Optimization of RSSI Based Indoor Localization and Tracking using Machine Learning Techniques

S P Pubudu Aravinda

 $178082\mathrm{E}$

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science (Research) in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa Sri Lanka

February 2021

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate: Date:

The above candidate has carried out research for the PhD thesis under my supervision.

Name of the supervisor:	
Signature of the supervisor:	Date :
Name of the supervisor:	
Signature of the supervisor:	Date :
Name of the supervisor:	
Signature of the supervisor:	Date :

ACKNOWLEDGEMENTS

I express my humble gratitude to my supervisors Dr. Chandana Gamage, Dr. Navinda Kottege, and Dr. Sulochana Sooriyaarachchi for guiding me along the correct path in my research work while enhancing my research skills remarkably with constructive and invaluable feedback. This research becomes the turning point of my life because of being surrounded by extraordinary people who made me realize the beauty of scientific work.

First of all, I would like to express my thanks to Dr. Chandana Gamage and Dr. Sulochana Sooriyaarachchi who noticed and enhanced my research skills and motivated me to start this MSc. Also, they guided me through the challenges and strengthened me with knowledge to successfully conclude my master degree despite busy academic life.

I feel privileged to get selected for the scholarship offered by Autonomous Systems Group of Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia. I was based in CSIRO site in Pullenvale - QLD during this research work. I would like to express my humble gratitude to all the staff members and my colleagues in CSIRO site in Pullenvale - QLD. During that period, I gathered unforgettable experiences and memories from the amazing people there.

It would have been a dream without Dr. Navinda Kottege to complete my on site practical experiments. Dr Kottege provided me with the necessary equipment and advised me to drive this research work into a reality. I never forget his generous and humble support given for me to walk through my student life.

I would like to extend my special thanks to the then Head of the Department of Computer Science and Engineering, Dr. Shehan Perera and my research coordinator Dr. Charith Chitraranjan for giving me advice and providing me with the necessary administrative support to properly carry out my research work.

It was a privilege to have Dr. Ranga Rodrigo as the chairperson of the progress review panel in my master degree program. I would like to extend my gratitude to all the panelists including Dr.Rodrigo for their time and effort spent on reviewing my work and for giving comprehensive and insightful feedback.

This thesis would not be a success without the help of my mother Kanthi Paranamana. I would extend my gratitude to my wife Rumeshi, all the extended family members and friends including Mr. Sanjaya Pathirana for the unconditional support and encouragement rendered to me.

ABSTRACT

Localization and tracking of persons in industrial environment is critical in terms of safety, privacy and security, particularly when there are hazardous zones. In this research, RSSI of RF signals were used to localize, track and uniquely identify a person in a cluttered environment with a case study into a doorway from a safe zone to a hazardous zone in a cluttered warehouse. Vision based localization was impractical both due to visual obstruction by moving large objects and privacy issues. There were three approaches in RF based localization reviewed in this work. This research uses the approach in which RF receivers are fixed and the transmitter is worn by the target person. RSSI data in a doorway area of 420 $cm \times 450$ cm was analysed both in simulation and in a real test bed and it was proved that DNN and RNN based location prediction was feasible with an accuracy of over 80% even though the environment had noise in the range of ± 2 dB to ± 15 dB and ± 7 dB on average for RF signals. The experiments carried out with a test bed consisting of Raspberry Pi-3 as receivers and Kontakt-io Tough Beacon TB15-1 module as transmitter connected over POE module to a centralized server. The results show that a bounded type RF receiver arrangement to cover the whole area with at least few receivers mounted at a high elevation to capture line of sight signals was effective in accurately localizing the person. The density of positions at which the RSSI data is collected to train the DNN also considerably affected the localization accuracy. The body attenuation was found to be another critical factor affecting the localization accuracy. When the DNN was trained with data captured at one orientation of the person, this DNN was successful in localizing a person with the same orientation but not in localizing a person in completely different orientations. This behaviour was used to detect the body orientation of a person using multiple neural network. A straight path traversed by a walking person at an average speed of 25 cm/s was successfully tracked at a point-wise accuracy over 80% using time series RSSI data with a threshold of 25 cm. The threshold was reduced to half by averaging the data over three consecutive predicted positions in the form a centroid. Lastly, Timedomain based RSSI data were used to train RNNs. Deep-LSTM model showed around 95% path-wise localization accuracy for constructed walking paths. Also, RNNs were able to detect the walking direction in single RNN network compared to multiple DNN approach. Finally, this research was able to uniquely identify, localize, detect body orientation and track the walking path of a person and since the person is uniquely identified and RSSI data is MAC addressed this work can be extended to localization of multiple persons.

