LB/DON/ 51/33

621.18:536-73

78483

EXERGY (SECOND LAW) ANALYSIS OF STEAM BOILERS IN SRI LANKA

By

M^M R Pathmasiri

This Thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Engineering in Energy Technology

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk L. M.S. CTTY C. C. SANTA C. V.

Ł

Department of Mechanical Engineering Faculty of Engineering University of Moratuwa Sri Lanka July 2002

78483

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other acedemic qualification of a university or other institute of higher learning except where acknowledgment is made in the text.

> University of Moratuwa, Sri Lanka. ic Theses & Dissertations y.mrt.ac.lk

> > i

UOM Verified Signature

M M R Pathmasiri July 2002

4

λ

Abstract

In this study, exergy analysis was carried out for boilers. A sample of 100 Nos. of boilers was selected and input and output streams for each boiler were studied. Exergy and energy balance for each boiler was evaluated and theoretical analysis was carried out using these results.

Variation of exergy efficiency with flue gas temperature and excess air, variation of exergy efficiency with energy efficiency, variation of CO_2 emission with exergy efficiency, variation of cost of steam with exergy efficiency and variation of exergy destruction with excess air and flue gas temperature were presented. The theoretical background for these variations were discussed.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

1

×

X

Table of Contents

Declaration	i
Abstract	ii
Table of Contents	iii
List of Tables	vii
List of Figures	viii
Acknowledgement	x

CHAPTER 01

Ť

•

RESEARCH PROBLEM BEING ANALYZED			
1.1	Background of exergy		
1.2	CO ₂ emission and green house effect	3	
1.3	Energy based pricing and exergy based pricing	6	
1.4	Exergy based taxing for emission	7	
1.5	Sri Lankan situation of exergy analysis	8	
PTER	02 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk		

CHAPTER 02

LITER	ATURE SURVEY ON EXERGY
2.1	Major researches conducted and papers published

.

9 9

CHAPTER 03

THEORITICAL ANALYSIS			16
3.1	Refere	ence state or reference environment	16
		3.1.1. Restricted dead state	17
		3.1.2 Absolute dead state	17
3.2	Funde	emental concept	18
	3.2.1	Clausius inaquality	18
	3.2.2	Entropy	18

	3.2.3	Exergy anergy and energy	19
	3.2.4	Irreversibility	19
	3.2.5	First law of thermodynamics	20
	3.2.6	Second law of thermodynamics	20
3.3	Comp	onents of exergy	20
	3.3.1	Exergy transfer with work interaction	21
	3.3.2	Exergy transfer with heat interaction	21
	3.3.3	Exergy transfer associated with material stream	22
3.4	Exerg	y in fuels	24
3.5	Exerg	y balance for total system	25
	3.5.1	Exergy balance for closed system	25
	3.5.2	Exergy balance for control volume	25
3.6	Exerg	etic efficiency	26
3.7	Cost o	of steam	26
3.8	Radia	tion and convection losses in cylindrical and flat surfaces	27

CHAPTER 04

9

R,

3

>

12	University of Moratuwa, Sri Lanka.
Q	Electronic Theses & Dissertations
23	www.lib.mrt.ac.lk

METHODOLOGY			29
4.1	Data c	collection	29
	4.1.1	Different industries	30
	4.1.2	Different loads	30
	4.1.3	Configuration of boilers	31
4.1.4 Different types of burners		Different types of burners	32
	4.1.5	Fuel consumption	35
4.2	4.2 Sampling size		36
4.3	Instrument used		36
	4.3.1	Flue gas analyzer	36
	4.3.2	Other instruments used	37
4.4	4.4 Method of analysis		39
4.5 Case study analysis – boiler system			40

4.5.1	Data and measurements	40
4.5.2	Composition analysis of fuel	41
4.5.3	Calculation	42

CHAPTER 05

9

1

ANAI	LYSIS OF RESULTS	56
5.1	Exergy loss through blowdown	57
5.2	Exergy loss through surface emission	59
5.3	Exergy loss in flue gas	60
5.4	Exergy destruction	66
5.5	Exergetic efficiency	69
5.6	Variation of exergetic efficiency with energy efficiency	72
5.7	Cost of steam vs exergetic efficiency	73
	5.7.1 Type of fuel	74 10000
	5.7.2 Cost of electricity	74
	5.7.3 Cost of water treatement	75
5.8	CO ₂ emission vs exergetic efficiency	77
5.9	CO ₂ emission vs energy efficiency	78
5.10	CO ₂ emission vs percentage exergy loss in flue gas	79

