
LB/DON/27/03

# ANALYSIS OF ENERGY EMBODIED IN CEMENT PRODUCED IN SRI LANKA



By

Dampege Don Ananda Namal



www.lib.met.ac.lk

This thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Engineering in Energy Technology.

621 "03" 666.94 (548.2)

UM Thesis coll.

Department of Mechanical Engineering The Faculty of Engineering University of Moratuwa Sri Lanka. February 2003

77713

University of Moratuwa

77713

# **DECLARATION**

I hereby declare that this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other acedemic qualification of a university or other institute of higher learning except where acknowledgment is made in the text.

# **UOM Verified Signature**

4.

D D Ananda Namal

i

### Abstract

Analysis of the embodied energy in cement produced in Sri Lanka was carried out considering national boundaries. National energy input to the cement manufacturing was the main focus of this study and therefore any energy involvement outside Sri Lanka was not taken in to consideration in this analysis. The total embodied energy content was analyzed in three levels. In level 1, direct energy consumption in manufacturing of cement at Puttalam cement factory was analyzed and energy consumption for ancillary inputs was considered in the level 2. Energy consumption for raw material extraction and transportation within the country was analyzed in level 3.

The direct delivered energy consumption was assessed by carrying out an energy survey at Puttalam cement factory. Then this direct energy was referred to primary energy by considering the national energy mix in electricity generation together with transmission and distribution losses in electricity distribution, power plant efficiencies, and energy consumption in refining petroleum fuels.

#### University of Moratuwa, Sri Lanka

The total national energy requirement to produce one ton of cement in Sri Lanka was found to be 4896 MJ based on the present energy mix of electricity generation. This varies between 4982 MJ/MT and 4732 MJ/MT according to the future energy mix of the electricity generation and the transmission loss reduction plan of Sri Lanka.

The outcome of this study can be used to select the best material for building construction from cement based products and in the formulation of energy conservation policies like the Building Code. In addition the outcome of the study can be used as inputs for further research relevant to energy content of materials.

| CONTENTS |
|----------|
|----------|

1

Ą.

4

>

٩

| Item    |             |                                                             | Page No. |
|---------|-------------|-------------------------------------------------------------|----------|
| Declar  | ation       |                                                             | i        |
| Abstra  | ii          |                                                             |          |
| Conter  | iii         |                                                             |          |
| List of | vii         |                                                             |          |
| List of | х           |                                                             |          |
| Ackno   | xii         |                                                             |          |
| 1. C    | hapter 1:   | Research Problem Being Analyzed                             | 1        |
| l       | .1 Backgro  | ound of the Energy Scenario of Sri Lanka                    | 1        |
|         | 1.1.1       | Energy Resources                                            | 2        |
|         | 1.1.2       | Electrical Energy                                           | 3        |
|         | 1.1.3       | Petroleum Energy                                            | 3        |
| 1       | .2: Researc | ch Problem at the Scene                                     | 4        |
| 1       | .3 Objecti  | ves of the Study                                            | 5        |
| 1       | .4 Rationa  | ale and Justification<br>University of Moratuwa, Sri Lanka. | 5        |
| 2. C    | Chapter 2:  | Literature Survey                                           | 7        |
| 2.      | l Introdu   | oction                                                      | 7        |
| 2.      | 2 Energy    | Analysis                                                    | 8        |
|         | 2.1.1       | End Use Energy Analysis                                     | 8        |
|         | 2.1.2       | Primary Energy Analysis                                     | 9        |
|         | 2.1.3       | Embodied Energy Analysis                                    | 9        |
|         | 2.1.4       | Life Cycle Energy Analysis                                  | . 9      |
| 2       | .3 Theory   | of Embodied Energy Analysis                                 | 10       |
| 2       | .4 Factors  | Affecting the Embodied Energy                               | 12       |
|         | 2.4.1       | Recycling and Reuse                                         | 12       |
|         | 2.4.2       | Energy Source                                               | 13       |
|         | 2.4.3       | Production Process                                          | 14       |
|         | 2.4.4       | Transport                                                   | 15       |
|         | 2.4.5       | Raw Material                                                | 17       |
|         | 2.4.6       | System Boundary                                             | 18       |

