LB/DON/71/02

# DEVELOPMENT OF A HIGH RATE BIOMETHANATION REACTOR SYSTEM:

# A PILOT STUDY OF AN INDUSTRIAL WASTE STREAM

By

PUSHPANJALI IRANGA JAYASURIYA B.Sc.Eng. (Hons.) THE UNIVERSITY OF MORATUWA. SRI LANKA, 1998

> A thesis submitted in fulfillment of the requirement for the degree of Master of Engineering in

> > Energy Technology

පත්තකාලය නොලය හි දින්දි පිරාලය වේදින්දෙන වේදින්දෙන

**DEPARTMENT OF MECHANICAL ENGINEERING** 

#### **FACULTY OF ENGINEERING**

TH

621"02"

628.5

UNIVERSITY OF MORATUWA

**SRI LANKA** 





### DECLARATION

" I certify that this thesis does not incorporate without acknowledge any material previously submitted for a degree or diploma in any university or higher educational institution in Sri Lanka or abroad and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text".



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

**UOM Verified Signature** 

P.I.Jayasuriya

#### Abstract

A pilot scale two-phase anaerobic reactor system was constructed and the feasibility of Biomethanation using two-phase systems was evaluated. As the raw materials, a batter mixture washing effluent from a wafer biscuit manufacturing plant was used. This effluent has a high COD due to vegetable fats and oils. Acetogenic reaction was allowed to take place in the first reactor and when the VFA level came to around 12000 mg/l it was fed to the methanogenic reactor. Without an initial seeding of microbial population and a growing media the trial was not successful. So a filter bed was introduced to the second reactor with a 20 liters of methanogenic bacterial sludge from a running reactor. Research trials indicate that the two-phase system works successfully with proper controlling. It also gave out biogas with 84% methane, which is very rich in methane. From these pilot trials, it was able to find out design process parameters for a suitable large-scale two-phase system where the biogas can be generated in large scale with the same waste effluent. These findings help industries to generate energy from their organic waste, hence reducing the dependency on fossil fuels as well as reducing waste disposal problem.

ē,

### **TABLE OF CONTENT**

Page no.

| Abst | ract     |                                                                                  | iii |
|------|----------|----------------------------------------------------------------------------------|-----|
| Tabl | e of con | itents                                                                           | 1V  |
| List | of figur | es                                                                               | ix  |
| List | of Tabl  | es                                                                               | xiv |
| Ackn | owledg   | gement                                                                           | xvi |
| Char | oter     |                                                                                  |     |
| 1.0  | Intro    | oduction University of Moratuwa, Sri Lanka,<br>Electronic Theses & Dissertations | 1   |
|      | 1.1      | Problem Statement                                                                | 3   |
|      | 1.2      | Objectives                                                                       | 4   |
|      | 1.3      | Scope                                                                            | 4   |
| 2.0  | Indu     | strial waste management in Sri Lanka                                             | 6   |
|      | 2.1      | Nature of waste                                                                  | 9   |
|      | 2.2      | Current methods of Industrial waste disposal                                     | 23  |
|      | 2.3      | Waste to energy option                                                           | 29  |
|      |          | 2.3.1 Incineration                                                               | 30  |
|      |          | 2.3.2 Land fill                                                                  | 31  |
|      |          | 2.3.3 Biomethanation                                                             | 33  |

|     | 2.4  | Process of Biomethanation                                          | 34 |
|-----|------|--------------------------------------------------------------------|----|
|     |      | 2.4.1 Low rate Biomethanation systems                              | 36 |
|     |      | 2.4.2 High rate Biomethanation systems                             | 38 |
| 3.0 | High | rate Biomethanation                                                | 48 |
|     | 3.1  | Evolution of High rate Biomethanation technology – a brief history | 49 |
|     | 3.2  | Process fundamentals                                               | 51 |
|     |      | 3.2.1 Microbiology of Biomethanation digester system               | 53 |
|     |      | 3.2.2 Why high rate Biomethanation is efficient                    | 58 |
|     | 3.3  | Technological aspects                                              | 60 |
|     |      | 3.3.1 Energy and the Biomethanation                                | 64 |
|     | 3.4  | Characteristic of Feedstock                                        | 66 |
|     |      | 3.4.1 Total Solids (TS)                                            | 69 |
|     |      | 3.4.2 Volatile solids (VS)                                         | 70 |
|     |      | 3.4.3 Chemical oxygen demand (COD)                                 | 71 |
|     |      | 3.4.4 Carbon to Nitrogen ratio                                     | 71 |
|     |      | 3.4.5 Toxic effect                                                 | 72 |
|     |      | 3.4.6 Sulfides                                                     | 75 |
|     |      | 3.4.7 Heavy Metals                                                 | 76 |