CHAPTER 06

IMPROVEMENT POTENTIAL OF EXERGETIC EFFICIENCY			81	
6.1 Improvement of exergetic efficiency by reducing the existin				
		losses	s in boilers	81
	6.2 Improvement of exergetic efficiency by implementing better			
	energy efficient systems			83
		6.2.1	Co-generation	83
		6.2.2	Thermal power plants	83
		6.2.3	Thermal cascading	83

v

.

y

.

£

CONCLUSION	86
Reference	90
Appendix A - Data and Measurements	93
Appendix B - Results	127
Appendix C - Enthalpies and entropies of ideal gases	133

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

vi

.

LIST OF TABLES

- 2.1 Composition of the specified reference environment
- 2.2 Performance evaluation of the gas turbine cogeneration plant
- 3.1 Values of B and D for some common surfaces
- 4.1 Average flue gas measurement
- 4.2 Water quality data
- 4.3 Surface temperatures of boiler
- 4.4 Stack composition in dry basis
- 4.5 Mole fraction of stack composition
- 4.6 Exergy inputs to the boiler
- 4.7 Exergy output from the boiler
- 4.8 Exergy and enrgy balance of the boiler
- 4.9 Exergy balance of boiler
- 4.10 Energy balance of the boiler sections
- www.lib.mrt.ac.lk
- 5.1 Recommended parameters in feed water and boiler water
- 6.1 Variation of temperature in different processes.

LIST OF FIGURES

The green house effect

1.1

- 1.2 Variation of global mean temperature 3.1 Control mass, dead state and exergy 4.1 Rotary cup burner 4.2 Pressure jet atomizer 4.3 Twin fluid atomizer 4.4 Flue gas analyzer 4.5 Exergy input and exergy output stream of boiler 4.6 Sankey diagram for exerg balance of the boiler 4.7 Sankey diagram for energy balance of the boiler 5.1 Variation of percentage exergy loss in blow down 5.2 Variation of exergy loss with TDS of blowdown water 5.3 Variation of percentage exergy loss through surface emission 5.4 Variation of percentage exergy loss in fluegas with fluegas temperature at different excess air levels 5.5 Variation of percentage exergy loss in fluegas Variation of exergy and energy loss in fluegas with excess air at 5.6 constant fluegas temperature 5.7 Variation of exergy and energy loss in fluegas with fluegas temperature at excess air 0 - 20%5.8 Variation of energy and exergy loss in flue gas with fluegas temperature at excess air 20% - 40%5.9 Variation of percentage exergy loss with percentage energy loss in fluegas 5.10 Variation of exergy loss with energy loss in fluegas
- 5.11 Variation of exergy destruction with exergy loss in fluegas
- 5.12 Variation of exergy destruction with fluegas temperature at different excess air level

viii

- 5.13 Variation of percentage exergy destruction and percentage exergy loss in fluegas
- 5.14 Variation of percentage exergy destruction + percentage exergy loss in flue gas with fluegas temperature at different excess air levels
- 5.15 Variation of percentage exergy destruction in boilers
- 5.16 Variation of exergetic efficiency with fluegas temperature at different excess air level
- 5.17 Variation of exergy in combustion air with combustion air preheating temperature
- 5.18 Variation of exergetic efficiency with energy efficiency of boilers
- 5.19 Variation of steam cost with exergetic efficiency
- 5.20 Variation of CO₂ emission with exergetic efficiency
- 5.21 Variation of CO₂ emission with energy efficiency
- 5.22 Variation of CO₂ emission with percentage exergy loss in fluegas at different excess air levels
- 6.1 Average exergy losses and exergy improvement potential in different streams of boilers
- 6.2 Exergetic improvement potential in oil fired boilers
- 6.3 Heat provided at different levels for different processes
- 6.4 Optimum cascading of thermal energy in industries

