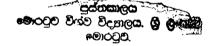
LB/DON/51/02

16


Optimal Regional Planning in Solid Waste Management

P.I. Katugampola

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of

Master of Environmental Engineering & Management

MEng.

Department of Civil Engineering University of Moratuwa Sri Lanka

624. "00" 628. 1.001.26

University of Moratuwa

January 2002

- []+]

74539

Declaration

The candidate hereby declares that the work contained in this thesis is her own and original, except where the sources of information have been acknowledged. Also, this work has not been submitted previously, in whole or part, with respect to any other award, and the work has been carried out since the official date of commencement of the degree program.

Priyantha Indrani Katugampola

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

This study investigates the application of linear programming and mixed integer programming techniques for the optimal allocation of waste stream and facility scheduling of a regional solid waste management system, over a fixed planning period. Waste disposal options include landfilling and waste diversion through recycling and composting. The regional system consist of multiple cities, landfills, material recovery facilities, compost facilities and transfer stations.

Mathematical models used for the optimization are formulated to minimize the present worth cost of providing waste management services, subject to mass balance and capacity limitation constraints of the facilities. A hypothetical case study is presented to illustrate the use of the models formulated.

l

I

I

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgment

First and foremost I would like to express my sincere gratitude and appreciation to my academic advisers Dr. S. Bandara of University of Moratuwa and Professor Milan Vlach of Japan Advanced Institute of Science & Technology (JAIST) for their guidance and support throughout this study.

My thanks are also due to Professor N. Ratnayake and Professor L. Ratnayake, Dean, faculty of Engineering, University of Moratuwa, for their approval for carrying out this study in JAIST Japan.

I am also grateful to all my colleagues in the foundations of information systems laboratory of JAIST for their corporation.

Finally, I thank my husband for his financial support and numerous suggestions which enable me to successfully complete this dissertation.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Contents

l

l

l

١

k

١

1	INT	TRODUCTION	1
	1.1	Need for Solid Waste Management	1
		1.1.1 Waste Management Options and Environmental Considerations	2
		1.1.2 Components of a Waste Management System	5
		1.1.3 Regionalization	6
	1.2	Literature Review	7
	1.3	Scope of Present Work	9
2	MC	DEL FORMULATION	10
	2.1	System Description	10
	2.2	Linear Programming Formulation	
		2.2.1 Notations	12
		2.2.2 Objective Function	12
		2.2.3 Constraints	15
		2.2.4 Decision variables	18
		2.2.5 Input Parameters	19
	2.3	Mixed Integer Programming (MIP) Formulation	20
		2.3.1 Notations	20
		2.3.2 Decision variables more sity of Moratuwa, Sri Lanka	20
		2.3.3 Input Parameters	21
		2.3.4 Objective Function	21
		2.3.5 Constraints	24
3	MO	DEL RESULTS	26
	3.1	Case Study Area and System Data	26
		3.1.1 Collection and Transportation	27
		3.1.2 Facility Data	28
	3.2	LP Model Results	30
	3.3	Sensitivity Analysis	33
		3.3.1 Sensitivity of LF Disposal Cost on Recycling Activity	35
	3.4	MIP Model Results	42
4	DIS	CUSSION	50
	4.1	Model Performance	50
	4.2	Costing Methodology	53
	4.3	Conclusions	59
	RE	FERENCES/BIBLIOGRAPHY	61

1.1	Composition of municiple waste	1
1.2	A sampling of emissions from an incinerator	3
3.1	Population and waste generation data for first year	27
3.2	Waste composition	27
3.3	Collection and transportation costs	28
3.4	Distances between different nodes in the region	28
3.5	Facility costs and capacities	29
3.6	Recovery efficiencies for different waste materials at MRF and	
	compost generation ratio at CF	29
3.7	Estimated material revenues and model I/P values	30
3.8	Model results- Disposal schedule for the region	30
3.9	Model results - Recycling and composting results	30
3.10	Model results - Residue disposal schedule	30
3.11	Disposal schedule within administrative boundary of	
	each city (Scenario 1)	32
3.12	Disposal schedule with a large and inexpensive regional	
	landfill (LF 3) (Scenario 3) University of Moratuwa, Sri Lanka,	32
3.13	Disposal schedule for recycle and compost residue with a	
	regional landfill (LF 3) (Scenario 3) ^{w life nur se lk}	32
3.14	Cost of providing waste management services under different scenarios	32
3.15	Objective sensitivity for revenues of recyclables	33
3.16	Sensitivity analysis for collection cost of recyclables	34
3.17	Objective sensitivity for unit cost of MRF	35
3.18	Sensitivity analysis - recycling schedule for different LF 3 disposal costs	35
3.19	Typical disposal pattern for LF 3 disposal cost of 40 and 50 \$/t	36
3.20	Disposal pattern for LF 3 disposal cost of 60 \$/t	36
3.21	Typical disposal pattern for LF 3 disposal cost of 70 and 80 \$/t	36
3.22	Disposal pattern for LF 3 disposal cost of 90 \$/t	36
3.23	Collection cost for different recycling programs	42
3.24	Recycling rates for different waste types	42
3.25	MIP model results - Disposal schedule for the region	43
3.26	MIP model results - Recycling and composting schedule for the region	43
3.27	Optimum cost for different diversion goals	44
4.1	Unit cost calculation for a transfer station	56
4.2	Unit cost calculation for waste collection	58
4.3	Advantages and limitations of LP and MIP techniques	60

Tables

l

l

l

1

١

١

p

١

١

Figures

۱

I

ļ

I

۱

L

I

١

P

l

١

۲

Page

2.1	Regional solid waste management system	11
2.2	Waste flow diagram	11
3.1	Case study region	26
3.2	Waste recycled by city 1 for different LF 3 disposal costs	38
3.3	Waste recycled by city 2 for different LF 3 disposal costs	38
3.4	Waste recycled by city 3 for different LF 3 disposal costs	39
3.5	Waste recycled by the region for different LF 3 disposal costs	39
3.6	Waste disposed in landfills by city 1 for different LF 3 disposal costs	40
3.7	Waste disposed in landfills by city 2 for different LF 3 disposal costs	40
3.8	Waste disposed in landfills by city 3 for different LF 3 disposal costs	41
3.9	Waste disposed in landfills by the region for different LF 3 disposal costs	41
3.10	Variation of \$\%\$ diversion with composting rate	44
3.11	Variation of optimum cost with LF 3 disposal cost	44
3.12	Percentage diversion for different LF 3 disposal costs	46
3.13	first year diversion options are implemented for different	
	LF 3 disposal costs	47
3.14	Percentage diversion for different LF 3 capacities	48
3.15	First year diversion options are implemented for different LF 3 capacities	49