DEVELOPMENT OF PRE-STRESSED CONCRETE BRIDGES FOR RAILWAYS

LINING NOU / CT

by

M.G.D.D. Silva

A thesis submitted to University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Engineering in Structural Engineering Design

University UBRARY atuwa Sri Lanka. UNIVERSITY CENTRATIONAL STICANTA Electronic. Theses & Dissertations www.lib.mrt.ac.lk Research supervised

by

Professor M.T.R. Jayasinghe

University of Moratuwa

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI-LANKA

624:07 624.01 (083)

29

October 2007

Abstract

The pre-stressed bridge developments in most of the countries focus to the Road bridges. The steel was basically used to construct the railway Bridges in the world wide and also in Sri Lanka. Basic reasons in construction steel railway bridges in European countries are, availability of steel, manufacturing facilities and quick construction. But from Sri Lankan point of view, we have to import the steel and the technology to fabricate. Alternatively, it should be pre-fabricated structures which may incur higher cost. Another aspect is that most of the railway bridges in Sri-Lanka are located close to the coastal areas and considerable effort and action should be taken to prevent the corrosion and other deterioration of steel due to severe exposure condition. According to the Sri-Lanka Railways, a considerable amount of money needs to be allocated to construction of railway bridges and their maintenance. This research present a feasibility study to construct the pre-stressed railway bridge so that local expertise could be used to construct them with locally available material with long life span and less maintenance of Moratuwa. Sri Lanka.

Electronic Theses & Dissertations

The special attention should be given to the construction of railway bridge using prestress beam rather than using steel girders since to railway diversion is little bit difficult than highways. There are several places where the pre-stress bridges can be constructed in railways very easily.

a) The new railway tracks. (Tracks Under construction)

In the case of new railway tracks, the pre-stress beam bridge can be constructed easily. The Matara - Kataragam railway extension and Panadura -Ingiriya new railway lines are the examples of this type of bridges

b) Duplication of railway tracks.

In the case of duplication of tracks, the one track can be allowed to be used by the trains while the bridges on other track can be constructed or repaired. The examples of this type of railways are Colombo – Kalutara Duplication and proposed Kandy – Peradeniya duplication.

Considering all above aspects, there is scope to develop the pre-stressed concrete bridges for railways.

i

Acknowledgement

I would like to make this opportunity to forward my sincere thanks to the project supervisor, Prof. M. T. R. Jayasinghe who helped me to make this project a success by giving advice and looking in to the problems encountered. His guidance and constructive criticism helped me to execute the project successfully.

I wish to thank the Vice Chancellor, Dean of the Faculty of Engineering and the Head, Department of Civil Engineering for allowing me to use the facilities available at the University of Moratuwa.

I am grateful to the State Development and Construction Corporation for the leave granted to me to follow the postgraduate degree course.

I wish to thank to Dr I.R.A Weerasekara, course coordinator and Dr (Mrs) M.T.P. Hettiarachchi, the research coordinator of the project for the encouragement given to me in completing this study, and all the decturers of the postgraduate course on Structural Engineering Design who helped me to enhance my knowledge.

I would like to dedicate this hard work to my parents and my wife for their enormous support.

Finally, I gratefully acknowledge everybody who helped me in numerous ways in completing my research study.

M.G.D.D. Silva, State Development and Construction Corporation.

. Contents

Abstract	i
Acknowledgement	ii
Contents :	iii
List of figures	v
List of tables	viii

łą

þì.

Chapter 1	Introd	luction	1
	1.1	General	1
	1.2	Types of railway bridges	2
	1.3	Types of pre-cast pre-tensioned railway bridges	3
	1.4	The objectives of the study	4
	1.5	The methodology	4
	1.6	The main finding of the project	5
		The arrangement of the thesis va, Sri Lanka. Electronic Theses & Dissertations	5
		www.lib.mrt.ac.lk	
Chapter2	Litera	nture review	6
	2.1	General	6
	2.2	The advantage of using pre-stress concrete	
		railway bridge	7
	2.3	Different option of railway bridges	9
	2.4	Different Material used for railway bridge	
		Construction	11
	2.5	Performance of pre-stress concrete in	
		railway construction	14

Chapter3	Case	Case study for pre- stress concrete			
	Railway Bridge decks		15		
	3.1	M beam section available in Sri-Lanka			

iii

		and selection of M beam	15
	3.2	Proposed Cross section of Bridge Deck	16
	3.3	Selection of suitable grillage system for the	
		Computer modeling	17
	3.4	Introduction of railway loading	23
	3.5	Load calculation	25
	3.6	Analysis and result from SAP2000 computer model	27
	3.7	Determination of magnel inequalities	29
	3.8	Design of infill pre-stress M-beam for railway bridge	31
	3.9	Design for Ultimate Limit state of flexure	37
	3.10	Design for Shear	40
Chapter4	Main	finding of the project	47
	4.1 G	eneral	47
	4.1 Pa	arametric analysis of series of in filled M- beam Immary of design of M- beam series relations	47
	u	nder, railway loading ac. 1k.	49
	4.4 C	omparison and development of feasible length of	
	cł	nart for in filled railway M-beam	49
Chapter 5	Cost	analysis	51
	5.1	General	51
	5.2	Cost estimating Process	52
	5.3	Cost analysis of steel railway bridge	53
	5.4	Cost analysis of PC in filled M-beam bridge	55
Chapter 6	Conc	lusion and future work	56
	6.1	Conclusion	56
	6.2	Future work	56
References:			57

