ECONOMICS OF YIELD LINE ANALYSIS IN DESIGN OF CONCRETE SLABS

Chinthaka Pathiraja

The Dissertation was submitted to of in partial fulfillment of the requirement for the Degree of Master of Engineering

Department Civil Engineering

University of Moratuwa

Sri Lanka

December 2008

ABSTRAC

Most practical structures are of three-dimensional nature, such as buildings, bridges, towers and tanks. These structures often require plate elements to do their intended function, or to make them stable. For reinforced concrete structures, these plate elements appear most often as horizontal reinforced concrete slabs. Efficiency achieved in analysis and design of these slabs is important, as these slabs normally are of high cost, because they contain large volumes of concrete and steel, in comparison to other elements such as beams, ties and columns

Further, various analytical methods available for slabs are considered to give different solutions as these slabs are highly indeterminate structures, and solutions depend on many variables such as shape, size, loadings and end conditions. However, range of local slabs widely used in Sri Lanka may be different from those popular in other countries. Hence there is a need for a local study to compare the performance of various analytical methods on the range of slabs widely used locally.

Analysis of reinforced concrete slabs is also considered more economical when plastic methods are used. But the greatest shortcoming of plastic methods of analysis is their inability to be amenable for computer applications. Further, few computer programs available commercially for plastic analysis are expensive and beyond the reach of local medium to small design offices. Thus the need, for a locally developed computer program based on yield line method, is important in the Sri Lankan context. This investigation is aimed to fulfill the former and the latter needs.

The investigation consisted a literature survey, a survey of reinforced concrete slabs obtained from structures designed in Sri Lanka, analytical and design study of these slabs, and work towards development of a computer program based on yield line theory' for the analysis of those identified slabs. A total of 70 slabs were included in

<u>University of Moratuwa, Sri Lanka</u>

Electronic ThACKNOWLEDGEMENTS www.lib.mrt.ac.lk

This thesis arose in part out of years of research, by that time; I have worked with several people whose contribution in assorted to the research and the making of the thesis deserved special mention. It is pleasure to convey my gratitude to them in my humble acknowledgment.

In the first place I would like to record my sincere thanks and gratitude to Prof. S.R.de S. Chandrakeerthi Senior professor, Department of Civil engineering, University of Moratwa for his supervision, advice, and guidance from the very early stage of this research as well as giving me extraordinary experiences through out the work. Above all and the most needed, he provided me unflinching encouragement and support in various ways. His truly engineering intuition has made him as a constant oasis of ideas and passions in structural Engineering, which exceptionally inspire and enrich my growth as a student, a researcher and structural engineer want to be. I am indebted to him more than he knows.

Many thanks to go in particular to Dr. (Mrs) M.T.P. Hettiarchchi, Project Coordinator for coordinating this project to the best of her ability and guiding me throughout, to my entire satisfaction.

It is pleasure to pay tribute to the academic staff during the P. G. Diploma programme stage for helping me in various ways for the successful completion of this project

Deepal Pathiraja.

CONTENTS

Abstract			1
Acknowledgements			iii
Contents			iv
List of figures		<i>4</i> 7 A	ix
List of tables			x

CHAPTER 01 - INTRODUCTION

1.1	General	1
1.2	Yield line analysis	2
1.3	Need for research inversity of Moratuwa, Sri Lanka.	9
	1.3.1 Lack of Information of Economy of Yield Line Analysis Method	9
	1.32 Lack of Information on Popular Local Concrete Grade	9
	1.3.3 Lack of Information of Effects of Reinforcement Layouts	
	Produced by Different Analytical Methods	10
	1.3.4 Benefit of Computerizing the Yield Line Method	10
	1.3.5 Information on Useful Yield Line Patterns	11
	1.3.6 Economic Design of Reinforced Concrete Slabs	11
1.4	Objectives of the investigation	12

CHAPTER 02 – THE LITERATURE SURVEY

2.1	Introduction		13
2.2	Plastic Analytical Methods Used for	Analysis of Concrete Slabs	13

2.2.1 Yield line method	13
2.2.1.1 Yield Line Analysis	13
2.2.1.2 Rules for Identification of Yield Line Patterns:	15
2.2.1.3 Assumptions and Conventions	16
2.2.1.4 Isotropic Slabs and Orthotropic Slabs	16
2.2.1.5 Yield Line Solution	17
2.2.1.6 Selecting Relevant Yield Line Patterns	17
2.2.1.7 The Work Method	18
2.2.1.8 The Equlibrium Method :	19
2.2.1.9 The Hodograph Method:	20
2.2.1.10 Yield Line Theory and Current Codes of Practice :	21
2.2.1.11 Serviceability and Deflections:	23
2.2.1.12 Superposition of Loads:	25
2.1.14 Ten Per Cent Rule: Moratuwa, Sri Lanka,	26
2.2.1.15 Irregularly Supported Slabs: Dissertations	26
2.2.1.16 Economy and Simplicity:	27
2.2.2 Finite Strip Method	27
2.2.2.1 Introductions:	27
2.2.2.2. Simple Strip Method:	28
2.2.2.3Advanced Strip Method:	33
2.2.2.4 Merits and shortcomings of the Finite Strip Method:	34
2.3 Previous research on slab analysis by plastic Methods	36
2.3.1 Research by Wood[20]: 2.3.2 Research by Li [25]:	36 37
2.3.3 Work by Burgoyne[22]:	38
2.3.4 Research on Yield Line Theroy By Baskaran and Morley [23] :	41
2.3.5 Work on Strength Assessment of Flat Slabs by	
Baskaran and Morley[24]:	42
2.3.6 Work on Strength Assessment of Structural Elements by	
Baskaran and Sivanerupan[27]:	46