4

|     | 3.5   | Industr  | rial Potential for high rate Biomethanation                                         | 77  |
|-----|-------|----------|-------------------------------------------------------------------------------------|-----|
|     |       | 3.5.1    | Yield Estimation                                                                    | 79  |
|     |       | 3.5.2    | Industrial Potential                                                                | 79  |
| 4.0 | Proce | ess Cont | rol of high rate systems                                                            | 86  |
|     | 4.1   | Physic   | al parameters                                                                       | 86  |
|     |       | 4.1.1    | Temperature                                                                         | 86  |
|     |       | 4.1.2    | Mixing effects                                                                      | 89  |
|     |       | 4.1.3    | Start-up<br>University of Moratuwa, Sri Lanka.<br>Electronic Theses & Dissertations | 92  |
|     | 4.2   | Chemi    | cal parameters                                                                      | 92  |
|     |       | 4.2.1    | Redox potential                                                                     | 92  |
|     |       | 4.2.2    | pH                                                                                  | 94  |
|     |       | 4.2.3    | Nutrient balance                                                                    | 95  |
|     |       | 4.2.4    | Alkalinity                                                                          | 96  |
|     | 4.3   | Other    | Factors                                                                             | 98  |
|     |       | 4.3.1    | Toxicity                                                                            | 98  |
|     |       | 4.3.2    | Sulfides                                                                            | 98  |
|     |       | 4.3.3    | Heavy Metals                                                                        | 99  |
|     |       | 4.3.4    | Loading                                                                             | 100 |
|     |       | 4.3.5    | Biological Parameters                                                               | 101 |

| 5.0 | Develo | opment of high rate biogas technology                                    | 105 |
|-----|--------|--------------------------------------------------------------------------|-----|
|     | 5.1    | Introduction                                                             | 105 |
|     | 5.2    | High rate digestion studies – Pilot scale digester                       | 106 |
|     |        | 5.3.1 Overview                                                           | 106 |
|     | 5.3    | Design of appropriate reactor configuration                              | 107 |
|     | 5.4    | Material of Construction                                                 | 110 |
|     |        |                                                                          |     |
| 6.0 | Indus  | strial Effluent for high rate biomethanation                             | 114 |
|     | 6.1    | Biscuits Industry in Sri Lanka                                           | 114 |
|     | 6.2    | Wafer biscuit manufacturing process                                      | 116 |
|     |        | 6.2.1 Formulation of wafer batter                                        | 116 |
|     |        | 6.2.2 Mixing of wafer batter                                             | 118 |
|     |        | 6.2.3 Process description                                                | 119 |
|     | 6.3    | Analysis of Chocolate waste effluent for feed preparation                | 120 |
|     |        | 6.3.1 Nitrogen supplement requirement                                    | 120 |
|     |        | 6.3.2 Phosphorous supplement requirement                                 | 122 |
|     | 6.4    | Feed preparation                                                         | 123 |
|     | 6.5    | Theoretical calculation of energy production from wafer biscuit effluent | 124 |

| 7.0 | Expe | erimental studies using wafer biscuit waste effluent | 126 |
|-----|------|------------------------------------------------------|-----|
|     | 7.1  | Process kinetics                                     | 139 |
|     |      | 7.1.1 Models                                         | 139 |
|     |      | 7.1.2 Process Monitoring Parameters                  | 141 |
|     |      | 7.1.3 Process Control systems                        | 149 |
|     | 7.2  | Fundamental design consideration                     | 157 |
|     |      | 7.2.1 Digester volume and retention time             | 159 |
|     |      | 7.2.2 COD loading on reactor                         | 160 |
|     |      | 7.2.3 Biogas production                              | 161 |
|     |      | 7.2.4 Sludge production                              | 162 |
| 8.0 | Conc | clusions & Recommendations                           | 164 |
|     | 8.1  | Conclusions                                          | 164 |
|     | 8.2  | Recommendations                                      | 166 |
|     |      |                                                      |     |
|     | Refe | erences                                              | 169 |
|     | Appe | endix 1                                              | 173 |

R

.