|  |    | 2.5 | Embodi                                                   | ed Energy in Fuel & Energy                                        | 20 |  |  |
|--|----|-----|----------------------------------------------------------|-------------------------------------------------------------------|----|--|--|
|  |    | 2.6 | Practica                                                 | Problems and Issues                                               | 22 |  |  |
|  |    | 2.7 | Embodi                                                   | ed Energy and Global Warming                                      | 24 |  |  |
|  |    | 2.8 | Benefits of Embodied Energy Analysis                     |                                                                   |    |  |  |
|  |    | 2.9 | State of the Art of Embodied Energy Studies in the World |                                                                   |    |  |  |
|  |    |     | 2.9.1                                                    | Life Cycle Embodied Energy in Office Furniture                    | 29 |  |  |
|  |    |     | 2.9.2                                                    | Life Cycle Analysis of Heavy Vehicles                             | 30 |  |  |
|  |    |     | 2.9.2                                                    | Energy Payback Time of Photovoltaic Vehicles                      | 31 |  |  |
|  |    |     | 2.9.3                                                    | The Energy Intensity of Photovoltaic Systems                      | 31 |  |  |
|  |    |     | 2.9.4                                                    | Energy Payback ratio and CO <sub>2</sub> Emission Associated with |    |  |  |
|  |    |     |                                                          | Electricity Generation from a Natural Gas Power System            | 31 |  |  |
|  |    |     | 2.9.5                                                    | Which is Better? Steel, Concrete or Wood                          | 31 |  |  |
|  |    |     | 2.9.6                                                    | Energy use from Cradle to Grave for Three Single Family Houses    | 32 |  |  |
|  |    |     | 2.9.7                                                    | Using Monte-Carlo simulating in Life Cycle Assessment for         |    |  |  |
|  |    |     |                                                          | Electric & Internal Combustion Vehicles                           | 32 |  |  |
|  |    |     | 2.9.9                                                    | Embodied Energy and Life Cycle Energy Analysis in Built           |    |  |  |
|  |    |     |                                                          | Environment                                                       | 32 |  |  |
|  |    |     | 2.9.10                                                   | Data for Life Cycle Energy Calculation                            | 36 |  |  |
|  | 3. | Cha | pter 3:                                                  | Methodology and Scope of the Study                                | 43 |  |  |
|  |    | 3.1 | Scope o                                                  | f the Study                                                       |    |  |  |
|  |    | 3.2 | Energy                                                   | and Material Consumption at Puttalam Cement Factory               | 43 |  |  |
|  |    |     | 3.2.1                                                    | Energy for Raw Material                                           | 43 |  |  |
|  |    | 3.3 | Referrin                                                 | g Delivered Electrical Energy to Primary Energy                   | 44 |  |  |
|  |    | 3.4 | Nationa                                                  | I Energy Embodied in the Petroleum Fuels                          | 44 |  |  |
|  |    | 3.5 | Energy                                                   | Requirement in Transport                                          | 44 |  |  |
|  |    | 3.6 | Referrin                                                 | ng Delivered Thermal Energy to Primary Energy                     | 45 |  |  |
|  | 4. | Cha | pter 4:                                                  | Assessment of Cement Manufacturing Process at Puttlam Cement      |    |  |  |
|  |    |     |                                                          | Factory                                                           | 46 |  |  |
|  |    | 4.1 | Raw Ma                                                   | aterial                                                           | 46 |  |  |
|  |    | 4.2 | Energy                                                   |                                                                   | 48 |  |  |
|  |    | 4.3 |                                                          | ion Process                                                       | 51 |  |  |
|  |    | 4.4 | Human                                                    | Resources                                                         | 54 |  |  |
|  |    |     |                                                          |                                                                   |    |  |  |

