DESIGN MODELING AND SIMULATION OF A REPEATERLESS OPTICAL FIBER NETWORK FOR SRI LANKA

Submitted in partial fulfillment for the degree of Masters of Engineering in Electronics and Telecommunication

K. P. Kandaneearachchi

February 2004
The work presented in this dissertation has not been submitted for the fulfillment of any other degree

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk.

K. P. Kandanearachchi
(Candidate)

Prof. (Mrs.) I. J. Dayawansa
(Supervisor)
DEDICATION

I dedicate this Dissertation with a lot of respect to my lovely late Mother who directed me to achieve the best possible education through a lot of dedication and hard work.

It is also with reverence and respect that I remember my Father, my school - Thurstan College and University of Moratuwa for the guidance given me at all times to achieve my goals and aims and providing me with the postgraduate course that I receive.
CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT ii
LIST OF FIGURES iv
LIST OF TABLES vi
ABBREVIATIONS vii

1. INTRODUCTION 1
1.1 High Speed Network 1
1.2 Common Network 1
1.3 Optimum Network 2
1.4 Objectives 2
1.5 Methodology 2
1.5.1 Telephone and IP Traffic Forecast by Year 2015 3
1.5.2 Network Design 4
1.5.3 Network Simulation 4

2. LITERATURE REVIEW 5
2.1 Traffic Theory for Planning 5
2.1.1 Traffic Volume 5
2.1.2 Traffic Density 5
2.1.3 Calling Rate 6
2.1.4 Probability of Loss 6
2.1.5 Erlang's B Formula 7
2.2 Demand Forecasting 8
2.2.1 Telephone Demand Forecasting 9
2.2.1.1 Macro-level telephone Demand Forecasting 9
2.2.1.2 Extrapolation Method 10
2.2.1.3 Method of Comparison with other Countries 11
2.3 Traffic Forecasting 11
2.3.1 Introduction 11
2.3.2 The Gravity Model 11
2.4 Economic Indicators 12
2.4.1 Gross National Product 12
2.4.2 Gross Domestic Product 13
2.4.3 Factors of Production 13
2.5 WDM Technology 13
2.5.1 Optical Transmitters 14
2.5.2 Optical Receivers 15
2.5.3 Optical Multiplexers and Demultiplexers 15
2.5.4 Optical Add Drop Multiplexers 16
2.5.5 Amplifiers 16
2.6 Optical Amplifiers 17
2.6.1 Amplifier Wavelength Bands 17
2.6.2 Erbium Doped Fiber Amplifier 18
2.6.3 Raman Amplifier 19
2.6.4 Comparison of Raman and Erbium Doped Amplifiers 26

3. TELEPHONE DEMAND FORECAST 29
3.1 Introduction 29
3.2 Income Elastic Model 29

4. TELEPHONE TRAFFIC FORECAST 33
4.1 Nodes of the Network 33
4.2 Traffic Originated from each Node 35
4.3 Gravity Model 37

5. INTERNET TRAFFIC FORECAST 38
5.1 Traffic Forecast of Internet Dial-up Users 38
5.2 Broadband Users 40

6. VOICE OVER TRAFFIC FORECAST 43
6.1 Introduction 43
6.2 VoIP in Sri Lanka 43
6.3 Telephone Traffic migration from PSTN to VoIP 43
 6.3.1 Traffic Migration of Business Customers from PSTN to VoIP 44
 6.3.2 International Traffic Migration from PSTN to VoIP 44
 6.3.3 Domestic Traffic Migration from PSTN to VoIP 45
 6.3.4 Traffic Migration Patterns from PSTN to VoIP 45