## List of figures

| Figu | jure                                                             |    |  |
|------|------------------------------------------------------------------|----|--|
| 2.1a | Solid waste from industries flashy untreated into the            | 8  |  |
|      | urban environment                                                |    |  |
| 2.1b | Liquid waste from industries flashy untreated into the           | 8  |  |
|      | urban environment                                                |    |  |
| 2.2  | Solid Waste Generation                                           | 10 |  |
| 2.3  | Solid Waste Disposal                                             | 10 |  |
| 2.4  | Solid Waste Disposal Details                                     | 11 |  |
| 2.5  | Wastewater generating industries                                 | 14 |  |
| 2.6  | Hazardous waste generation                                       | 20 |  |
| 2.7  | Industrial areas and proposed future areas for industrialization | 25 |  |
| 2.8  | Wastewater treatment availability – sector wise                  | 27 |  |
| 2.9  | Wastewater treatment non-availability- sector wise               | 28 |  |
| 2.10 | Projection of extractable landfill gas quantities.               | 32 |  |
| 2.11 | Biogas collecting network of a landfill -CETEM, Belgium.         | 33 |  |
| 2.12 | Process of Biomethanation                                        | 34 |  |
| 2.13 | Various types of methanogenic bacteria.                          | 35 |  |
| 2.14 | The gas production rate in low rate Biomethanation               | 37 |  |
| 2.15 | Diagramatic representation of a high rate digester               | 39 |  |
| 2.16 | A schematic diagram of an anaerobic contact digestion            | 40 |  |
|      |                                                                  |    |  |



| 2.17  | Anaerobic filter                                                   | 41 |
|-------|--------------------------------------------------------------------|----|
| 2.18  | Upflow Anaerobic Sludge Bed Reactor                                | 42 |
| 2.19. | Granules developed in a UASB reactor.                              | 42 |
| 2.20  | Anaerobic fluidized or expanded bed                                | 43 |
| 2.21  | Down flow stationery fixed film reactor                            | 44 |
| 2.22  | Packing of an anerobic contact process                             | 45 |
| 2.23  | Schematic diagram of two-stage digestion consisting of             | 46 |
|       | high rate digestion in the first stage and conventional unmixed    |    |
|       | digestion in the second stage.                                     |    |
| 2.24  | A schematic diagram of two-phase digestion involving two           | 47 |
|       | high rate digesters in series.                                     |    |
| 3.1   | The three stage anaerobic fermentation of biomass                  | 52 |
| 3.2.  | Mainly Methanosarcina sp.from the stationary bed reactor           | 57 |
|       | described in "Ney, U., A.J.L. Macario, Aaivasidis, S.M. Schoberth, |    |
|       | and H.Sahm. 1990. Appl. Environ. Microbiol. 56:2389-2398"          |    |
| 3.3   | Methanogenic Communities                                           | 57 |
| 3.4   | Engine running on biogas, Denmark                                  | 60 |
| 3.5   | Typical systems for the anaerobic digestion                        | 61 |
| 3.6   | An overview of the anaerobic digestion process                     | 64 |
| 3.7   | Biogas requirement for various purposes.                           | 67 |

1

9

Figure

| Figure |                                                        |    |
|--------|--------------------------------------------------------|----|
| 3.8    | Waste types used for Biomethanation                    | 68 |
| 3.9    | Industrial wastewater (chemical) treatment plant,      | 77 |
|        | Tuntex, Taiwan-UASB digester                           |    |
| 3.10   | Dairy factory in France. Fixed film stationery         | 78 |
|        | bed digester developed by Proserpol SA, France.        |    |
| 3.11   | Sewage sludge treatment plant, Bottrop, Germany.       | 78 |
|        | The largest in the world Egg shaped digesters –        |    |
|        | volume 4* 15000 $m^3$ – capacity 3000 $m^3$ sludge/day |    |
| 4.1.   | (a) Internal heating, (b) External heating             | 87 |
| 4.2    | Performance of the process according to temperature    | 88 |
| 4.3.   | Advantages of mixing                                   | 89 |
| 4.4    | (a) Hydraulic mixing                                   | 90 |
| 4.4    | (b) Submerged motor with rotor stirring                | 90 |
| 4.4.   | ©Mechanical paddle rotor                               | 91 |
| 4.4    | (d) Shaft-driven rotor                                 | 91 |
| 4.4    | (e) Mixing through injection of biogas                 | 91 |
| 4.5    | Variation of redox potential with time                 | 93 |
| 4.6    | Methane formation at different pH in an anaerobic      | 95 |
|        | filter (Methane generation from wastes)                |    |
| 4.7    | MCRT vs. Methane production                            | 97 |

