DEVELOPMENT OF AN ELECTRIC SPRING FOR VOLTAGE MANAGEMENT IN LV NETWORK AS A CONSUMER LEVEL SOLUTION

Abdul Aziz Hafeel

(178610A)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

January 2023

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work, and this thesis/dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it

does not contain any material previously published or written by another person except

where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis/dissertation, in whole or part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (Such as articles or

books).

Signature:

UOM Verified Signature

Date: 02-01-2023

A.A. Hafeel

The above candidate has carried out research for the Masters Dissertation under our

supervision.

Signature of the supervisors:

UOK Signature

Date: 02-01-2023

Dr. J. V. U. P Upuli Jayatunga

UOM Verified Signature

······

Date: 02-01-2023

Dr. Thushara D. Rathnayaka

ii

ABSTRACT

LV consumers are encouraged to invest on roof top solar and wind turbines to reduce the stress on the utility side. Due to the intermittent nature of these distributed generators the stability of the power system and the power quality has become the major concerns for the utility companies to control. Electric Spring is a modern power quality improvement device which is able to support and regulate voltage events caused mainly due to distributed generators such as wind and solar to the LV feeders without the need of restrictions and control by the modern utility providers.

A detailed literature content is presented to give a brief understanding of the applications of electric springs and comparison with other similar devices available at present market.

The study was performed in MATLAB/Simulink platform for feasibility of a developed customized electric spring tested for an LV network consumer considering its future load expansions. The study was tested for voltage disturbances such as voltage fluctuations and for voltage sags and swells. A detailed comparative simulation was performed mainly for voltage management in LV consumers for this study. The behaviour of the system was found to be more rewarding with many electric spring arrangements rather having a single electric spring.

Keywords: Electric Spring, Low Voltage (LV), Demand Side Management, Renewable Energy Sources, Voltage Regulation, Critical & Noncritical loads

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my supervisors Dr. J.V.U.P Upuli Jayatunga & Dr. Thushara Rathnayaka, being my supervisors and giving me the opportunity to carry out the research with continuous guidance. With their support I managed to overcome so many challenges starting form preparing for the project proposal through progress reviews and finally up to the thesis preparation. I take this opportunity to convey my heartfelt thanks for the motivation and timely guidance given to me throughout the project.

I would also like to thank my former masters' programme coordinator Dr. Prasad and all the staff members at department of electrical engineering of University of Moratuwa for providing valuable advice and suggestions in progress reviews.

Secondly, I would also like to remember my parents, my two sisters and all my colleagues for their encouragement & motivation given to me all the time.

TABLE OF CONTENTS

DECLARATION OF THE CANDIDATE AND SUPERVISORS	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	vii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	x
Chapter 1: Introduction	1
1.1 Introduction	1
1.2 Future Challenges in Power Grid	1
1.3 Steady State Voltage Management in LV Networks	2
1.4 Research Motivation	2
1.5 Research Objectives	3
1.6 Outline of the Thesis	4
Chapter 2: Literature Review	5
2.1 Introduction	5
2.2 Overview of Electric Spring	5
2.3 Comparison of Electric Spring with Existing Technologies	14
2.3.1 Comparison with SSSC	14
2.3.2 Comparison with STATCOM	15
2.3.3 Comparison with UPFC	16
2.3.4 Comparison with APF	17
2.3.5 Summary	17
2.4 Applications of Electric Spring	18

2.4.1 ES to Reduce Energy Storage	18
2.4.2 ES for Droop Control	21
2.5 Research Gaps	24
Chapter 3: Development of a Genetic Electric Spring Model	25
3.1 Introduction	25
3.2 Example for an LV Network	25
3.3 Mathematical Modelling of ES	26
3.4 Development of Control strategy	30
Chapter 4: Analysis of ES model for voltage fluctuations	32
4.1 Introduction	32
4.2 ES Model testing scenarios	32
4.3 ES Model response for voltage fluctuations	34
4.3.1 Simulation results for voltage decrease-testing scenario 1	34
4.3.2 Simulation results for voltage decrease - testing scenario 2	36
4.3.3 Simulation results for voltage decrease - testing scenario 3	39
4.3.4 Simulation results for voltage incresase-testing scenario 1	41
4.3.5 Simulation results for voltage incresase - testing scenario 2	43
4.3.6 Simulation results for voltage incresase - testing scenario 3	45
4.3.7 Summary of Results	47
Chapter 5: Analysis of ES model for voltage sags and swells	48
5.1 Introduction	48
5.2 ES Model response for Voltage sags	48
5.2.1 Simulation results for voltage sag-testing scenario 1	48
5.2.2 Simulation results for voltage sag-testing scenario 2	50
5.2.3 Simulation results for voltage sag-testing scenario 3	51

