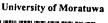

LB/DON/ 52/03

PERFORMANCE OF ROOF AND CEILING SYSTEMS IN TROPICAL THERMAL ENVIRONMENT



A Dissertation submitted to the Faculty of Architecture of the University of Moratuwa, Sri Lanka As a partial fulfillment of the requirements for the Degree of Master of science in Architecture And to the Royal Institute of British Architects For R.I.B.A. (Part II) Examination.

9,9 ° 02 "

B.D.I. FERNANDO Department of Architecture University of Moratuwa Sri Lanka February 2002

78165

CONTENT	PAGE			
	ÍV			
LIST OF PLATE				
LIST OF FIGURES	vi - vii			
LIST OF TABLE	viii			
CHAPTER ONE				
Introduction	1 - 2			
1.1. Why roof is important in studying thermal comfort	2 - 3			
1.2. Problems roof designing	3 - 4			
1.3. Objectives of the study	4 - 5			
1.4. Methodology	5 - 6			
CHAPTER TWO				
Basis of the study	7 - 8			
2.1 Theoretical back ground				
2.2 Climate of Sri Lanka				
2.2.1. Introduction to climate	9			
2.2.2 Characteristic features of climate of Sri Lanka	9 - 13			
2.2.3 Climatic condition in Colombo Metropolitan Region	13 - 18			
2.3 Comfort and building design	18			
2.3.1 Concept of comfort	10 05			
2.3.2 Thermal comfort and its influencing factors	19 - 22			
2.3.3 Properties of roofing and ceiling materials for thermal comfort	22			
2.3.4. Principals in climate design for comfort in warm humid climate	23			

٩

₿ |}

1

I

	2.2.5.	Designing for comfort	24 - 26
	2.2.6.	Relationship between traditional roofing materials	26 - 27
		in Sri Lanka and thermal comfort	
	2.2.7	Problems of roof with related to thermal comfort	27 – 28
2.3.	Roof	as the most important building component	28
	for climatic thermal comfort		
	2.3.1.	Typology of roofs	28 - 37
	2.3.2.	Thermal properties of roof elements	37 - 38
	2.3.3.	How unventilated / ventilated suspended ceiling effects to roof	38
		2.3.3.1. How unventilated suspended ceiling effects to roof	38
		2.3.3.2. How ventilated suspended ceiling effects to roof	38
	2.3.4.	Required thermal performance for roof	39 - 42

CHAPTER THREE

₹

 Methodology
 Inversity of Morshuwa, Sri Lanka.
 44

 3.1.
 Instruments and equipment
 44 - 47

 3.2.
 Process of study
 48 - 49

CHAPTER FOUR

Results	50 - 6	;1

CHAPTER FIVE

Analysis

4

...:

ŀ

5.1.	Thermal performance of ceiling materials under tile roof	62	
5.2.	Thermal performance of ceiling materials under Asbestos roof	62 - 63	
5.3.	Thermal performance of ceiling materials under tile on asbestos roof		
5.4.	Thermal performance of roof covers	64	
5.5.	Recommendation	65 - 66	
СНАР	TER SIX		
6.1.	Conclusion	67 - 71	
6.2.	Limitation of the study	72	
6.3.	Direction for further study	7274	
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk		
BIBLIOGRAPHY			

ACKNOWLEDGEMENTS

I would like to record my deepest gratitude to the following whose generous contribution in numerous ways enabled me to make this essay a reality.

I am deeply in debated to professor Nimal De Silva, Head Dept. of Architecture, in the University of Moratuwa, for his inspiring guidance and encouragement to complete this task successfully.

I am extremely grateful to Dr.Rohinton Emmanuel, Lecturer, Department of Architecture, Faculty of Architecture, University of Moratuwa, who has been a constant source of inspiration to me throughout this study. Without his valuable comments and patient guidance, I would not have been able to bring out this dissertation in this form.

Dr. L.S.R. Perera , dissertation co-ordinator, for giving his thoughts and comments in initial stage

My sincere thanks to Dr. Ashoka Perera , Lecture , Faculty of Engineering for giving permission to use the experiment hut of the Department of Civil Engineering and Archt. Thilina Kiringoda for guidance and comments.

I gratefully acknowledge the assistance rendered by Mr. Chatura, Technical Assistant, Faculty of Architecture, University of Moratuwa

Finally I am ever grateful to my dear parents and my wife for their persistent encouragement.