¢

| Figure |                                                                     |        |
|--------|---------------------------------------------------------------------|--------|
| 4.8    | The estimated relation between the imposed sludge                   | 101    |
|        | loading rate, the sludge retention time, the total                  |        |
|        | granule yield and the composition                                   |        |
| 5.1    | Arrangement of four tanks; holding tank, acedogenic                 | 108    |
|        | tank, buffer tank and methanogenic tank                             |        |
| 5.2    | Two-phase digester system –pilot scale                              | 109    |
| 5.3    | Gas valves, developed by Organics Ltd, United Kingdom               | 113    |
| 6.1    | Waste water treatment plant at wafer manufacturing plant            | 115    |
| 6.2    | Basic flow diagram of the process and the wastewater treatment plan | t. 121 |
| 7.1    | Variation of pH with residence time for sucrose solution            | 128    |
| 7.2.   | COD variation with Residence time for the Sucrose solution          | 128    |
| 7.3    | COD reduction with retention time                                   | 129    |
| 7.4    | Variation of pH with residence Time for the wafer                   | 130    |
|        | waste effluent in acedogenic reactor                                |        |
| 7.5    | Variation of COD with residence Time for the wafer                  | 130    |
|        | waste effluent in acedogenic reactor                                |        |
| 7.6    | Variation of VFA with time for the acedogenic reactor.              | 133    |
| 7.7    | Change in COD, VFA and Methane production with time.                | 135    |
| 7.8    | Biogas combustion in a modified gas cooker                          | 138    |



| rigui | C                                                                 | r age no.   |
|-------|-------------------------------------------------------------------|-------------|
| 7.9   | Variation of COD, VFA, and Methane produced with                  | 138         |
|       | retention time for wafer biscuit effluent of methanogenic Reactor | r           |
| 7.9   | Combustion of biogas                                              | 139         |
| 7.10  | Variation of methane production rate with temperature             | 143         |
| 7.11  | Effect of pH, on rates of methane and total gas production        | 147         |
|       | from formic acid.                                                 |             |
| 7.12  | Methane Production at 55°C as a function of wastewater from       | 149         |
|       | distillery at RT=18.2 days.                                       |             |
| 7.13  | An improved digester control system                               | 151         |
| 7.14  | High rate systems incorporate detailed process control            | 154         |
|       | system ensuring process stability (Chemical Engineer, 1975).      |             |
| 7.15  | Rotameter                                                         | 156         |
| 7.16  | S0/S vs retention time                                            | 158         |
| 7.17  | Plot of R vs $\frac{VS_0}{g}$                                     | 162         |
| 10.1  | Modified two-phase Biomethanation system                          | <u>1</u> 70 |

#### Figure

1

٠

e

.

#### Page no.

## List of Tables

| Table |                                                                      | Page No. |
|-------|----------------------------------------------------------------------|----------|
| 2.1   | Number of Industries Registered with the Ministry                    | 7        |
|       | of Industrial Development                                            |          |
| 2.2   | Waste collection in Colombo and surrounding urban areas.             | 12       |
| 2.3   | General quality standard for the discharge of effluent               | 14       |
| 2.4   | Industrial wastewater characteristics                                | 15       |
| 2.5   | Profile of Industrial sector (ERM report, February 1994)             | 23       |
| 2.6   | Central Wastewater Treatment Plant in Industrial Estates             | 28       |
| 3.1   | Substrates converted to CH4 by various methanogenes                  | 56       |
| 3.2   | Characteristics of methanogenic bacteria                             | 56       |
| 3.3   | Possible conversion of manure to biogas                              | 63       |
| 3.4   | Industrial Feedstock                                                 | 70       |
| 3.5   | Carbon and Nitrogen content of feedstock                             | 72       |
| 3.6   | Stimulatory and Inhibitory Concentration of Light Metal cations      | 75       |
| 3.7   | Concentration of Soluble Heavy Metals Exhibiting 50%                 | 76       |
|       | Inhibition of Anaerobic Digesters (Biological waste treatment, Vol.1 | 2)       |
| 3.8   | Waste effluent characteristics of various Industries                 | 80       |
| 3.9   | Biogas production from various industries                            | 81       |
| 3.10  | Characteristics of industrial wastes in Sri Lanka (CEA reports)      | 81       |
| 3.11  | Summary of Table 3.10                                                | 84       |
| 4.1   | Stimulatory and Inhibitory Concentration of Light Metal cations      | 100      |