7. NETWORK DESIGN 48
7.1 Network Topology 48
7.2 Traffic Routing 50
7.3 Capacity of the Network 50
7.4 Wavelength allocation and connectivity 50
7.5 Selection of Wavelengths 53
7.6 Design Configuration 53
7.7 Selection of the Fiber 54
7.8 Selection of Sources and Detectors 55
7.9 Network Design using Optical Amplifiers 55
7.10 BER Objective and Design Steps 55
7.11 Network Design 55
 7.11.1 Selecting a suitable Booster and Pre-Amplifier 55
 7.11.2 Power Budget Calculations 56
 7.11.3 OSNR Calculations of Segments 61
 7.11.4 OSNR Calculations of Optical Line Sections 64
 7.11.5 Estimating Q Factors and preparing of the Performance Budget 64
7.12 Dispersion Management 67
8. **NETWORK SIMULATION**
 8.1 Introduction
 8.2 Simulation Strategy
 8.3 Optimum Results of the Network
 8.4 Simulated Outputs of the Network

9. **SUMMARY AND CONCLUSIONS**
 9.1 Telephone Demand and its distribution by year 2015
 9.2 IP Traffic Demand and its distribution by year 2015
 9.3 Network Topology and capacity requirements
 9.4 Designing of a Repeaterless Optical Network
 9.5 Modeling of the Network to ensure desired results
 9.6 Suggestions for future work

REFERENCES

APPENDICES
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my Project Supervisor Prof. (Mrs.) I. J. Dayawansa (BSc Dip E.E. MSc PhD FIEE) for her guidance, valuable advices and encouragements for successfully completing this Postgraduate Research study.

Also I thank to University of Moratuwa for giving me an opportunity for a postgraduate study where I had the opportunity to explore in new technology areas like Repeaterless Optical Networks.

I should express my gratitude to ARTIS Software Corporation for providing me an evaluation copy of OptSim Software Tool for simulating and evaluating the designed Network.

Finally I thank to my lovely wife Mrs. J. N. Wickramasinghe and Sri Lanka Telecom for providing me necessary information and support for completing this project successfully.
ABSTRACT

A reliable and wideband telecommunication network is a vital infrastructure development, where wide band services such as ATM, ADSL and IP based services could be supported. In Sri Lanka, the requirement of this kind of an optical network is very significant as other operators also can share the capacity of the network for transporting their traffic. On the other hand the network problems such as excessive BER (Bit Error Rate) etc are experienced after its construction. In order to avoid such limitations in the network, the network needs to be modeled on appropriate software tools and run with designed network parameters, so that the desired BER could be ensured.

During the initial phase of the study, the total telephone demand by year 2015 was estimated as nearly 2 million subscribers. This was estimated through the world trend for telephone subscribers together with economic indicators such as GNP and GDP.

The Nodes of the Network was determined based on the present distribution of customers in the County. In this case all the Tertiary Switching Center areas and the Secondary Center Areas where the customer base is more than 2.5% of total customers were taken as the main nodes of the network. In addition Jaffna and Baticaloa were also taken as nodes considering the potential growth of traffic in northern and eastern parts of the Island.

The Gravity model and Earlang's B formula, traffic tables, were used to find the traffic between nodes and the number of circuits between nodes. Based on the traffic distribution between nodes, a part of the network was proposed as a fully reliable Ring Network, while other nodes are connected through extended links. The IP traffic, which is thought to be the major traffic flow in the future, were estimated considering the broadband Internet growth in the country. Also the traffic, which are expected to be migrated from traditional PSTN to IP Network were identified and estimated to find the total bandwidth requirement of the network by year 2015.

The number of wavelengths in the proposed Network were decided based on the final bandwidth requirement. This resulted an island wide network consisting of WDM Ring Network having 08 wavelengths that basically covers the southern part of the country and two other extensions having a wavelength each to northern and eastern parts of the country. The Colombo and the Kandy nodes were selected as Full Fiber Terminal Stations as most of the traffic flow between these two nodes. Wavelengths are added and dropped at each branch station based on the traffic volumes between these nodes.

