</u>

Graph 5:1Total cost vs. Depth for secondary girders when spacing varies.43Graph 5:2Total cost vs. Depth for 1G-type unstiffened girders when spacing varies.46Graph 5:3Total cost vs. Depth for 1G-type stiffened girders when spacing varies.47Graph 5:4Total cost vs. Depth for 2G-type unstiffened girders when spacing varies.51Graph 5:5Total cost vs. Depth for 2G-type stiffened girders when spacing varies.52Graph 5:6Total cost vs. Depth for 3G-type unstiffened girders when spacing varies.56Graph 5:7Total cost vs. Depth for 3G-type stiffened girders when spacing varies.57Graph 5:8Total cost vs. Depth for 4G-type unstiffened girders when spacing varies.61Graph 5:9Total cost vs. Depth for 4G-type stiffened girders when spacing varies.62