INTELLIGENT BUILDINGS, ITS APPLICATION AND CONTRIBUTION TO ENERGY EFFICIENCY

W. C. A. N. Fernando

Dissertation submitted in fulfillment of the requirements for the degree Master of Science (Architecture)

Department of Architecture

University of Moratuwa

Sri Lanka

2006

95741

ABSTRACT

The world is fast changing; the survival of mankind in future depends on the adaptations and innovations which lead to evolution as any other living being on earth. Man being more intelligent creates tools and systems that are beyond the need for basic survival to acquire better quality living by changing the natural environment and its processes.

Throughout history man has been creating new lifestyles and environments especially built environments with the influence of social, economical, religious and political aspects as well as environmental aspect like the climate. These brought about new technological advancements in architecture.

The idea of an intelligent building in its most general sense means a building that in some way can sense its environment, reach decisions about the state of that environment and communicate these decisions. In practice this means that the building can adjust the interior or exterior of the building in response to a change in the environment, user needs and situations. The concept behind intelligent buildings is the coherent integration of various systems to create efficient well controlled environments.

This intelligent building systems are rapidly coming up in the intenational arena. In the Sri lankan context too this trend can be seen as a futuristic approach. The use of intelligent systems create efficient working environments have gone beyond to creating energy efficient environments. In a broader sense intelligent buildings concept deals with enhancing the sustainability in the built environment, economically, ecologically and some times socio culturally.

STATEMENT OF DECLARATION

This is to certify that this dissertation is originally written and prepared by Weeramundage Carman Ayanthi Nadika Fernando, the candidate, except where due acknowledgment is made and that it has not been previously included in a thesis, dissertation or report submitted to the University of Moratuwa or any other institution for a degree, diploma or other qualification to the best of my knowledge.

University of Moratuwa, Sri Lanka.

UOM Verified Signature

Sec.

Signature of Candidate

Ms. Weeramundage Carman Ayanthi Nadika Fernando

Signature of Supervisor

Architect Ranjith Alahakoon Senior Lecturer Faculty of Architecture University of Moratuwa

ACKNOWLEDGEMENT

It is with gratitude that I acknowledge the guidance and advice given to me by the lecturers of the Faculty of Architecture, University of Moratuwa. I take this opportunity to thank them all for dedicating their valuable time to give me advice.

My sincere thanks and gratitude go out especially to Architect Ranjith Alahakoon, Senior lecturer of the Faculty of Architecture, University of Moratuwa, for leading me in the correct path and for supervising me to make this project a success.

I also wish to thank Prof. S. Manwadu, Head of the Department, Department of Architecture, University of Moratuwa, our Year Masters Architect Jayanath de Silva and Arhct. Gamini Weerasinghe, Dr. Upendra Rajapaksa and Dr. Mrs. Indrika Rajapaksha for their advice and views. To Architect Sudharshana Wijegunawardana and Architect Varuna de Silva for giving me ideas to shape my argument.

Furthermore I wish to thank the Overseas Reality (Ceylon) Limited for providing information on the World Trade Centre (WTC) twin towers, Colombo, and specially to Mr Prasanna Narangoda, Executive Engineer for explaining the total Building Automation systems in the WTC, and to Mr. Pathirana (Chief Security officer) for explaining the security system and control of the Building.

I also which to thank Mr Vijitha Rajasekera, Chief Regional Manager, Regional office, Hatton National Bank, Mt. Lavinia for helping me to get information on the Hatton National Bank headquarters, Colombo. And also to Architect Gamunu Perera the Chief Architect of the HNB tower project for providing photos and material on the HNB tower.

I wholeheartedly wish to give my deep gratitude to my father Prof. Noel Fernando and mother Nalini Fernando who guided me throughout my career and to Mr. Kennath Walpita for always helping me during hard times, accompanying me to see places and, to my brother Nuwantha Fernando for his ideas and valuable assistance to gather information on intelligent buildings. To all my friends and relatives who helped me in many ways to make this dissertation a success.

CONTENTS

ACKNOWLEDGEMENT	I.
ABSTRACT	
LIST OF FIGURES	vi

1.	CHAPTER ONE - Introduction	
	1.1 Topic Explanation	2
	1.2 Observations and issues identified	3
	1.3 Criticality of observations/ issues	4
	1.4 Intention of study – justification	4
	1.5 Scope and Limitations	5
	1.6 Method of study	5
2.	CHAPTER TWO - Intelligent buildings	
	2.1 Chapter Introduction	7
	2.2 Intelligent Buildings – Definitions Electronic Theses & Dissertations	8
	2.3 Intelligent Buildings – History ib mrt ac lk	11
	2.4 Historical Models of Building intelligence	14
	2.4.1 Automated buildings (1981-1985)	14
	2.4.2 Responsive buildings (1986-1991)	14
	2.4.3 Effective buildings (1992>)	15
	2.5 Socio-economical issues that influenced the immergence	
	of intelligent buildings	16
	2.6 Future Issues of intelligent buildings - High performance building	s 21
	2.7 Chapter conclusion	22
3.	CHAPTER THREE -Intelligent Building Concept and its Applicatio	n
	3.1 Chapter Introduction	25
	3.2 The Concept of Intelligent buildings	25
	3.2.1 A communication system	28
	3.2.2 An office automation system	28

