

University of Moratuwa

HIGH DATA RATE OPTICAL SOLITON COMMUNICATION SYSTEMS

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

3.

۰, ۱

J P D S ATHURALIYA

LICHARY MORATUWA

The thesis was submitted to the department of Electronic and Telecommunication Engineering of University of Moratuwa in partial fulfillment of the degree of Master of Science in Telecommunications.

> Department of Electronic and Telecommunication Engineering Faculty of Engineering University of Moratuwa Sri Lanka

> > July 2008 University of Moratuwa 92955

> > > 92055

The work presented in this dissertation has not been submitted to any other institution for the fulfillment of any other degree

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.J^L

UOM Verified Signature

Dr R P Thilakumara

UOM Verified Signature

J P D S Athuraliya

(Candidate)

4

UOM Verified Signature

Prof (Mrs) I J Dayawansa

(Supervisors)

This thesis is dedicated to my loving thatha, who is not lucky to see any of her daughters work, my loving amma, my loving sons Wimukthi and Samish

and my loving husband Lasantha. University of Woratuwa, Sit Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Optical solitons are attractive at very high bit rates as linear systems are impossible at such high bit rates due to dispersion effect. In a soliton propagation system no dispersion compensation fibers are used. The pulses propagate partly as a soliton between repeaters, and at the latter part as the power decreases the system exhibits linear properties. As the system exhibits quasi-soliton propagation effects, the system cannot be evaluated by soliton equations. Such a system can only be evaluated using modeling.

As the optical soliton is of the envelope of light waves whose fundamental properties are described by the Nonlinear Schrödinger Equation (NLSE), the NLSE can be used to present the soliton concept for application to communications. The NLSE is solved using one of the numerical modeling, split step Fourier method.

University of Moratuwa, Sri Lanka. Therefore the solution of the NeSE denised to present the solution concept for application to communications. In this research, lishort taser pulses are used to make the soliton communication system. The simulated results of 40Gbps single channel transmission of standard fiber and LEAF fiber are compared.

The results of the 40Gbps single channel transmission of standard fiber indicate that the maximum distance the pulse could travel is about 500km with a repeater spacing of 50km and the results of the 40Gbps single channel transmission of LEAF fiber indicate that the maximum distance the pulse could travel is about 1250km with a repeater spacing of 50km.

i

Acknowledgements

I would like to express my sincere appreciation to my supervisors Dr R P Thilakumara for all the valuable advice, guidance, comments, suggestions given and assistance provided in collecting information throughout the research and Prof (Mrs) I J Dayawansa for the valuable advice, comments, suggestions and encouragement provided throughout the research. If not for their help, advice and the moral support, my thesis would not have been a reality.

I am grateful to Professor R Perera, the chairman of the final defense committee and my supervisors Dr R P Thilakumara & Prof (Mrs) I J Dayawansa who were present at the final defense committee for their kind assistance given.

I also thank the non academic staff for various support given throughout the project.

I am very thankful to the management of Arthur C Clarke Institute for Modern Technologies for sponsoring me for the course on MSc in Telecommunications.

My most sincere appreciation goes to Kumidini Amaradasa, my former colleague at Arthur C Clarke Institute for Modern Technologies for the numerous assistance and support given and Kamanin Edur weera and Champika, Janashanthi, amy colleagues at Arthur C Clarke Institute for Modern Technologies for the numerous support given.

My special gratitude is extended to my father who is not in this world to see his daughter's work, and my mother, sister and brother for the courage and hope.

Last, but not least my sons, Wimukthi & Samish for their boundless patience and understanding, and Lasantha for everything.

J P D S Athuraliya July 2008

CONTENTS

4

3

.

Abstract Acknowledgements List of tables List of figures Abbreviations Glossary of symbols		i ii v vi viii ix
1.	Introduction 1.1 Importance of optical fiber communications 1.2 Typical Fiber Optic Communication System 1.3 Linear and nonlinear propagation effects in optical fibers	01 01 04 06
2.	Soliton Review University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	09
3.	Mathematical Background of Soliton Propagation 3.1 Nonlinear Schrödinger Equation 3.2 Solving the Nonlinear Schrödinger Equation	12 12 14
4.	Split Step Fourier Method 4.1 Advantages of Split Step Fourier Method 4.2 Disadvantages of Split Step Fourier Method	16 18 18
5.	Semiconductor Lasers 5.1 Background 5.2 Introduction 5.3 Laser structures 5.4 Feedback and Laser Threshold 5.5 Rate equation model of a laser 5.6 Distributed Feedback Laser	20 20 21 21 22 24
6.	The Fundamental Soliton and Soliton based Communication 6.1 Soliton based communication	27 30

7.	Methodology 7.1 Estimation of numerical accuracy of simulation 7.2 Laser model 7.3 Parameters of the DFB laser	31 31 35 35
8.	Simulation of Transmission 8.1 40Gbps single channel transmission of standard fiber 8.2 40Gbps single channel transmission of LEAF fiber	37 39 42
9.	Conclusion	46
	List of References	48
ANN	NEX I - Estimation of Numerical Accuracy of Simulation	49

.

L

ANNEX II	- Simulation of	Optical Transmission Systemwa, Sri Lanka.	51
		Electronic Theses & Dissertations	
		www.lib.mrt.ac.lk	

.

iv

LIST OF TABLES

×

t

•

Table 7.1	Parameters of the fibers and the peak power	32
Table 7.2	Parameter X	34
Table 8.1	System conditions	37
Table 8.2	Number of repeaters and the maximum distance the pulse can travel	39
Table 8.3	Number of repeaters and the maximum distance the pulse can travel	42

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

.