1

iv

|    | 4.5                          | Ancillary Inputs        |                                                       |                                                | 55 |
|----|------------------------------|-------------------------|-------------------------------------------------------|------------------------------------------------|----|
|    | 4.6                          | Extraction of Limestone |                                                       |                                                | 57 |
|    |                              | 4.6.1                   | Fuel Consumption in Heavy Vehicle and Other Machinery |                                                | 57 |
|    |                              | 4.6.2                   | Electrica                                             | I Energy Consumption                           | 58 |
|    |                              | 4.6.3                   | Water C                                               | onsumption                                     | 59 |
|    |                              | 4.6.4                   | Producti                                              | on                                             | 59 |
|    |                              | 4.6.5                   | Oil Cons                                              | sumption                                       | 59 |
|    |                              | 4.6.6                   | Human I                                               | Resources                                      | 61 |
| 5. | Cha                          | pter 5:                 | Analysis                                              | s of National Energy Supply                    | 62 |
|    |                              | Electrici               | ty Mix – I                                            | Past, Present and Future                       | 62 |
|    | 5.2                          | Efficien                | cy of Pow                                             | er Generation                                  | 74 |
|    | 5.3                          | Transmi                 | ssion and                                             | Distribution Losses                            | 75 |
|    | 5.4 Lakdhanavi Power Project |                         |                                                       | r Project                                      | 75 |
|    | 5.5                          | Petroleu                | m Energy                                              |                                                | 76 |
|    |                              | 5.5.1                   | Refinery                                              | ,                                              | 77 |
| 6. | Che                          | pter 6:                 | Analysis                                              | s of Embodied Energy in Cement                 | 80 |
| 0. |                              | •                       | •                                                     | in Delivered Energy                            | 80 |
|    | 0.1                          | 6.1.1                   | Petroleu                                              | warmy life met on lie                          | 80 |
|    |                              | 6.1.2                   |                                                       | ion of Transport Energy                        | 83 |
|    |                              | 0.1.2                   | 6.1.2.1                                               | Energy Consumption to Produce Lubricant Oil    | 83 |
|    |                              |                         | 6.1.2.2                                               | Energy Consumption for Servicing Vehicle       | 84 |
|    |                              |                         |                                                       | Energy Consumption for Fuel Pumping            | 85 |
|    |                              |                         | 6.1.2.4                                               | Total Energy Consumption for Vehicle Operation | 86 |
|    |                              | 6.1.3                   | Electrici                                             |                                                | 87 |
|    | · 62                         |                         |                                                       | in Cement                                      | 92 |
|    | 0.2                          | 6.2.1                   |                                                       | Analysis                                       | 92 |
|    |                              | 6.2.2                   |                                                       | Analysis                                       | 93 |
|    |                              | •                       | 6.2.2.1                                               | Energy Consumption for Employee Transport      | 93 |
|    |                              |                         | 6.2.2.2                                               | Energy Consumption for Employees Uniform       | 94 |
|    |                              |                         | 6.2.2.3                                               | Energy Consumption for safety Shoes            | 94 |
|    |                              |                         | 6.2.2.4                                               | Energy Consumption for Lubricating Oil         | 94 |
|    |                              | 6.2.3                   |                                                       | Analysis                                       | 95 |
|    |                              |                         |                                                       | ,                                              |    |

'n

٧

| 7. | •   |                                                             | Discussion and Conclusion                                        | 101 |
|----|-----|-------------------------------------------------------------|------------------------------------------------------------------|-----|
|    |     |                                                             | ed Energy in Cement                                              | 101 |
|    |     | 7.1.1                                                       | Level 1 Energy                                                   | 102 |
|    |     | 7.1.2                                                       | Level 3 Energy                                                   | 103 |
|    | 7.2 | Sensitivity Analysis                                        |                                                                  |     |
|    |     | 7.2.1                                                       | Sensitivity to National Electrical Energy Mix                    | 103 |
|    |     | 7.2.2                                                       | Sensitivity to Reduction of Transmission and Distribution Losses | 105 |
|    | 7.3 | Self Gen                                                    | neration of Electricity                                          | 106 |
|    | 7.4 | Comparison of Embodied Energy of Cement Found in Literature |                                                                  |     |
|    | 7.5 | Use of the                                                  | ne Result                                                        | 107 |
|    |     |                                                             |                                                                  |     |

· ·

| Reference                                                       | 109 |
|-----------------------------------------------------------------|-----|
| Annex 1: Energy Requirement in Producing Lubricating Oil        | 112 |
| Annex 2: Energy Consumption for Shoe Manufacturing              | 113 |
| Annex 3: Energy Consumption at Kabool Lanka Ltd.                | 114 |
| Annex 4: Energy Consumption for Petroleum Fuel Filling Stations | 116 |
| Annex 5: Properties of Fuel                                     | 117 |



.



vi

### List of Tables

#### Chapter 2

- 2.1 Energy Breakdown of a Loaf of Bread in the UK
- 2.2 Effect of Recycling in Embodied Energy
- 2.3 Efficiency of Thermal Power Plants
- 2.4 Comparison of Transport Energy of Steel
- 2.5 CO<sub>2</sub> Emission kg/passenger km
- 2.6 CO<sub>2</sub> Produced from Varying Raw Material in Steel Production
- 2.7 Embodied Energy of Some Building Material
- 2.8 The Main Green House Gases
- 2.9 Embodied Energy of Building Materials
- 2.10 Embodied Energy of Fuel Oil
- 2.11 Comparison of Embodied Energy Data Available for Steel
- 2.12 Comparison of Embodied Energy Data Available for Wood
- 2.13 Comparison of Embodied Energy Data Available for Concrete
- 2.14 Global Warming Potential (20 year time horizon)
- 2.15 Specific CO<sub>2</sub> equivalent Emissions for Fuels
- 2.16 Potential Production Energy Saving of Recycle Material
- 2.17 Average Fuel Consumption of Vehicle
- 2.18 Energy used by Mode of Transport (MJ/passenger km)
- 2.19 Embodied Energy Coefficients with metacik