2.4	Research	n on computerization of plastic analytical methods of slabs	48
	2.4.1	Work by Middleton (28)	48
	2.4.3	Research by Munro and Da Fonseca [29] :	50
	2.4.4.	Work by Bauer and Redwood [30] :	52
	2.4.5	Research by Thavalingam, Jennings, Mckeown, and Slovan [31]:	54
2.5	Conclus	ions	56

CHAPTER 03 – FORMULATION OF THE DESIGN STUDY

3.1	Introduction	82
3.2	2 Study series A	83
	3.2.1 Selection of Slab Configurations for the Study:	83
	3.2.2 Treatment of Influential Parameters.	83
	3.2.2.1 Valid Parameters	83
	3.2.2.1.1 Analytical Methods: heses & Dissertations	83
	3.2.2.1.1.1 Analyzing the slab panels using yield line theory	
	(Analysis A):	83
	3.2.2.1.1.2 Analysis using the BS 8110 Code method (Analysis B):	83
	3.2.2.1.1.3 Analysis of slab panel by Finite Element method	
	(Analysis C):	84
	3.2.2.1.1.4 Application of the Hillerborg Strip Method for the	
	analysis (Analysis D):	84
	3.2.2.1.2 Shape:	84
	3.2.2.1.3 Dimensions:	84
	3.2.2.1.4 End Conditions:	84
	3.2.2.1.5 Imposed Load:	84
	3.2.1.1.6 Grade of Concrete	85
	3.2.2.2 Parameter held Constant	85
1	3.2.3 Results desired from the Study:	85
22	3.2.4 Planned Program of the Study Series A:	85

vi

3.3.1 Probable Yield line Failure Patterns:	85
3.3.2 Details of the Computer Program to be Developed	86
3.3.3 Validation Process	86
3.3 Study series B	85
3.3.1 Probable Yield line Failure Patterns:	86
3.3.2 Details of the Computer Program to be Developed	86
3.3.3 Validation Process	86

CHAPTER 04- ANALYSIS AND RESULTS OF THE DESIGN STUDY

4.1 Introduction	114
4.2 Study series A	115
4.2.1 Comparison of Sagging Bending Moments:	115
4.2.2 Comparison of Hogging Bending Moments:	116
4.2.3 Comparison of Sagging Reinforcements	117
4.2.4 Comparison of Hogging Reinforcements: Dissertations	118
4.2.5 Overall Economy 3V. lib. mrt. ac.lk	119
4.3 Study series B	120
4.3.1 Library of Probable Yield Line Patterns:	120
4.3.2 Flow chart of the Computer Program:	120
4.3.3 Computer Program :	120
4.3.4 Validation of the Computer Program	120
4.4 Conclusions	121

CHAPTER 05- MAIN CONCLUSSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

5.1	Main conclusions	179
5.2	Recommendations for further research	187
	References	188
	Appendix- A	191
	Appendix –B	204

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

e #14

LIST OF FIGURES

2.1 Onset of yielding of bottom reinforcement at point of minimum deflection in a simply supported two way slab.	74
2.2 The formation of a mechanism in a simply supported two way slab with bottom steel having yielded along the yield lines.	74
2.3 Simple yield line patterns	74
2.4 Deformed shape at failure	75
2.5 The effect of corner levers on a simply supported square slab where corners are held down and prevented from lifting	76
2.6 Fan collapse pattern for a heavy concentrated load on to reinforced slab	77
2.7 An irregular Slab	78
2.8 Yield line design by considering quadrilaterals	78
2.9 Discontinuous stress fields	79
2.10 Loads on supporting beams Electronic Theses & Dissertations	79
2.11 Unsymmetrical slab www.lib.mrt.ac.lk	79
2.12 Simply supported square slab	79
2.13 Treatment of square slab	80
2.14 Discontinuity lines fitting the banded reinforcement	80
2.15 Slab with a opening	80
2.16 Clamped slab	80
2.17 Traingular slab with free edge	80
2.18 Load dispersion in an irregular slab	80
2.19 Treatment of slab with columns an a L- shaped	81
2.20 Type 3 element under uniformly distributed load p	81

3.1 Probable failure patterns	96
4.1 Flow chart of the computer programme generated using excel spread sheet	155
4.2 Standard input output data of the computer programme	156
4.3 Cell details of excel spread sheet used for the computer programme	167

LIST OF TABLES

2.1 Basic principle of the work method	64
2.2 Example of a solution by work method	65
2.3 Example of solution by the equilibrium method	68
2.4 Effects of corner continuity on corner levers in s simply supported square slab	69
2.6 Rules for transformation orthotropic slabs to isotropic slab by affinity transformation	70
2.7 Configurations of flextural reinforcement in the in-situ building at Cardington	71
 2.8 Analysis of rectangular slab by finite strip method (discontinuity lines originating from slab corners 3.1 End conditions are denoted by standard symbols 	72 87
4.1 Bending moments obtained from different analytical method	124
4.2 Reinforcement obtained from different analytical methods and by BS 8110 design procedure	133
4.3 Weighted points against the moment obtained from different methods	149
4.4 Weighted points against the reinforcement obtained from different methods in each slab and designed according to the Code BS8110	152
4.5 Comparison of outputs of the computer programme with the exact solution	154a