LB MAR N / 80 / 00k

TECHNICAL AND FINANCIAL VIABILITY OF WOOD GASIFICATION BASED OFF GRID ELECTRICITY GENERATION IN SRI LANKA

A Research Project submitted to the Department of Mechanical Engineering, University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Engineering in Energy Technology

University of monarting stillands Sri Lanka. Electron Contesting & Dissertations www.lib.mrt.ac.lk

RUPASINGHE APPUHAMILAGE UPALI RUPASINGHE

2003/2004

Supervised by

0:254

Dr. A.G.T. Sugathapala Department of Mechanical Engineering University of Moratuwa, Sri Lanka

October 2007

DECLARATION

The work submitted in this research Project is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree and is also not being submitted for any other degree.

UOM Verified Signature '

R.A.U. Rupasinghe. Name of Student

Signature of the Student Date: 29 - 11 - 2007

Supervised by: Dr. A.G.T. Sugathapala.

UOM Verified Signature

Signature of the Supervisor Date: 29-11-07

ACKNOWLEDGEMENT

Through the MEng/PG Dip in Energy Technology course, I am benefited to do a Research Project on "Technical & Financial viability of wood based Off-grid Electricity Generation in Sri Lanka."In this survey I found a lot of research areas in Energy Sector on off-grid village Dendro power schemes in Sri Lanka.

I wish to thank those who stimulated the writing of this Research Project . I feel indebted to Dr. Thusitha Sugathapala, the head of the Department of Mechanical Engineering of the University of Moratuwa, for his interest in this Research Project for the Technical & Financial viability of wood based off-grid rural electrification in Sri Lanka.

l give my sincere thanks to Professor Rahula Atalage, Dr Thusitha Sugathapala and Dr.Kapila Perera for their help and encouragement during the Programme of study and special thanks for conducting our MEng/PG Dip in Energy Technology 2003/2004 programme efficiently and effectively.

I again give my sincere thanks to Mr. Bandula Chandrasekera, Coordinating officer of Energy Forum and Mr Sarath Samaraweera the Project Developer & Director of Samanala agencies for their genuine corporation for collecting valuable information on Village Dendro System.

I take this opportunity to thank the non- academic staff of the Department of Mechanical Engineering, for their cordial help through out the Programme.

R.A.U. Rupasinghe.

ABSTRACT

In this research project the technical and financial viability of wood gasification based offgrid electricity generation in Sri Lanka were analyzed. A six phase model was introduced to develop and implement a village dendro system. A financial analysis was carried out to search the financial viability of the system. A literature survey for the existing wood gasification based off-grid village dendro systems in Sri Lanka was carried out. Overall activities from feasibility study up to commissioning stage of Batugammana village dendro system were studied as a case study. The six phase model outlines salient features of the development and implementation stages of such systems, emphasizing the requirement identification and method of requirement analysis, feasibility study, project design including electro mechanical equipment specification and financial model as well as operation & maintenance systematically.

The financial model was developed with real assumptions and actual data reflecting the case study to search the financial viability of a wood gasification based off grid village dendro system. The Net Present Value and Internal Rate of Return were calculated for both Project and Equity aspects in Sensitivity analysist was conducted to search the financial viability as well as the most appropriate financially Diable optimizing state of the Power plant ensuring the optimizing financial viability of the village dendro system on both domains. According to the findings, the village dendro system developed for the case study was analyzed and found it was not financially viable. Therefore the options and steps to be taken to make such systems financially viable were also discussed and key parameters were calculated through the financial model.

It was revealed through the financial model, a village dendro system is not financially viable, if the Power plant does not deliver power at it's maximum continuous rating mode all the time. That occurs, the number of households are not enough to consume power at the predetermine wattage per household or unavailability of other income generating activities which consume power when running the machine on the said mode.

CONTENT

Page N	0
CHAPTER 1: INTRODUCTION	
CHAPTER 2- PRESENTS STATES OF RENEWABLE ENERGY4	
2.1 Introduction	
2.2 Renewable Energy sources	
2.2.1 Wind Energy	
2.2.2 Small Hydro6	
2.2.3 Solar Energy	
2.2.4 Biomass10)
2.3 Economic comparison of off-grid renewable energy systems	}
2.4 Energy policy for off-grid renewable energy development	ł
2.5 Dendro power	7
2.5.1 Biomass potential for fuel wood plantationI	7
2.5.2 Fuel wood Production1	
2.5.3 Comparison of Gliricidia with other alternative fuel wool anka	8 9
CHAPTER3: FUEL WOOD GASIFICATION TECHNOLOGY FOR	
RURAL ELECTRIFICATION2	2
3.1 Introduction	2
3.2 Principle of gasification	22
3.2.1 The principle chemical reaction occurring in the gasifier2	3
3.3 Gasifiers	25
3.3.1 Up draft Gasifier	25
3.3.2 Cross – draft Gasifiers	25
3.3.3 Fluidized – bed Gasifers	?6
3.3.4 . Down – draft Gasifiers	27
3.4 Electricity generation systems	30
3.4.1 Gasification steam turbine	30
3.4.2 Gasification gas turbine	30

