DETERMINATION OF LATERAL BEHAVIOUR OF TALL BUILDINGS WITH SUB AND SUPER STRUCTURE MODELLED WITH SOIL

L.G.S.J. Edirisinghe

Thesis submitted to the in partial fulfillment of the requirements for the Degree of Master of Engineering in Structural Engineering Design.

Department of Civil Engineering

University of Moratuwa

Sri Lanka.

November 2009

93917

ABSTRACT

In current methods of analysis and design of tall buildings of 40 to 50 storey's for lateral loads are modeled only to act on the superstructure. However most of the high rise buildings in Sri Lanka are on pile foundations and most probably with one or more basements. The lateral behavior of high rise buildings with substructure is observed in this research to a certain extent. Only wind load is considered as the lateral load of this study. It is identified that the substructure-superstructure modeling is practical

The substructure piles are modeled with soil springs to accommodate the horizontal soil resistance and available methods to calculate the modulus of sub grade reaction and the spring constant are discussed. Piles are modeled as frame elements and pile caps are modeled as shell elements. When the modeling of pile caps, tie beams are introduced to enhance the integrity and lateral stiffness. Basement walls are modeled as shell elements and the soil springs are introduced to give the effect of soil. SAP 2000 software package was used as modeling tool of the case studies.

A 40 storey building is analyzed for different lateral load combinations; without basements and without piles, with basement and without piles, without basement and with piles and with basement and with piles. The same scenario is carried out for a 50 storey building.

Mainly the drift due to lateral loads and axial shortening are observed and analyzed. The buildings modeled with piles give the highest drift and highest axial shortening for both buildings. When there is a basement, additional lateral load resistance is observed.

It is important to find out the drift or sway of the building modeled with piles when the building is not having basement to transfer lateral loads to the soil. The drift and the axial shortening can be properly identified when the building is modeled with substructure-superstructure together. The base shear of similar order of magnitude is observed in the buildings modeled in superstructure only and in buildings with substructure-superstructure together.

DECLARATION

I declare that this thesis is the result of my own investigation and that it has not been submitted in candidature for a degree/diploma of this or any other university.

Administ Igrayana u L G S J Edirisinghe

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

х.

ACKNOWLEDGEMENT

My sincere thanks to the project supervisor Prof. M. T. R. Jayasinghe, for devoting his valuable time in guiding me to complete the research study. It is no doubt that without his interest and guidance this would not have been a success. He not only provided direction and guidance through the course of this research, but also inspired me to really learn and understand structural engineering.

I wish to thank the Vice Chancellor, Dean of the Faculty of Engineering and Head of the Department of Civil Engineering of the University of Moratuwa, for the permission granted for this research work. Further, I wish to offer my thanks to the Co-ordinator of the Post Graduate research work of Structural Engineering and all the lecturers and staff of the Department of Civil Engineering who helped me in numerous ways. Also I wish to thank the librarian and the staff of the library for the co-operation extended to me for this research work.

I am particularly indebted to Eng S A Karunaratne, Managing Director, Eng R M A Senarath, Director, and Eng D G R Jayasignhe, Engineer Projects of STEMS Consultants (Pte) Ltd, for the financial assistance and encouragement given me to follow the this postgraduate degree course. I like to express my gratitude to Archt(Miss) Madhu Moonesinghe, Eng(Miss) Sadhana Kurumbalapitiya and Eng Uditha Dissanayake who helped me to success this thesis in numerous ways, to prepare this thesis.

I would like to dedicate this hard work to my parents, my brother and two sisters for their enormous support and encouragement. There are many who helped me to succeed in education from my childhood to date. I regret for my inability to thank them individually, but I offer my heartiest thanks to all of them.

L G S J Edirisinghe STEMS Consultants (Pte) Ltd December 2009

CONTENTS

i
ii
iii
iv
ix
xiii

Chapter 1

Introduction

1.1	General	1
1.2	Objectives	3
1.3	Methodology	3
1.4	Main findings	3
1.5	Arrangement of the report	4

÷

Chapter 2

Chapter 2		
Literature		
2.1	General Electronic Theses & Dissertations	5
2.2	Structural forms	6
	2.2.1 Flat-plate, flat-slab and columns structures	
	2.2.2 Rigid-frame structures	9
	2.2.3 Shear wall structure	9
	2.2.4 Bundle-tube structures	11
	2.2.5 Exterior braced tube structures	12
	2.2.6 Suspended structures	13
	2.2.7 Core structures	13
	2.2.8 Hybrid structures	13
	2.2.9 Height to width ratios of high rise buildings	13
	2.2.10 Span dimension of girders of high rise buildings	14
	2.2.11 Member sizes of frame	14
	2.2.12 Floor framing design	14
2.3	3 Structural stability	15