5.3 ES Model response for Voltage swells	53
5.3.1 Simulation results for voltage swell-testing scenario 1	53
5.3.2 Simulation results for voltage swell-testing scenario 2	54
5.3.3 Simulation results for voltage swell-testing scenario 3	56
5.4 Summary of Results	57
Chapter 6: Sensitivity Analysis with inductive loads & the line impedance	59
6.1 Introduction	59
6.2 Sensitivity Analysis with Inductive loads	59
6.3 Sensitivity Analysis with Line Impedance	64
Chapter 7: Conclusions and Future Works	67
References	70
LIST OF FIGURES Figure 2-1: Distributed Power Quality Improvement Devices [4]	
Figure 2-2 :Demonstration of a mechanical spring	
Figure 2-3: Demonstration of an electrical spring	
Figure 2-4: Application of a mechanical spring.	
Figure 2-5: Application of an electrical spring	
Figure 2-6: Analogy between mechanical and electrical spring [7]	
Figure 2-7: Key Functions of an Electric Spring	
Figure 2-8: Vector diagram of a typical Electric Spring	
Figure 2-9: Simplified distribution diagram with ES [3]	
Figure 2-10:Electric Spring (ES) in Residential customers in a microgrid	
Figure 2-12: Ideal outcome of ES [9]	
Figure 2-13: Typical configuration of SSSCs	
Figure 2-14: Typical configuration of ES [3]	
Figure 2-15: Typical configuration of STATCOM [3]	
Figure 2-16: Example of ES's in LVdistribution [12]	
Figure 2-17: Comparison of Reactive power and voltage regulation achieved by Estate 1997.	
STATCOM	
Figure 2-18: Typical configuration of UPFC [3]	
Figure 2-19: Electric Spring connected in series with NCL [9]	
Figure 2-20: Power profile of NCL &CL [9]	
Figure 2-21: Example Block diagram of power flow in a power System [9]	

Figure 2-23: Example distribution network used for the droop control [13]
Figure 2-25: Droop Control added for Electric Springs [13]
Figure 2-26: RMS voltages across the CL and NCL loads with droop control [13]
Figure 3-1: The network under study
Figure 3-2: Separation of CL and NCL at distribution board
Figure 3-3: MATLAB Simulation model for network under study
Figure 3-4: MATLAB Simulation model for LC filter for ES
Figure 3-5: Electric Spring Controller modelling [19]
Figure 3-6: Sub-system of ES controller modelling [19]
Figure 4-1: Classification of voltage disturbances
Figure 4-1: Classification of voltage disturbances
Figure 4-3: Testing scenario 2
Figure 4-4: Testing scenario 3
Figure 4-4: Testing scenario 3
Figure 4-6: THD% for voltage decrease, testing scenario 1
Figure 4-6: THD% for voltage decrease, testing scenario 1
Figure 4-8: Simulation results for voltage decrease, testing scenario 2
Figure 4-8: Simulation results for voltage decrease, testing scenario 2
Figure 4-9: THD% for voltage decrease, testing scenario 2
Figure 4-10: MATLAB Simulation model for testing scenario 3
Figure 4-11: Simulation results for voltage decrease, testing scenario 3
Figure 4-12: THD% for voltage decrease, testing scenario 3
Figure 4-14: THD% for voltage increase, testing scenario 1
Figure 4-15: Simulation results for voltage increase, testing scenario 2
Figure 4-16: THD% for voltage increase, testing scenario 2
Figure 4-17: Simulation results for voltage increase, testing scenario 346
Figure 4-18: THD% for voltage increase, testing scenario 3
Figure 4-19: Summary of testing scenarios
Figure 5-1: Classification of voltage disturbances
Figure 5-2: Simulation results for voltage sag, testing scenario 1
Figure 5-3: THD% for voltage sag, testing scenario 1
Figure 5-4: Simulation results for voltage sag, testing scenario 2
Figure 5-5: THD% for voltage sag, testing scenario 2
Figure 5-6: Simulation results for voltage sag, testing scenario 3
Figure 5-7: THD% for voltage sag, testing scenario 3
Figure 5-8: Simulation results for voltage swell, testing scenario 1
Figure 5-9: THD% for voltage swell, testing scenario 1
Figure 5-9: THD% for voltage swell, testing scenario 1
Figure 5-9: THD% for voltage swell, testing scenario 1

Figure 5-14: Summary of testing scenarios	58
Figure 6-1: Testing Scenario-3 of ES network	59
Figure 6-2: Extract image of critical loads with inductive loads	58
Figure 6-3: MATLAB Simulation model for testing scenario 3 with inductive &	
resistive loads	58
Figure 6-4: Simulation results for testing scenario 3 with inductive loads	62
Figure 6-5: Instantaneous Voltage & Current waveforms for Critical Load-1	63
Figure 6-6: Instantaneous Voltage & Current waveforms for Critical Load-2	63
Figure 6-7: Simulation model for a healthy grid system	64
Figure 6-8: Simulation results with improved line impedance	65
Figure 6-9: THD% of loads with improved line impedance	
Figure 7-1: Feasible range for electric spring applications	68
LIST OF TABLES	
Table 2-1: Comparison of mechanical and electric spring	11
Table 2-2: Comparison of ES and FACTS devices	
Table 3-1: Typical Load classification of a household	27
Table 3-2: ES power circuit design parameters	
Table 4-1: Summary of results obtained for case 1 & 2	
Table 5-1: Summary of results for Voltage sag and swells	

LIST OF ABBREVIATIONS

Abbreviation Description

LV Low Voltage

RES Renewable Energy Sources

DPQI Distributed Power Quality Improvement

FACTs Flexible Alternating Current Transmission devices

PV Photo Voltaic

ES Electric Spring

VR Voltage Regulation

MS Mechanical Spring

CL Critical Load

NCL Non-Critical Load

SSSCs Static Synchronous Series Compensators

STATCOM STATic COMpensator

UPFC Unified Power Flow Controllers

APF Active Power Filter

MV Medium Voltage

HV High Voltage

DSM Demand Side Management

MOSFETS Metal–Oxide–Semiconductor Field-Effect Transistor

THD Total Harmonic Distortion