#### Chapter 4

- 4.1 Details of Raw Material Supply
- 4.2 Annual Consumption of Raw Material
- 4.3 Consumption of Limestone
- 4.4 Quantity of Limestone Year 2001
- 4.5 Consumption of the Laterite
- 4.6 Monthly Electricity Consumption of the Factory 2001
- 4.7 Furnace oil Consumption 2001
- 4.8 Diesel Consumption in Shunting Train Engine 2001
- 4.9 Fuel Consumption in Heavy Equipment 2001
- 4.10 Heavy Vehicle Running Hours
- 4.11 Crusher Output 2001
- 4.12 Raw Mill Output 2001
- 4.13 Clinker Production & Energy Consumption 2001
- 4.14 Cement Production 2001

- 4.15 Details of the Employees at Cement Factory 2001
- 4.16 Employees Transport Details
- 4.17 Details of Uniform
- 4.18 Annual Consumption of Explosives
- 4.19 Details of Heavy Vehicles & Machinery 2001
- 4.20 Monthly Diesel Consumption 2001
- 4.21 Monthly Electricity Consumption 2001
- 4.22 Monthly Production 2001
- 4.23 Details of Oil Consumption 2001
- 4.24 Annual Oil Consumption 2001

#### Chapter 5

5.8

- 5.1 Existing Hydro Power Plants 2000
- 5.2 Details of Existing Thermal Plants 2001
- 5.3 Committed and Candidate Power Plants
- 5.4 Forecasted Annual Electrical Energy Demand GWh
- 5.5 Annual Generation Base Case Plan
- 5.6 Efficiency of Thermal Power Plants
- 5.7 Planed T&D Loss Reduction
  - Operating Energy Data 🧸 University of Moratuwa, Sri Lanka
- 5.9 Employee Data

Electronic Theses & Dissertations www.lib.mrt.ac.lk

- 5.10 Employee Transport Details
- 5.11 Petroleum Imports
- 5.12 Refined Petroleum Product Mix 1999
- 5.13 Petroleum Production 2001
- 5.14 Monthly Fuel Consumption 2001

#### Chapter 6

- 6.1 Energy Content of Petroleum Fuel at Delivery
- 6.2 Sequence of Engine Oil Changes
- 6.3 Energy Consumption of Vehicle Service
- 6.4 Energy Consumption of Vehicles
- 6.5 Energy Consumption per passenger km
- 6.6 Employee Transport Energy Consumption
- 6.7 Fuel Transport Energy Factors
- 6.8 i Factors of the Power Plants
- 6.9 Embodied Energy of Cement

viii

## Annexes

- A-1-1 Energy Consumption: Year 2001- Caltex Lubrication Lanka Ltd.
- A-2-1 Electrical Energy Consumption & Production
- A-3-1 Energy Consumption & Production
- A-4-1 Monthly Fuel Sold & Energy Consumption
- A-4-2 Monthly Energy Consumption & Vehicle Serviced
- A-5-1 Properties of Fuel



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk •

# List of Figures

Electronic Theses & Dissertations

www.lib.mrt.ac.lk

#### Chapter 1

- 1.1 Energy Supply by Source 2000
- 1.2 Energy Consumption by Sectors
- 1.3 Petroleum Demand Growth
- 1.4 Fossil Fuel Requirement for Power Generation

#### Chapter 2

- 2.1 Different Levels of Embodied Energy Analysis
- 2.2 Embodied Energy in Reuse & Reprocessing
- 2.3 Energy Profit Ratio
- 2.4 Extent of Up Stream Process
- 2.5 Energy Loss Chain in Coal Based Power Generation
- 2.6 Global Temperature Change
- 2.7 Sea Level Rise
- 2.8 Green House Effect
- 2.9 GHG Emission in Sri Lanka 1994
- 2.10 Global CO<sub>2</sub> Emission
- 2.11 Embodied Energy of Office Furniture University of Moratuwa, Sri Lanka.

#### Chapter 3

3.1 Referring Delivered Energy to Primary Energy

#### Chapter 4

- 4.1 Share of Energy by Source
- 4.2 Process Flow Diagram Puttalm Cement Factory

#### Chapter 5

- 5.1 Historical Electricity Generation
- 5.2 Future Energy Generation
- 5.3 Thermal Hydro Mix

#### Chapter 7

- 7.1 Breakdown of Embodied Energy of Cement
- 7.2 Breakdown of Level One Energy
- 7.3 Breakdown of Heat Energy

- 7.4 Breakdown of Level 3 Energy
- 7.5 Variation of Electrical Energy Mix
- 7.6 Variation of Primary Energy Required to Deliver One kWh of Electricity from the National Grid
- 7.7 Variation of Embodied Energy of Cement with Energy Mix in Electricity Generation

ł

7.8 Variation of Embodied Energy of Cement with Energy Mix in Electricity Generation and Planed T&D Loss Reduction



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