| Table |                                                              | Page no. |
|-------|--------------------------------------------------------------|----------|
| 4.2   | Concentration of Soluble Heavy Metals Exhibiting 50%         | 102      |
|       | Inhibition of Anaerobic Digesters                            |          |
| 6.1   | Basic recipe of wafer.                                       | 117      |
| 6.2   | Wafer batter composition                                     | 119      |
| 6.3   | Feed characteristics                                         | 123      |
| 7.1   | Parameters that were monitored                               | 127      |
| 7.2   | Feed characteristic of the effluent                          | 131      |
| 7.3   | pH and COD variation                                         | 132      |
| 7.4   | Change in volatile fatty acid                                | 133      |
| 7.5   | Monitored Results observed sity of Moratuwa, Sri Lanka,      | 134      |
| 7.6   | pH, COD and methane generated with time                      | 135      |
| 7.7   | pH, COD, VFA and methane generated with time                 | 136      |
| 7.8   | pH, COD and methane generated in volume % with time          | 137      |
| 7.9   | Several kinetic models have been developed                   | 139      |
| 7.10  | Concentration of VFA, which correspond to the 50% inhibition | 146      |
|       | of methanogenic activity                                     |          |
| 7.11  | Variation of COD and Fraction of COD with time               | 158      |
| 7.12  | Calculated k values for various other products               | 159      |
| 7.13  | Summary of process design parameters for the anaerobic       | 1.65     |
|       | digestion of wafer batter washing effluent.                  |          |

Ċ

xv

### Acknowledgements

I wish to express my sincere gratitude to Dr Ajith De Alwis for supervising my research project and the invaluable assistance, guidance, advice and encouragement, given to me during the course of this research study.

Further more, let me sincerely thank Dr Rohan Thittagala, the Head of the Mechanical Engineering department of the University of Moratuwa and the staff, Dr Rahula Attalage, Dr Thusitha Sugathapala and Dr Kapila Perera for their valuable assistance in numerous ways in completing the research. I am also grateful to Eng. S.A.S Perera, Head of the Chemical & Process Engineering department and his staff for the never-ending support.

I would like to thank Mr. Sarath De Silva, Factory Manager, Mr. Rohan and Mr. Indika Abeyrathna all at Ceylon Biscuits (Pvt.) Ltd. Homagama for making arrangements to get down waste water samples throughout this research work providing process data.

Financial assistance from the University Research Fund for the research and the funds from Intermediate Technology Development Group (ITDG) for the purchase of the Methane Analyzer is gratefully acknowledged.



I also like to thank Mr. Upul, Mr. Sanadanayaka, Mr. Somasiri and Miss Kumari staff of the Department of Mechanical Engineering for giving their support in various ways. Another valuable thank should go to Mr. Somarathna & Mr. Jayanthalal for fixing the necessary pipe fittings. I should also appreciate the help given to me by Mr. Somasiri, (Technical officer), Mr. Dharsana (System Analysis) of Mechanical Engineering Department of university of Moratuwa when using workshop facilities and computers respectively.

Mr. D.C.A. Neville, the owner of the Nawajeewana Industries at Katubedda, Moratuwa gave his fullest support when fabricating the pilot plant unit. So I like to thank him too.



I would like to include the following personnel in my word of appreciation, Mrs. Dineshi Martino, Mr. P.A.S Peris, Mr. U.G.Athula Fernando, Mr. Saraneris, Mr. N.L.Chandrasiri, Mr. W.L.Dayasiri Fernando, Mr. T.Masekorala, and Mr. Jayaweera of the Technical staff of Chemical Engineering Department of university of Moratuwa. Finally I like to thank Mr. Buddhika De Silva (Research Assistant) for his fullest support during the research.