LIST OF FIGURES

Figure2.1	Three basic RSSI based localization approaches	12
Figure3.1	Framework for selecting suitable approaches for proposed RSSI	
	based localization system	22
Figure3.2	RF signal propagation paths and consequence	26
Figure4.1	Target tracking area and the a receiver arrangement	32
Figure4.2	Visualization of distance array elements with respect to receiver	
	arrangement and transmitter position	34
Figure4.3	System block diagram	35
Figure4.4	Used basic electronics devices	36
Figure4.5	Time synchronization procedure for RF receivers and data collec-	
	tion procedure using time stamps with position coordinates	37
Figure4.6	Camera based position coordinates vs manually collected position	
	coordinates	39
Figure4.7	DNN structure for analysing RSSI data	40
Figure4.8	Visualization of localization error and error margin	41
Figure4.9	Labels of DNN models according to the number of neurons in three	
	hidden layers	42
Figure4.10	Model numbers vs resulted highest accuracies of the models ac-	
	cordingly three learning rates	43
Figure4.11	Accuracies of DNN models according to the number of neurons in	
	three hidden layers	43
Figure4.12	Explaining two walking direction of the target person relative to	
	the test-bed	44
Figure4.13	Receiver arrangements	45
Figure4.14	Top view of receiver arrangement for real RSSI data collection	45
Figure4.15	Subset of position coordinates	46
Figure4.16	Temporal RSSI data extraction method for RNN	47
Figure4.17	Basic structure of the standard LSTM network	48

Figure4.18	Block diagram representation of stacked-LSTM layers combined	
	with fully connected regression layers in proposed Deep-RNN net-	
	work	49
Figure5.1	Variation of RSSI value with distance for ideal (equation 3.1) and	
	noisy environments (equation 3.2)	54
Figure5.2	Test setup diagram of calibrating the relation between RSSI vs	
	Distance	54
Figure5.3	Average RSSI vs nominal distance between BLE-Beacon and five	
	RPIs	56
Figure5.4	Validation accuracy Vs training iteration of five different RPI ar-	
	rangements	59
Figure5.5	Accuracy of the DNN when RSSI data collection position density	
	increased from Dataset-1 through 4	60
Figure5.6	Prediction from Forward-DNN and Backward-DNN model for sim-	
	ilar two walking path section	61
Figure5.7	Four real paths and relevant predicted positions given by Forward-	
	DNN model	63
Figure5.8	Improving walking path accuracy using centroid of consecutive	
	RSSI arrays over the time	65
Figure5.9	Constructing a walking path using prediction outputs from Deep-	
	LSTM networks	71
Figure5.10	Plotted walking path predictions for two walking directions by the	
	Deep-LSTM model	72

LIST OF TABLES

Table 2.1	Comparison of related research in person localization and tracking	13
Table 2.2	Summary of conclusions drawn from previous research in RSSI	
	based indoor localization	20
Table 4.1	Path loss exponents (η) of RF signals in different environments	32
Table 4.2	Level-3 configuration used in Tough Beacon TB15-1 module	36
Table 5.1	Training and validation accuracies of DNN models for five RPI	
	arrangements in figure 4.13	58
Table 5.2	Localization accuracies of four DNN models for RSSI data position $\$	
	coordinate density	60
Table 5.3	Localization accuracies and resulted threshold levels of four LSTM	
	models for single layer LSTM model architecture	67
Table 5.4	Localization accuracies and resulted threshold levels of five stacked	
	LSTM models for select suitable number of LSTM layers and units	
	for RSSI data	67
Table 5.5	Localization accuracies for different time steps based LSTM	69