The wavelengths were selected such that the space between adjacent wavelengths is 0.8nm to avoid nonlinear effects and cross talks. The G.655 non-zero dispersion fiber was selected to mange the dispersion and non-linear effects. DFB and APD are the Source and the Detector respectively to suit long haul transmissions having narrow spectral widths and also to meet better sensitivity at the receiver.
The proposed Network is a Repeaterless Optical Network, where the Power Budget of the longest Segment, Kandy – Matara, of 280km was designed without employing a physical repeater, which needs power feeding. This was achieved using Raman Amplifiers as line repeaters and Erbium Doped Fiber Amplifiers (EDFA) as Boosters and Pre-Amplifiers. The Power Budget has been prepared for all other Segments as well based on appropriate configurations. Also the BER objective of 10^{-9} was ensured for the longest Optical Line Section of Colombo – Kandy via Matara, in which a couple of express wavelengths are assigned for carrying traffic between Colombo and Kandy. The Performance Budget was prepared for long Optical Line Sections and the calculated BER was found as better than 10^{-9}. This has been further confirmed by the Eye Diagrams after simulating the Network on the OptSim Network Simulator developed by ARTIS Software.
LIST OF FIGURES

Figure 2.1 Offered Traffic and Carried Traffic 6
Figure 2.2 Factors affecting Demand 8
Figure 2.3 Economic Index Relating to Telephone Density 10
Figure 2.4 Traffic flow between Two Office 12
Figure 2.5 Typical WDM Multiplexer 15
Figure 2.6 WDM Demultiplexer using Wave Guide Grating Diffraction technique 16
Figure 2.7 Illustration of the advantage of using Optical Amplifiers 17
Figure 2.8 Typical Erbium Doped Fiber Amplifier 18
Figure 2.9 Energy Level Diagram of an Erbium Doped Fiber Amplifier 19
Figure 2.10 Energy Level Diagram of a Raman Amplifier 19
Figure 2.11 Gain Vs Frequency difference between the Signal and Pump 20
Figure 2.12 Configuration of the Forward Pumping Raman Amplifier 20
Figure 2.13 Configuration of the Backward Pumping Raman Amplifier 21
Figure 2.14 Hybrid Raman Doped Amplifier 28
Figure 3.1 World Telephone Demand Trend 30
Figure 5.1 Growth of Internet Users 39
Figure 5.2 Growth of Broadband users 41
Figure 5.3 Growth of Broadband users (log scale) 41
Figure 7.1 Topology of the Proposed Optical Fiber Network 49
Figure 7.2 Wavelength allocation and connectivity 52
Figure 7.3 Schematic Diagram of a WDM Segment 54
Figure 7.4 Simplest Configuration (Configuration-A) Fiber Link 57
Figure 7.5 Configuration-B of a Fiber Link 58
Figure 7.6 Configuration-C of a Fiber Link 58
Figure 7.7 Configuration-D of a Fiber Link 59
Figure 7.8 Measured EDF Gain and Noise Figure Vs. Pumping Power 59
Figure 7.9 Configuration of the proposed Network 70
Figure 8.1 Output of the Colombo main Fiber via Kurunegala 72
Figure 8.2 Input of the Kandy main Fiber via Kurunegala 73
Figure 8.3 Eye diagram of λ1 at Kandy FFTS via Kurunegala 74
Figure 8.4 Eye diagram of λ2 at Kandy FFTS via Kurunegala 74
Figure 8.5 Eye diagram of λ3 at Kandy FFTS via Kurunegala 75
Figure 8.6 Eye diagram of λ4 at Kandy FFTS via Kurunegala 75
Figure 8.7 Eye diagram of λ5 at Kandy FFTS via Kurunegala 76
Figure 8.8 Eye diagram of λ6 at Kandy FFTS via Kurunegala 76
Figure 8.9 Eye diagram of λ7 at Kandy FFTS via Kurunegala 77
Figure 8.10 Eye diagram of λ8 at Kandy FFTS via Kurunegala 77
Figure 8.11 Output of the Colombo main Fiber via Matara 78
Figure 8.12 Input of the Kandy main Fiber via Matara 79
Figure 8.13 Eye diagram of λ1 at Kandy FFTS via Matara 80
Figure 8.14 Eye diagram of λ2 at Kandy FFTS via Matara 80
Figure 8.15 Eye diagram of λ3 at Kandy FFTS via Matara 81
Figure 8.16 Eye diagram of λ_4 at Kandy FFTS via Matara 81
Figure 8.17 Eye diagram of λ_5 at Kandy FFTS via Matara 82
Figure 8.18 Eye diagram of λ_6 at Kandy FFTS via Matara 82
Figure 8.19 Eye diagram of λ_7 at Kandy FFTS via Matara 83
Figure 8.20 Eye diagram of λ_8 at Kandy FFTS via Matara 83
Figure 8.21 Output of the Kurunegala Fiber 84
Figure 8.22 Input of the Anuradhapura Fiber 85
Figure 8.23 Eye Diagram at Anuradhapura Station 85
Figure 8.24 Output of the Anuradhapura Fiber 86
Figure 8.25 Input of the Jaffna Fiber 86
Figure 8.26 Eye Diagram at Jaffna Station 87
Figure 8.27 Output of the Kandy Fiber 88
Figure 8.28 Input of the Baticaloa Fiber 88
Figure 8.29 Eye Diagram at Baticaloa Station 89
LIST OF TABLES