iv

3.4.3 Gasification co-generation 3	1
3.4.4 Gasifier-internal Combustion (IC) Engine Driven Generator	1
3.4.5 Summery of the Power out put & performance calculations	
of the Engine, Gassifier and Generator	3

CHAPTER4: PRESENT STATUS ON VILLAGE DENDRO

POWER SCHEMES IN SRI LANKA	35
4.1 Introduction	35
4.2 Badalkumbura Community Based Pilot Dendro	
System (Wadakahakiula VDS)	38
4.2.1 Background	
4.2.2 Financing	
4.2.3 Affordability of electricity	40
4.3 Endagalayaya Project	41
4.3.1 Background	41
4.4 Wattemada VDS	42
4.4.1 BackgroundUniversity of Moratuwa; Sri Lanka	42
4.5 Millagala VOS)Electronic Theses & Dissertations	
4.5.1 Background. www.lib.mrt.ac.lk.	
4.6 Kiula VDS	43
4.6.1 Background	43
4.7 Lessons learnt- How to initiate an off-grid village Dendro Scheme	44
4.7.1 System procedures involved in VDS	44
4.7.2 Project Developers	45
4.7.3 Electricity Consumers Societies (ECS)	45
4.7.4 Power plant Installation, Handling and After Sales Services	46
4.7.5 Waste Control & Management of by-products	46
4.7.6 Safety Hazards and Prevention	46
4.8 Limitations of the Technologies	48

CH.	APTER 5: METHODOLOGY	49
5.1	Introduction	49
5.2	Requirement identification	.50

5.3 Requirement Analysis	.50
5.4 Feasibility study	.51
5.5 Project Design	.51
5.5.1 Machine Parameter design	51
5.5.2 Design of Financial Model	, 52
5.5.3 The selection of a suitable Fuel wood	55
5.6 Implementation	56
5.6.1 Location	56
5.6.2 Government Contribution	. 56
5.6.3 Funding	. 57
5.7 Operation and maintenance	58

CHAPTER 6: TECHNICAL AND FINANCIAL VIABILITY OF DENDRO

à

ŧ

4

		POWER IN OFF-GRID ELECTRIFICATION	59
6.I	Intro	duction	59
6.2	Tech	nical Viability of machinery	59
6.3	Agro	-technical viability of Fuel wood	62
6.4	Fina	ncial Vlability. University of Moratuwa, Sri Lanka	62
	6.4.1	Sensitivity Analysis top Financia Prability brives tations.	66
6.5	Case	Study www.lib.mrt.ac.lk	72
	6.5.1	Requirement identification	72
	6.5.2	Requirement analysis	73
	6.5.3	· · · · · · · · · · · · · · · · · · ·	
	6.5.4		
	6.5.5	Implementation	
	6.5.6	Operations and maintenance	
	6.5.7	Side benefits from village dendro systems	83
	6.5.8	Social Services	84
СН	APTI	ER 7: DISCUSSION	85

REFERENCES	89
APPENDIX-A: World wind turbine Installations (MW)	91
APPENDIX-B: Power output and performance calculations of the	
Engine, Gasifier and Generator	92
APPENDIX-C: Results of the survey carried out in Batugammana	
village	95
APPENDIX-D: Financial Model for Project IRR	100
APPENDIX-E: Financial Model for Equity IRR	102
APPENDIX-F: Sensitivity Analysis for Project IRR	104
APPENDIX-G: Sensitivity Analysis for Equity IRR	106