	2.3.1	Drift constraints	16
	2.3.2	Drift design of moment frames	17
	2.3.2	Bent displacements	17
~ 1		ential shortening of columns	19
2.4			23
2.5	Metho	ods in Predicting Lateral Pile Responses	
	2.5.1	Finite Elements for Soil	23
	2.5.2	Methods of calculation of the modulus of subgrade	
		reaction	23
	2.5.2	1 Winkler Method	23
		2 Vesic Method proposed to calculate modulus of	
	2.0.2	subgrade reaction	29
	254	Concept of <i>p</i> - <i>y</i> curves	30
		Finite element method of modelling piles	32
2.6		ctural analysis by software SAP 2000 version 12	33
2.0			
2.7	Veri	fication of SAP 2000 software by modelling a 10 storey	2.4
	Fran	ne and drift calculation	34

Chapter 3 University of Moratuwa, Sri Lanka

Charles and the second s			
Structu	ral arr	rangements and loads applied for case study tions	
		General www.lib.mrt.ac.lk	38
	3.2	Layout of structure	38
Â	3.2.1	Vertical Circulation of the building	38
		3.2.2 Service Core and Shear Walls	39
		3.2.3 Floor loads	40
		3.2.4 Initial member sizing	40
	3.3 Ma	aterial properties of the structure	40
		3.3.1 Concrete	40
		3.3.2 Reinforcement	41
	3.4 Lo	bading to be applied on the structures	41
		3.4.1 Dead and Imposed (Live) loads	41
		3.4.2 Lateral loads	42
		3.4.2.1 Selection of wind speed for high rise buildings in	
		Sri Lanka	42
		3.4.2.2 Wind load calculation	44

3.5 Structural	forms for Case Study No.01	44
3.5.1	40 Storey building only with super structure only (Without	
	Basement and Without Piles) Model No 01:-	
	40 WOB WOP	44
3.5.2	40 Storeyed building only with super structure only (With	
	Basement and Without Piles) Model No 02: -	
	40 WB WOP	46
3.5.3	40 Storeyed building only with super structure only (Witho	out
	Basement and With Piles) Model No 03: -	
	40 WOB WP	48
3.5.4	40 Storeyed building only with super structure only (With	
	Basement and With Piles) Model No 04: -	
	40 WB WP	50
3.6 Structural	forms for Case Study No .02	
3.6.1	50 Storeyed building only with super structure only (Witho	out
	Basement and Without Piles) Model No 05:-	
	50 WOB WOP	52
3.6.2	50 Storeyed building only with super structure only (With	
	Basement and Without Piles) Model No 06: -	
	50 WB WOP	54
3.6.3	50 Storeyed building only with super structure only (Witho	out
	Basement and With Piles) Model No 07: - 50 WOB WP	56
3.6.4	50 Storeyed building with super structure only (With	
	Basement and With Piles) Model No 08:-	58

Chapter 4

Computer modelling and case study

4.1	General	60
4.2	Computer modelling	61
4.3	Load cases and combinations	61

Chapter 5 Results and observation

Chapter 6

Conclusion and future work815.1 Conclusion825.2 Future work82

63

83

85

89

References	د	

Appendices

Appendix A Calculations – Determination of structural form of 40 storey	ed building
with soft zoning lift arrangement	
A.1 Initial member sizing	

A.2 Design of lifts and staircase

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Appendix B Calculations – Determination of structural form of 50 storeyed building

with soft zoning lift arrangement

B.1 Initial member sizing	92
	96
B.2 Design of lifts and staircase	70

Appendix C

Calculation – Borehole data, initial design of pile capacities, modulus of	
subgrade reaction of soil and soil spring constant	
C.1 Pile capacities and diameters	101
C.2 Calculation of modulus of subgrade reaction and soil spring constant	
of pile segment	102
C.3 Pile cap dimensions	104