Ý

×

iv

List of figures

4

Figure2.1: Pre-Stressing system	6
Figure2.2: Post-Tensioning system	7
Figure2.3: Pre-stress bridge development	7
Figure2.4: Pre-Stressed concrete T-beams railway bridge	9
Figure2.5: Post tensioned concrete U-beams railway bridge	10
Figure 2.6: Arsta Railway Bridge at Sweden	11
Figure2.7: Concrete Box girder railway bridge	11
Figure 2.8: 7 wires pre-stressing strand	13
Figure2.9: Structural Deficient Bridges	14
Figure 3.1: Standard Section of M Beams	15
Figure 3.2: Proposed Cross Section of Bridge DeckDissertations	17
Figure 3.3: Section properties of M7 Beam	19
Figure 3.4: Transverse Section properties of M7 Beam	21
Figure 3.5: Grillage idealization of M7 Beam	22
Figure 3.6: Railway Upper Loading	23
Figure 3.7: Railway lower Loading	23
Figure 3.8: Railway lower Loading Figure 3.9: 3D View of grillage Model	24
Figure 3.10: Bending Moment diagramed	27
Figure 3.11: Sign Convention	28
Figure 3.12: Stress Distribution at transfer stage	30
Figure 3.13: Stress Distribution at service stage	30
Figure 3.14: Magnel diagram for Eccentricity Vs 1/Pi	35
Figure 3.15: Tendon location of M7 Beam	36

Figure 3.16: Stress and Strain Distribution at ULS	37
Figure 3.17: Compression area at Ultimate limit state	38
Figure 3.18: Stress Strain curve for pre-stressing steel	38
Figure3.19: Shear link distribution	45
Figure3.20: Horizontal Shear area	46
Figure 4.1: Standard M- Beams sections	48
Figure 4.2: Comparison of Beam lengths	50
Figure 5.1: 3D View of Bridge	52
Figure 5.2: Elevation of steel bridge	52
Figure 5.3: Details of abutment and Pier	53
Figure A1.1: Bending Moment Diagram for M2 beam	61
Figure A1.2: Magnel Diagram for M2 beam	64
Figure A1.3: Strand layout for M2 beam Electronic Theses & Dissertations	64
Figure A2.1: Bending Moment Diagram for M3 beam	66
Figure A2.2: Magnel Diagram for M3 beam	69
Figure A2.3: Strand layout for M3 beam	69
Figure A3.1: Bending Moment Diagram for M4 beam	71
Figure A3.2: Magnel Diagram for M4 beam	64
Figure A3.3: Strand Layout for M4 beam	64
Figure A4.1: Bending Moment Diagram for M5 beam	66
Figure A4.2: Magnel Diagram for M5 beam	69
Figure A4.3: Magnel Diagram for M5 beam	69
Figure A5.1: Bending Moment Diagram for M6 beam	71
Figure A5.2: Magnel Diagram for M6 beam	84
Figure A5.3: Strand layout for M6 beam	84

.

-

W

vi

Figure A6.1: Bending Moment Diagram for M7 beam		
Figure A6.2: Magnel for M7 beam	89	
Figure A6.3: Strand layout for M7 beam	89	
Figure A7.1: Bending Moment Diagram for M8 beam	91	
Figure A7.2: Magnel Diagram for M8 beam	94	
Figure A7.3: Strand layout for M8 beam	94	
Figure A8.1: Bending Moment Diagram for M9 beam	96	
Figure A8.2: Magnel Diagram for M9 beam	99	
Figure A8.3: Strand layout for M9 beam	99	
Figure A9.1: Bending Moment Diagram for M10 beam	101	
Figure A9.2: Magnel Diagram for M10 beam	104	
Figure A9.3: Strand layout for M10 beam University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	104	

4

www.lib.mrt.ac.lk

.

•

List of tables

¥

Table 3.1: Section Properties of M7 Beams	20
Table 3.2: Dynamic Load factors	24
Table 3.3: Dimension L	24
Table 3.4: Load Combination at service	26
Table 3.5: Load Combination at Ultimate	26
Table 3.6: Bending Moment Summary	28
Table 3.7 Ultimate bending Moment and Shear force	39
Table 4.1: Section Properties of In filled M- Beam	48
Table 4.2 Proposed length and bending moment in beam	49
Table 5.1 Bill of Material of Steel Bridge Important of Moratuwa Sri Lanka	54
Table 5.2 Bill of Material of Steel Bridgeeses & Dissertations	55
Table 5.3: Basic Cost of Steel Concrete Bridge	56
A 1.1 Bending Moments of M2 Beams	60
A 2.1 Bending Moments of M3 Beams	65
A 3.1 Bending Moments of M4 Beams	70
A 4.1 Bending Moments of M5 Beams	75
A 5.1 Bending Moments of M6 Beams	80
A 6.1 Bending Moments of M7 Beams	85
A 7.1 Bending Moments of M8 Beams	90
A 8.1 Bending Moments of M9 Beams	95
A 9.1 Bending Moments of M10 Beams	100

•