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ABSTRACT

Localization and tracking of persons in industrial environment is critical in terms

of safety, privacy and security, particularly when there are hazardous zones. In

this research, RSSI of RF signals were used to localize, track and uniquely identify

a person in a cluttered environment with a case study into a doorway from a safe

zone to a hazardous zone in a cluttered warehouse. Vision based localization was

impractical both due to visual obstruction by moving large objects and privacy

issues. There were three approaches in RF based localization reviewed in this

work.This research uses the approach in which RF receivers are fixed and the

transmitter is worn by the target person. RSSI data in a doorway area of 420

cm × 450 cm was analysed both in simulation and in a real test bed and it

was proved that DNN and RNN based location prediction was feasible with an

accuracy of over 80% even though the environment had noise in the range of ±2

dB to ±15 dB and ±7 dB on average for RF signals. The experiments carried

out with a test bed consisting of Raspberry Pi-3 as receivers and Kontakt-io

Tough Beacon TB15-1 module as transmitter connected over POE module to a

centralized server. The results show that a bounded type RF receiver arrangement

to cover the whole area with at least few receivers mounted at a high elevation to

capture line of sight signals was effective in accurately localizing the person. The

density of positions at which the RSSI data is collected to train the DNN also

considerably affected the localization accuracy. The body attenuation was found

to be another critical factor affecting the localization accuracy. When the DNN

was trained with data captured at one orientation of the person, this DNN was

successful in localizing a person with the same orientation but not in localizing

a person in completely different orientations. This behaviour was used to detect

the body orientation of a person using multiple neural network. A straight path

traversed by a walking person at an average speed of 25 𝑐𝑚/𝑠 was successfully

tracked at a point-wise accuracy over 80% using time series RSSI data with a

threshold of 25 cm. The threshold was reduced to half by averaging the data
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over three consecutive predicted positions in the form a centroid. Lastly, Time-

domain based RSSI data were used to train RNNs. Deep-LSTM model showed

around 95% path-wise localization accuracy for constructed walking paths. Also,

RNNs were able to detect the walking direction in single RNN network compared

to multiple DNN approach. Finally, this research was able to uniquely identify,

localize, detect body orientation and track the walking path of a person and since

the person is uniquely identified and RSSI data is MAC addressed this work can

be extended to localization of multiple persons.
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