LIST OF ABBREVIATIONS

GPS	Global positioning system
PPE	Personal protective equipment
OSHA	Occupational safety and health administration
RF	Radio frequency
TOF	Time of flight
TDOA	The Time difference of arrival
DOA	Direction of arrival
RSSI	Radio signal strength indication
LQ	Link quality
WSN	Wireless sensor network
RPI	Raspberry pi
ML	Machine learning
NN	Neural network
DNN	Deep neural network
BLE	Bluetooth low energy
NLOS	Non Line Off Sight
LOS	Line Off Sight
Hz	Hertz
RFID	Radio frequency identification
WPAN	wireless personal area networks
IEEE	Institute of Electrical and Electronics Engineers
WLANs	wireless local area networks
Mbit/s	megabit per second
CDMA	Code-Division Multiple Access
m LF	Low Frequency
$_{ m HF}$	High Frequency
UHF	Ultra-High Frequency
POE	Power Over Ethernet

CSIRO	Commonwealth scientific and industrial research organisation
MNN	Multiple neural network
LF-DLSTM	Local feature-based deep long short-term memory
BPANN	Feed-forward back propagation artificial neural network
RMSE	Root mean square error
IoT	Internet of Things
LoRaWAN	long-range wide-area network
UWB	Ultra Wideband
NN-HMM	Hierarchical neural network hidden Markov model
RBF	Radial Based Function
ReLU	Rectified linear units
COTS	commercial off-the-shelf
NTP	Network time protocol
CNN	Convolution neural network
RNN	Recurrent neural networks
MSE	Mean squared error
MAE	Mean absolute error

TABLE OF CONTENTS

Li	st of 2	Figures	i	vi	
Li	st of '	Tables		viii	
Li	st of .	Abbrev	iations	ix	
Table of Contents				xi	
1	1 Introduction				
	1.1	Proble	em statement	4	
	1.2	Objectives			
	1.3	Resea	rch Contributions	4	
	1.4	Thesis	s Outline	5	
2	Lite	iterature Review			
	2.1	RSSI	based indoor localization	6	
		2.1.1	Model-1: Transmitter on target	6	
		2.1.2	Model-2: Receiver on target	8	
		2.1.3	Model-3: Device free localization type approaches	10	
		2.1.4	Summary of RSSI based approach	11	
	2.2	RSSI	based indoor localization accuracy improvements	14	
		2.2.1	Machine learning technique based approaches	14	
		2.2.2	Data capturing enhancements based approaches	16	
		2.2.3	Summary of localization accuracy improvements	19	
3	Methodology		21		
	3.1 Selection of the RSSI based localization model		21		
	3.2	Selection of RSSI parameters for measurements		24	
	3.3	RSSI measurement approach		25	
	3.4	4 RF receiver arrangement		27	
	3.5	Metho	od of analysing RSSI data	27	
	3.6	Summ	nary	29	
4	Exp	Experimental Setup		30	
	4.1	Targe	t tracking terrain	31	

	4.2	The relationship between RSSI readings vs distance				
	4.3	Simulation for RSSI based indoor localization system	33			
	4.4	Capturing RSSI radio map in real testbed	35			
		4.4.1 Hardware	35			
		4.4.2 Capturing time synchronized RSSI arrays	36			
		4.4.3 Annotating RSSI arrays with transmitter position informa-				
		tion	38			
	4.5	Deep Neural Network approach for analysing RF signal based data	39			
		4.5.1 Preparing the dataset for DNN based analysis	42			
	4.6	Recurrent Neural Network approach for analysing Temporal-RSSI				
		data	46			
		4.6.1 Preparing the datasets for RNN based analysis	50			
	4.7	Summary				
5	Results and Discussion					
	5.1	5.1 The relationship between RSSI readings and distance between trans				
		mitters and receivers	55			
	5.2	Feasibility of using DNN for analysing RSSI data	57			
	5.3	Effect of the number and arrangement of RF receivers				
	5.4	The effect of position coordinate density for RSSI based localiza-				
		tion accuracy	59			
	5.5	Effect of body orientation on RSSI based localization accuracy 6				
	5.6	Improving tracking and localization accuracy in realtime using				
		DNN predictions	63			
	5.7	Improving tracking and localization accuracy using time-domain				
		filtered RSSI data	66			
	5.8	Implementing RSSI body attenuation effect using single RNN net-				
		work and improving accuracy by analyzing the time steps	68			
6	Con	clusion	73			
Re	eferen	ces	77			