Table 2.1 Comparison of Raman and Erbium Doped Fiber Amplifiers 27
Table 3.1 Calculation of Total Telephone Demand at the end of each Year 31
Table 4.1 Distribution of Telephone Customers in year 2001 34
Table 4.2 Nodes of the network and its traffic distribution 36
Table 5.1 Growth of Internet users and its forecast 38
Table 5.2 Distribution of Internet users by year 2015 and Bandwidth requirement 39
Table 5.3 Growth of Broadband users 40
Table 5.4 Forecast of Broadband users 42
Table 5.5 Distribution of Broadband users by year 2015 and Bandwidth requirement 42
Table 6.1 Traffic migration patterns from traditional PSTN to VoIP 45
Table 6.2 International and a portion of Domestic traffic as VoIP 46
Table 7.1 Capacity Requirement of each Segment 50
Table 7.2 Wavelength Requirement of the Network 51
Table 7.3 Wavelengths in the Network 53
Table 7.4 Parameters of G655 Non-Zero Dispersion Shifted Fiber 54
Table 7.5 Typical Parameters of a Booster, Pre-Amplifier and Raman Amplifier 56
Table 7.6 Distances between Nodes of the Network 57
Table 7.7 Network Segments and its particular Configuration 60
Table 7.8 Power Budgets of Segments 61
Table 7.9 Parameters required for SNR Calculations 62
Table 7.10 SNR Calculations of Segments 63
Table 7.11 Performance Budget 67
Table 7.12 Dispersion Coefficients of each wavelength 68
Table 7.13 Lengths of DCF to compensate dispersion of each Segment and OLS 69
ABBREVIATIONS

ADP - Avalanche Photo Diode
ADSL - Asymmetric Digital Subscriber Line
ASE - Amplified Spontaneous Emission
BER - Bit Error Rate
BS - Branch Station
CR - Calling Rate
DCF - Dispersion Cut-off Fiber
DFB - Distribution Feed Back
DSF - Dispersion Shifted Fiber
DSL - Digital Subscriber Line
EDFA - Erbium Doped Fiber Amplifier
EOL - End of Life
ES - Extension Station
FFTS - Full Fiber Terminal Station
FWM - Four Wave Mixing
GDP - Gross Domestic Product
GNP - Gross National Product
IP - Internet Protocol
ITU - International Telecommunication Union
NF - Noise Figure
NI - Net Income
NZ-DSF - Non Zero Dispersion Shifted Fiber
OADM - Optical Add Drop Multiplexer
OLS - Optical Line Section
OSNR - Optical Signal to Noise Ratio
PC - Personal Computer
PCM - Pulse Code Modulation
PMD - Polarization Mode Dispersion
PSTN - Public Switched Telephone Network
RA - Raman Amplifier
SLT - Sri Lanka Telecom
SNR - Signal to Noise Ratio
SPM - Self Phase Modulation
SRS - Stimulated Raman Scattering
SSC - Secondary Switching Center
STM - Synchronous Transport Mode
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDM</td>
<td>Time Division Multiplexing</td>
</tr>
<tr>
<td>TRC</td>
<td>Telecommunication Regulatory Commission</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VOIP</td>
<td>Voice Over Internet Protocol</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength Division Multiplexing</td>
</tr>
</tbody>
</table>