3.3 Identification of an intelligent building	29
3.4 Difference of intelligent buildings from conventional buildings	30
3.5 Components of an intelligent building	31
3.5.1 Facilities management	32
3.5.2 Information management	32
3.5.3 Connectivity	32
3.5.4 Overall Control	32
3.6 Integrated Systems of Intelligent buildings	34
3.6.1 HVAC (Heating Ventilating Air Conditioning)	34
3.6.2 Lighting control	36
3.6.3 Security and access control	37
3.6.4 Fire safety and life safety	38
3.6.5 Public address system	41
3.6.6 Material handling	41
3.6.7 Communication	42
3.6.8 Energy Management	43
3.6.9 Computer systems ersity of Moratuwa, Sri Lanka.	44
3.6.10 TV and Video Subsystems Theses & Dissertations	44
3.6.11 Acoustic control www.lib.mrt.ac.lk	45
3.6.12 Building management system	45
3.7 Advantages and Disadvantages of Intelligent buildings	48
3.8 Intelligent Buildings Control Theory	49
3.9 Chapter conclusion	52

"Print

4.	CHAPTER	FOUR -Energy efficiency and Intelligent buildings	
	4.1 Chapt	er Introduction	54
	4.2 Energ	y Issues related to Buildings	55
	4.2.1	Environment, comfort and energy	56
	4.2.2	Heat gain and heat loss	57
	4.2.3	Energy use and pollution	58
	4.3 Contro	lled use of energy	60

iv

4.4 Susta	inability	
4.4.1	Environmental sustainability	63
4.4.2	Economical sustainability	64
4.4.3	Socio cultural sustainability	64
4.5 Tropi	cal climate and energy conservation	65
4.6 Intell	igent Buildings and its contribution to Energy Efficiency	66
4.7 Chap	ter conclusion	69

5. CHAPTER FIVE - Analytical Study of Local and Foreign Examples 71 5.1 Chapter Introduction 5.2 International Examples of Intelligent buildings 71 5.2.1 Menara Mesianaga, Kuala Lumpur (1992) 71 5.2.2 Shinjuku L Tower, Japan (1989) 77 81 5.2.3 Telecom Malaysia Head Quarters(1998) 5.3 Sri Lankan Examples 84 5.3.1 The HNB Tower 5.3.2 World Trade Centre Twin towers loratuwa, Sri Lanka. 97 5.4 Chapter Conclusion Electronic Theses & Dissertations 109 113 6. CONCLUSION 115 7. BIBLIOGRAPHY

100

v

LIST OF ILLUSTRATION

		PAGE
Fig. 1	The ENIAC Main frame computer	11
Fig. 2	Multiuse of mainframes	11
Fig. 3	Use of Computers in medicine	12
Fig. 4	Computer Aided Designing	12
Fig. 5	Robots	12
Fig. 6	Models of building Intelligence - IBE (1992)	16
Fig. 7	Work stations	18
Fig. 8	Decentralization	19
Fig. 9	The Concept of intelligent buildings	27
Fig. 10	Information and communication	28
Fig. 11	Office Automation	28
Fig. 12	A Categorization of Intelligent Buildings	33
Fig. 13	Typical Air conditioning system	35
Fig. 14	The availability of Natural light	36
Fig 15	Automatic Access Card System atuwa, Sri Lanka.	37
Fig. 16	The control room with cervses & Dissertations	37
Fig. 17	Entrance control – swap card system	37
Fig. 18	Centralized monitoring system	37
Fig. 19	CCTV Monitoring system	38
Fig. 20	a sprinkler head	39
Fig. 21	Heat detectors	39
Fig. 22	Fire extinguishers	39
Fig. 23	High pressure water lines	39
Fig. 24	Fire Extinguishers	40
Fig. 25	The conventional reception	41
Fig. 26	Openable Windows	42
Fig. 27	Telephone Communication	42
Fig. 28	A public accessed telephone booth	43
Fig. 29	Satellite television	44
Fig. 30	AT & T's intelligent building system	46
Fig. 31	The net work of a Building Environmental Control system	47

vi

Fig. 32	Building interior affected by external con-	ditions	57
Fig 33	Heat gain and Heat loss in Buildings		58
Fig. 34	Buildings use energy		61
Fig. 35	Sustainability		62
Fig. 36	Sustainability		63
Fig .37	The Exterior of Menara Mesianaga		72
Fig .38	Vertical landscaping		73
Fig. 39	The Site plan		74
Fig. 40	Typical Floor plan		74
Fig. 41	Building Section		75
Fig. 42	View of Sky Court		75
Fig. 43	Entrance canopy		76
Fig. 44	Shading structures		76
Fig. 45	The side and Front view of the Shinjuku	Tower	77
Fig. 46	The integrated system in the building		78
Fig. 47	The Exterior		81
Fig. 48	The Layout plan		81
Fig. 49	Hatton national Bank		84
Fig. 50	Layout Plan University of Moratuwa	a, Sri Lanka.	86
Fig. 51	The section of the Building Theses & Di		87
Fig. 52	Basement services lib.mrt.ac.lk		88
Fig. 53	Restaurant		89
Fig. 54	Restaurant		89
Fig. 55	Tracks of the rooftop for the maintenance	e gondolas to move	90
Fig. 56	Use of Artificial lighting		91
Fig. 57	Use of Natural lighting	- 'War.	91
Fig. 58	TV monitors in the control room		92
Fig. 59	The façade		93
Fig. 60	Glass fixing		93
Fig. 61	Office room		94
Fig. 62	Lobby area		94
Fig. 63	World Trade Centre		97

vii

Fig. 64	The World Trade Centre in the Context of Colombo	98
Fig. 65	The Location Map of the World Trade Centre	98
Fig. 66	Floor plan low zone	99
Fig. 67	Floor plan High zone	100
Fig. 68	CCTV	101
Fig. 69	Reception	102
Fig. 70	Escalators	102
Fig. 71	High pressure water pipes in the ducts	104
Fig. 72	Fire Extinguisher	104
Fig. 73	BMS of World Trade Center	107
Fig. 74	Non automated single glazing	108

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

*