,

ų

*

Figure 1.1	Progress in lightwave communication technology	2
	over the period 1974-1996	
Figure 1.2	Typical Optical Fiber Communication System	5
Figure 1.3	Typical attenuation spectrum of an optical fiber	5
Figure 4.1	Split step Fourier method	17
Figure 4.2	Symmetrized split step Fourier method	19
Figure 6.1	The fundamental soliton	29
8		
Figure 7.1	The 30dB widths of the input and output pulses	32
Figure 7.2	Output pulse for dispersion 17 ps/nm/km, Length	33
	500km and stepsize ±00iny of Moratuwa, Sri Lanka.	
Figure 7.3	Output pulse for anspersion 17/ps/ma/km, Deagartations	33
	500km and step size 10m. mrt. ac.lk	
Figure 7.4	Output pulse for dispersion 17 ps/nm/km, Length	34
	500km and step size 1m	
Figure 7.5	Laser Output pulse for Modulation current 50mA,	36
	On current 8mA, (0 0 30)	
Figure 7.6	Exaggerated Laser output pulse for Modulation current	36
	50mA, On current 8mA, (0 0 30)	
Figure 8 1	Output and the input pulses	27
Figure 8.2	Flow short of the simulated soliton transmission system	20
Figure 8.2	Simulated soliton transmission system	20
Figure 8.3	Simulated solution transmission system	39
Figure 9.5	Output pulse at a distance of 215km with repeater spacing 35km	40
Figure 8.5	Output pulse at a distance of 515km with repeater spacing 35km	40
rigure 8.0	Output pulse at a distance of 400km with repeater spacing 40km	41
r igure 8./	Output pulse at a distance of 495km with repeater spacing 45km	41

Figure 8.8	Output pulse at a distance of 500km with repeater spacing 50km	42
Figure 8.9	Output pulse at a distance of 1290km with repeater spacing 30km	43
Figure 8.10	Output pulse at a distance of 1260km with repeater spacing 35km	43
Figure 8.11	Output pulse at a distance of 1280km with repeater spacing 40km	44
Figure 8.12	Output pulse at a distance of 1260km with repeater spacing 45km	44
Figure 8.13	Output pulse at a distance of 1200km with repeater spacing 50km	45

₹

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

4

Abbreviation Extension		
ADC		Analogue to Digital Conversion
AM		Amplitude Modulation
ASK		Amplitude Shift Keying
DBR		Distributed Bragg Reflector
DFB		Distributed Feed Back
EDFA		Erbium Doped Fiber amplifier
FBG		Fiber Bragg Grating
FM		Frequency Modulation
GVD		Group Velocity Dispersion
LAN		Local Area Network
LEAF		University of Margenenrecaly SAirda Fiben.
LED		Electronic Thesen Emitting Diddeons
MQW	3	www.lib.mrt.ac.lk. Multi Quantum Well
NLSE		Non Linear Schrödinger Equation
NRZ		Non Return to Zero
OFC		Optical Fiber Communication
РМ		Phase Modulation
PSK		Phase Shift Keying
QW		Quantum Well
RZ		Return to Zero
SPM		Self Phase Modulation
USP		Ultra Short Pulses
WDM		Wavelength Division Multiplexing

GLOSSARY OF SYMBOLS

¥

.

A	= Amplitude of the pulse envelope
Aeff	= Effective core area
AAg	= Recombination coefficient
В	= The bit rate
BBg	= Recombination coefficient
С	= Velocity of propagation
CCg	= Recombination coefficient
D	= Dispersion parameter
e	= Electronic charge
Eo	= Amplitude of plane wave
g	= Differential gain
1	= Injected current
К	= wave number Electronic Theses & Dissertations
Μ	= Order of Bragg diffraction WWW.lib.mrt.ac.lk
N	= The order of the soliton
N _c	= Carrier density
N_0	= Transparency carrier density
n	= Effective refractive index of the waveguide without the grating
n ₂	= Nonlinear index coefficient
Р	= Photon lifetime
P _{max}	= Peak power
\mathbf{q}_0	= The separation between neighboring solitons in normalized units/2
R_1, R_2	= Facet power reflectivities
S	= Dispersion Slope
t	= Time
T ₀	= Pulse width of the soliton
T _B	= Duration of the bit slot
V	= Laser active region volume
Z	= Length of fiber

ix

- Z_0 = Soliton period
- α_{cav} = The ratio of photons lost as the signal travels a unit length
- α_{int} = Internal loss that includes free-carrier absorption, scattering and other possible
 mechanisms
- β = Spontaneous coupling coefficient
- β_1 = Inverse of the group velocity
- β_2 = Group Velocity Dispersion coefficient
- β_3 = Related to the dispersion slope S by $(2\pi c /\lambda^2)^2 \beta_3 + (4\pi c /\lambda^3) \beta_2$
- Γ = Optical Confinement factor
- Γ = Nonlinearity parameter
- \wedge = Grating period
- λ = Optical wavelength
- v = The laser frequency
- v_g = The group velocity University of Moratuwa, Sri Lanka.
- Δv = Spacing between Iongradinatino Teseses & Dissertations
- τ_p = Photon life time in the cavity .mrt.ac.lk
- τ_c = Rate at which spontaneous emission occurs
- ω = Frequency