LIST OF FIGURES

¥

Page No

Figure 2.1: Global cumulative wind energy capacity [6]5
Figure 2.2: Geographic Distribution of solar and hydro Off-Grid
Projects Approved under RERED by June 20079
Figure 2.3: Bioelectricity installed capacity in OECD Europe in 200211
Figure 3.1: Schematic diagram of a Down draft gasifier27
Figure 3.2: Dendro home system Down draft gasifier
Figure 4.1: The process schematic diagram of a Gasifier powered IC engine
generating set
Figure 4.2: The 10kW Millagala Gasifier powered IC engine generating set38
Figure 5.1: Six phase VDS implementation model
Figure 5.2: Electricity peak demand forecast by CEB for next 20 years55
Figure 5.3: Financing Model for Off-grid Village Schemes 57
Figure 6.1: 25 kW generating set powered by wood gasifiers60
Figure 6.2: Gasifiers for 7.5kW to 15kW Engines, Gemcor Company,
Philippines University of Moratuwa; Sri Lanka:61
Figure 6.3: Gasifier manufacturing factory, Gemcor Company, Philippines 61
Figure 6.4: Visit to Testing tab of gasifier powered IC engine driven
Generating sets at Pokunutenna74

viii

LIST OF TABLES

à,

Page No

Table 2.1: Off grid Wind Turbine installations for electricity generation
in Sri Lanka6
Table 2.2:Grid connected wind turbine energy system in Sri lanka
Table 2.3: Present states of off-grid hydro projects under RERED by June 20077
Table2.4: off grid solar energy systems in Sri Lanka10
Table 2.5: Arable land per capita in EU 2007 12
Table 2.6: Energy consumption in Sri Lanka
Table 2.7: Renewable power specific cost comparison (US cents per kWh)14
Table 2.8: Medium- term targets for off-grid electrification
Table 2.9: Available land for energy plantation
Table 2.10:Yield of woody biomass of different species in Sri Lanka
Table 2.11: Alternative species that can be used for an energy plantation
Table 3.1: Summery of specifications of engine and generator set model
Table 4.1: The summery details of Dendro power schemes
Table 4.2: Possible issues and control techniques of byproducts. Lanka
Table 4.3: The safety aspects and precautionsses & Dissertations
Table 5.1: Load forecast for the next 20 years. 1k
Table 6.1: Sensitivity Analysis of the VDS under Project IRR for System 167
Table 6.2: Sensitivity Analysis of the VDS under Equity IRR for System 1
Table 6.3: Sensitivity Analysis for Project IRR for 78 households
Table 6.4 : Sensitivity Analysis for Equity IRR for 78 households
Table 6.5: Case 1-Search the optimum Power plant operating state for
financial viability70
Table 6.6: Case 2-Search the optimum Power plant operating state for
financial viability71
Table 6.7: VDS site information and Plant data
Table 6.8: Income level of villagers
Table 6.9: Energy Demanded at Battugammana
Table 6.10: Average Monthly Expenditure on Energy (Before commencing the
Project)77
Table 6.11: Pre estimated cost of the project

Table 6.12: Pre- Estimated Committed Funds	
Table 6.13: Basic Plant specification	79
Table 6.14: Mini grid Design	79
Table 6.15: Actual cost breakdown of the project	80
Table 6.16: Fuel wood Supply	81
Table 6.17: Monthly Operational cost	82
Table 6.18: Beneficiary charges	82

ABBREVIATIONS

AU	Administrative Unit
CBSL	Central Bank of Sri Lanka
CDM	Continuous Development Mechanism
CEB	Ceylon Electricity Board
DFI	Development Finance Institution
DS	Divisional Secretary
ECF	Energy Conservation Fund
ECS	Electricity Consumers' Society
EF	Energy Forum
ESDP	Energy Service Delivery Project
GAP	Global energy Action Programme
GEF	Global Environmental Facility
GN	Grama Niladhari
GOSL	Government of Sri Lanka
GVEP	Global Village Energy Partnership
IC	Internal Combustion of Moratuwa, Sri Lanka.
IDA 🛛	International Donor Asensies & Dissertations
iee 🏾 🎽	Institution of Electrical Engineers
IRR	Internal Rate of Return
ITDG	Intermediate Technology Development Group
LCD	Liquid Crystal Display
LGA	Local Government Authorities
MCR	Maximum Continuous Rating
MFI	Micro Finance Institution
MOF	Ministry of Finance
NGO	Non Governmental Organization
NPV	Net Present Value
РСВ	Programmable Circuit Breakers
PCI	Participating Credit Institution
SPV	Solar photovoltaic
RERED	Renewable Energy for Rural Economic Development
SEEDS	Sarvodaya Economic Enterprises Development Services

- --- --

xi

4

TA	Technical Assistance
UPS	Uninterrupted Power Supply
VDS	Village Dendro Schemes