LIST OF THE PLATES

٩

Ê

1.	Plate 01	Rockey Mountain Institute Colarado, One of the most energy efficient buildings in the world	25
2.	Plate 02	A design responded to climatic condition	26
3.	Plate 03	Experimental hut at the University of Moratuwa	46
4.	Plate 04	Data Logger	47
5.	Plate 05	The north wall is designed to assist in Cross ventilation. A House in Indonesia	69
6.	Plate 06	This Hawai residence needs only a breez way with the transluent roof to provide natural air ventilation. Morenews, Sri Lanka, Dectronic These & Discentions	69
7.	Plate 07	Missionary Guest House at Dares Salaam in Tanzania close to the equator. Broad eaves and white painted roof.	70
8.	Plate 08	A semi buried house in Catalunga, Spain, harmonize with its rocky site. Deep over hangs to the windows keep the house pleasantly cool in summer.	70
9.	Plate 09	Traditional Ramada Papago Indian nation Arizona A classic shelter for desert survival ,also representative of indigenous North American South west construction combines shading Ventilation and insulated(earth covered)roof Design.	71
!0.	Plate 10	Earth sheltered house ,New Canan earth covered roof provides roof garden.	71
11.	Plate 11	"Walawwa" type house	24
		V	

PAGE

LIST OF FIGUERS

*

...

PAGE

1.	Figure 1a	Solar geometry in low latitudes	01
2.	Figure 1b	Solar geometry in high latitudes	01
3.	Figure 02	Location of Sri Lanka in relation to the equator.	10
4.	Figure 03	Main climatic regions of Sri Lanka.	10
5.	Figure 04	Thirty year trends in diurnal temperature variation during the hottest month (Aprial)	14
6.	Figure 05	Thirty – year average daytime thermal comfort in the CMR	15
7.	Figure 06	Thirty year average daytime thermal comfort in the CMR &	16
		Thirty year average thermal comfort trends during the hottest month	
8.	Figure 07	Thermal comfort change in the CMR daytime & nighttime	17
9.	Figure 08	Lean to roof	29
10.	Figure 09	Gable roof	30
11.	Figure 10	Extended Gable roof	30
12.	Figure 10a	Extended Gable roof	30
13.	Figure 11	Square hipped to of Moraluwa Sri Lanka	31
14.	Figure 12	Rectangular hopped	31
15.	Figure 13	Square double angled	32
16.	Figure 14	Danturedevale near Kandy Sri Lanka	33
17.	Figure 15	Image house, Ambulugalvihara; Sri Lanka	33
18.	Figure 16	Ambekkedevalaya ; Kandy, Srilanka.	33
19.	Figure 17	One huge space created within despite multi level roof	33
20.	Figure 18	Two storyed towering roof (Tooth relic chamber ,Kandy)	34
21.	Figure 19	Residential building.	34
22.	Figure 20	Samandevalaya , Ratnapura, Sri Lanka.	35
23.	Figure 21	Paththirippuwa-"Dalada Maligawa'" ,Kandy ,Sri Lanka.	36
24.	Figure 22	Stupa temple , Attanagalla Viharaya , Sri Lanka.	36
25.	Figure 23	Details of experimental hut	45
26 .	Figure 24	AT accuracy and resolution	48
27.	Figure 25	RH Operating range	48
28.	Figure 26	THI differences under tile roof	52
29.	Figure 27	THI differences under corrugated asbestos sheet roof	54

30	Figure 28	THI differences under "tile on asbestos" roof	56
31.	Figure 29	THI differences of roofing materials.	58
32.	Figure 30	Comparison of all roofing cover / ceiling combinations	59
33.	Figure 31	Average outdoor climatic condition during the study periods	60

CMR - Colombo Metropolitan Region

1

≱

THI - Temperature Humidity Index

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

٩

Þ

٠

F

1.	Table 01	Average climate data for dry zone	11
2.	Table 02	Average climate data for wet zone	12
3.	Table 03	Average climate data of town in hill country	13
4.	Table 04	Air speed and comfort conditions	21
5.	Table 05	Roofing materials	46
6.	Table 06	Ceiling materials	47
7.	Table 07	THI Differences with tile roof	51
8.	Table 08	THI Differences with asbestos roof	53
9.	Table 09	THI Differences with Tiles on asbestos roof	55
10.	Table 10	THI Differences with all roof covers	57
11.	Table 11	Average THI differences (deg. C) under different roof cover / ceiling combinations.	61
12.	Table 12	Average THI differences (deg. C) under different roof covers without ceiling.	61

VIII

PAGE