Appendix D Wind load calculation

Appendix E SAP model figures

118

105

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of figures

Figure 2.1	Structural concept of a tall building subjected to lateral forces	5
Figure 2.2	Structural systems for concrete buildings	6
Figure 2.3	Interior Structural Forms in High Rise Building	7
Figure 2.4	Exterior Structural Forms in High Rise Buildings	7
Figure 2.5	Flat slabs with drop panels and shear walls	8
Figure 2.6	Flat slabs with drop panels and shear walls	9
Figure 2.7	Shear Wall-Frame Interactions	10
Figure 2.8	Typical Shear wall structure	10
Figure 2.9	Bundled tube (a) Schematic plan (b) Framed bundled tube	
	(c) Tube in tube building	11
Figure 2.10	Exterior braced tube: (a) schematic elevation; (b) plan	12
Figure 2.11	Frame deformation caused by the bent action	18
Figure 2.12	Typical sub assemblages	18
Figure 2.13	Axial shortening computations for a column.	21
Figure 2.14	Implementation of Winkler Spring Concept for Laterally	
	Loaded Pile Problem Theses & Dissertations	23
Figure 2.15	Shape of the solution with respect to the pile depth	25
Figure 2.16	Deflection coefficients Ay and By	27
Figure 2.17	Moment coefficients Am and Bm	27
Figure 2.18	Slope coefficients As	27
Figure 2.19	Slope coefficients Bs	28
Figure 2.20	Shear coefficients Av and Bv	28
Figure 2.21	Soil resistance coefficients Ap and Bp	28
Figure 2.22	Definition of <i>p</i> - <i>y</i> concept with (a) Pile at rest (b) Pile after	
	load applied	31
Figure 2.23	Typical family of <i>p</i> - <i>y</i> curves response to lateral loading	31
Figure 2.24	Spring arrangement of a pile	32
Figure 2.25	Moment resisting frame with lateral loads	34
Figure 2.26	SAP analysis window of the moment resisting frame	36
Figure 2.27	Height vs drift in 10 storey moment resisting frame	37
Figure 3.1	Wind zones in Sri Lnka	42

Figure 3.2	40 Storyed building without basement / without piles	45
Figure 3.3	40 Storyed building with basement / without piles	47
Figure 3.4	40 Storyed building without basement / with piles	49
Figure 3.5	40 Storyed building with basement / with piles	51
Figure 3.6	50 Storyed building without basement / without piles	53
Figure 3.7	50 Storyed building with basement / without piles	55
Figure 3.8	50 Storyed building without basement / with piles	57
Figure 3.9	50 Storyed building with basement / with piles	59
Figure 3.7	General arrangement plan of 50 storey building with basement	49
Figure 4.1	Case study 01 flow chart (40 storey building)	60
Figure 4.2	Case study 02 flow chart (50 storey building)	60
Figure 4.3	Wind directions and selected locations to get results	
-	(40 storey building)	62
Figure 4.4	Wind directions and selected locations to get results	
C	(50 storey building)	62
Figure 5.1	Height vs Drift at location A1 for the load combination	
C	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction (Models	
	40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WP)	63
Figure 5.2	Height vs Drift at location A1 for the load combination	
C	1.0Gk+1.4Wk for X direction and Y direction (Models	
	40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WP)	63
Figure 5.3	Height vs Axial Shortening at location A1 for the load	
e	combinations 1.0Gk+1.0Qk and 1.4Gk + 1.6Qk	
	(40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WP)	64
Figure 5.4	Height vs Drift at location F1, for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction	
	(Models 40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WF	P) 66
Figure 5.5	Height vs Drift at location F1 for the load combination	
- 6	1.0Gk+1.4Wk for X direction and Y direction	
	(Models 40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-W	P) 66
Figure 5.6	Height vs Axial Shortening at location F1 for the load	
	combinations 1.0Gk+1.0Qk and 1.4Gk + 1.6Qk	
	(40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WP)	67
Figure 5.7	- in the TC C it land combination	
1 15410 2.7	x	

	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction	
	(Models 40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WP)	69
Figure 5.8	Height vs Drift at location F5 for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction	
	(Models 40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WP)	69
Figure 5.9	Height vs Axial Shortening at location F5 for the load	
	combinations 1.0Gk+1.0Qk and 1.4Gk + 1.6Qk	
	(40WOB-WOP, 40WB-WOP, 40WOB-WP, 40WB-WP)	70
Figure 5.10	Height vs Drift at location A1, for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction	
	(Models 50WOB-WOP, 50WB-WOP,50WOB-WP,50WB-WP)	72
Figure 5.11	Height vs Drift at location A1 for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction	
	(Models 50WOB-WOP, 50WB-WOP, 50WOB-WP, 50WB-WP)	72
Figure 5.12	Height vs Axial Shortening at location A1 for the load combination	ns
	1.0Gk+1.0Qk and 1.4Gk + 1.6Qk	
	(50WOB-WOP, 50WB-WOP,50WOB-WP, 50WB-WP)	73
Figure 5.13	Height vs Drift at location F1, for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction	
	(Models 50WOB-WOP, 50WB-WOP, 50WOB-WP, 50WB-WP)	76
Figure 5.14	Height vs Drift at location F1 for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction	
	(Models 50WOB-WOP, 50WB-WOP, 50WOB-WP, 50WB-WP)	76
Figure 5.15	Height vs Axial Shortening at location F1 for the load combination	ns
	1.0Gk+1.0Qk and 1.4Gk + 1.6Qk	
	(50WOB-WOP, 50WB-WOP,50WOB-WP, 50WB-WP)	7 7
Figure 5.16	Height vs Drift at location F5, for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction	
	(Models 50WOB-WOP, 50WB-WOP,50WOB-WP,50WB-WP)	79
Figure 5.17	Height vs Drift at location F5 for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction	
	(Models 50WOB-WOP, 50WB-WOP, 50WOB-WP, 50WB-WP)	79
Figure 5.18	Height vs Axial Shortening at location F5 for the load combinatio	ns
	1.0Gk+1.0Qk and 1.4Gk + 1.6Qk	

	(50WOB-WOP, 50WB-WOP,50WOB-WP, 50WB-WP)	80
Figure A.1	General arrangement plan-40 storey building	85
Figure B.1	General arrangement plan – 50 storey building	92
Figure E.1	Pile cap layout (SAP model)	118
Figure E.1	SAP model 3D view of 50 storey building	118
Figure E.3	SAP model 3D view of a piles group (4 piles)	118

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

. . .

List of tables

Table 2.1	Summary of definition and dimension of terms used in analysis o	f
	laterally loaded piles	25
Table 2.2	Drift calculation results for 10 storey moment resisting frame	35
Table 2.3	Drift results from SAP 2000 analysis	36
Table 3.1	Grade of concrete and their properties, as per BS8110	41
Table 3.2	Recommended basic wind speed for Sri Lanka	43
Table 3.3	Regional wind speeds - V _R (AS/NZS 1170.2: 2002)	43
Table 5.1	Summary of analysis of results at location A1 of 40 storey building	1g65
Table 5.2	Summary of analysis of results at location F1 of 40 storey building	ig 68
Table 5.3	Summary of analysis of results at location F5 of 40 storey buildin	ig 71
Table 5.4	Summary of analysis of results at location A1 of 50 storey building	ıg 74
Table 5.5	Summary of analysis of results at location F1 of 50 storey building	ng77
Table 5.6	Summary of analysis of results at location F5 of 50 storey building	ig 8 0
Table C.1	Borehole data (SPT values)	101
Table C.2	Capacities of end bearing piles under defferent rock end bearing	
	stresses University of Moratuwa, Sri Lanka.	102
Table C3	Calculation of modulus of subgrade reaction and soil spring	
	constant of pile segments ac.1k	103
Table C.4	Reinforced Concrete Designer's Handbook, (Reynolds C. E.)"	104
Table D.1	Calculation of wind force per unit area – 40 storey building	
	(Ground floor to 17 th floor)	110
Table D.2	Calculation of wind force per unit area – 40 storey building	
	(18 th floor to 35 th floor)	111
Table D.3	Calculation of wind force per unit area – 40 storey building	
	(36 th floor to 40 th floor)	112
Table D.4	Calculation of wind loads on grid locations as point loads in 40	
	storey building	113
Table D.5	Calculation of wind force per unit area – 50 storey building	
	(Ground floor to 17 th floor)	114
Table D.6	Calculation of wind force per unit area – 50 storey building	
	(18 th floor to 35 th floor)	115
Table D.7	Calculation of wind force per unit area – 50 storey building	

	(36 th floor to 50 th floor)	116
Table D.8	Calculation of wind loads on grid locations as point loads in	
	50 storey building	117

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

د

<u>у</u>.