Web Services Transaction Coordination

by

P.A.S.D Amarasekera

MORATUWA Supervised by

Dr. Shahani Weerawarana

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

This dissertation was submitted to the Department of Computer Science and Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science in Computer Science.

Department of Computer Science and Engineering University of Moratuwa Sri Lanka January 2007

92285 004°07″ 004(043)

TH

I hereby declare that the work included in this dissertation has not been submitted in part or whole for any other academic qualification at any institution.

Sanjup D. Amunsekun P.A.S.D. Amarasekera

UOM Verified Signature

Dr. Shahani Weerawarana

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

5

The work carried out during this research covers the transactional aspects of Web Services. A model and protocols that describe Web Services Transactions are defined by OASIS [16] in the Web Services Coordination, Web Services Atomic Transactions and Web Service Business Transactions specifications [7], [8], [9]. An attempt has been taken to design and implement a transaction coordination framework based on these specifications.

The transaction coordination framework discussed here is capable of supporting both Atomic Transactions and Business Activities as defined in respective specifications. The interoperability among the implementations of the aforementioned specifications is a major concern and is guided by the interoperability scenarios [10], [11] defined by OASIS. The transaction coordination framework discussed in this thesis is designed in such a way that it can be implemented in any of the major platforms. The design has been implemented in the .Net environment, and it confirms to the interoperability guidelines provided by the OASIS.

ii

Acknowledgments

This thesis is the outcome of a research project carried out successfully with the invaluable assistance of many people. If not for the support and the guidance provided by them, this would never be accomplished.

I would like to express my sincere thank to my supervisors; Dr Sanjiva Weerawarana and Dr Shahani Weerawarana for their invaluable guidance. They were always behind me when ever I needed directions and pushing me to a successful finish. I truly appreciate their commitment and valuable time spent on this project.

My parents were very encouraging and gave me their fullest support during the hard days. I am extremely grateful for all the love and support they extended.

My earnest thanks go to Ms Vishaka Nanayakkara and the academic staff of the Department of Computer Science & Engineering of University of Moratuwa for their support and guidance in pursuing this research project.

Many researches and developers in the open source community helped me in many ways. I have learnt a lot from them and their suggestions and explanations were of great help in accomplishing my goals. I express my sincere thank to all of them for spending their valuable time assisting me.

I highly appreciate my employer Virtusa Pvt Ltd for granting me adequate leave allowing me to attend to the research project fulltime and complete it successfully.

My sincere thank goes to my friend Hasalaka Warawita for providing me technical guidance and encouraging me to complete the project on time.

Finally, I wish to thank my MSc batch mates, office staff and everyone else who supported me during this endeavor for their invaluable assistance.

Thank you all and your support is highly appreciated.

Table of Contents

ŧ

۲

.

•

ė

Abstractii				
Acknowledgmentsiii				
Table of Contents is				
List of Figures				
Symbols, Notations, Abbreviations and Acronymsvii				
1 Introduction1				
2 Motivation and Research Goals	3			
3 Background	4			
3.1 Transactions	4			
3.2 Distributed Transactions	4			
3.3 Importance of Distributed Transactions	4			
3.4 A Service	4			
3.5 Web Services	5			
3.6 WS Transactions	5			
4 Web Services Transactions	6			
5 Web Services Coordination (WS Coordination)	9			
5.1 The WS Coordination Model	10			
5.2 CoordinationContext	11			
5.3 Coordination Types and Protocols	12			
5.4 The Message Exchange	16			
5.5 Extensibility Iniversity of Maraturya Sri Lanka	19			
6 Web Services Atomic Transaction (WS Atomic Transaction)	20			
6.1 Atomic Transaction Protocols	21			
611 Completion Protocoprt.ac.lk	21			
61.2 Two-Phase Commit (2PC) Protocols	21			
6 1 2 1 Volatile 2PC Protocol	22			
6 1 2 2 Durable 2PC Protocol	22			
6.2 The Atomic Transaction Model and the Message Exchange	23			
6.3 Extensibility	25			
7 Web Services Business Activity (WS Business Activity)	26			
7.1 Business Activity Coordination Types	26			
7.1.1 AtomicOutcome type	27			
7.1.2 MixedOutcome type	27			
7.2 Business Activity Protocols	27			
7.2.1 Business Agreement With Participant Completion	27			
7.2.2 Business Agreement With Coordinator Completion	28			
73 Extensibility	28			
8 Interoperability	29			
9 Microsoft Net Web Service Support	30			
10 Implementation Approach	32			
11 Design and Implementation	34			
11.1 The Coordination Models	34			
11 1 1 WS Atomic Transactions model	34			
11.1.2 WS Business Activity model				
11.2 The Design	38			
11.3 The Coordinator				
11.3.1 Activation Service	39			

11	.3.2	Registration Service	40
11	.3.3	Atomic Transaction Protocol Service	41
11	.3.4	Business Activity Protocol Service	45
11.4	The Cl	ients	51
11	.4.1	Activation Service	51
11	.4.2	Registration Service	. 53
11	.4.3	Atomic Transaction Protocol Service	. 54
11	.4.4	Business Activity Protocol Service	. 57
11.5	Regist	۲ ۷	61
11.6	The Cl	ient API for Atomic Transaction	61
11.7	The Cl	ient API for Business Activities	, 62
12	Testing		63
13	Future W	'ork	. 65
14	Conclusio	on	. 66
15	Reference	es	. 68

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure 4.1: The Web Services protocol stack08
Figure 5.1: The main components of the coordination model10
Figure 5.2: A typical SOAP header with a CoordinationContext header 12
Figure 5.3: Atomic Transaction Coordination Model 13
Figure 5.4: Business Activity Coordination Model14
Figure 5.5: Scenario A - Message exchange pattern with a single Coordinator 15
Figure 5.6: Scenario B - Message exchange pattern with an additional subordinate Coordinator 16
Figure 6.1: The State Diagram for the Completion Protocol21
Figure 6.2: The State Diagram for the Two-Phase Commit (2PC) Protocols22
Figure 7.1: The State Diagram for BusinessAgreementWithCoordinatorCompletion Protocol 27
Figure 7.2: The State Diagram for BusinessAgreementWithParticipantCompletion Protocol28
Figure 11.1: The WS Atomic Transaction coordination model mka
Figure 11.2: The Agent-Based WS Business Activity coordination model
Figure 11.3: The WS Business Activity coordination model with <i>Business Activity</i> Initiator Protocol36
Figure 11.4: The WS Business Activity coordination model introduced in this research37
Figure 11.5: The main components of the system38

Symbols, Notations, Abbreviations and Acronyms

- EAI Enterprise Application Integration
- WS Web Services
- SOAP Simple Object Access Protocol
- WSDL Web Services Description Language
- WS-TX Wes Services Transactions
- WS-Coor Web Services Coordination
- WS-AT Web Service Atomic Transactions
- WS-BA Web Service Business Activity
- WCF Microsoft Windows Communication Foundation
- W3C World Wide Web Consortium

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk