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ABSTRACT

Many research experiments with large data processing requirements rely on massive,
distributed Computing Grids for their computational requirements. A Computing Grid
is built by combining a large number of individual computing sites distributed glob-
ally. These Grid sites are maintained by different institutions across the world and con-
tribute thousands of worker nodes possessing different capabilities and configurations.
Developing software for Grid operations that works on all nodes while harnessing the
maximum capabilities offered by any given Grid site is challenging without knowing
what capabilities each site offers in advance. This research focuses on developing an
architecture-independent Grid infrastructure monitoring design to monitor the infras-
tructure capabilities and configurations of worker nodes at sites across a Computing
Grid without the need to contact local site administrators. The design presents a highly
flexible and extensible architecture that offers infrastructure metric collection without
local agent installations at Grid sites. The resulting design is used to implement a Grid
infrastructure monitoring framework called “Site Sonar v2.0” that is currently being
used to monitor the infrastructure of 7,000+ worker nodes across 60+ Grid sites in the
ALICE Computing Grid. The proposed design is then used to introduce an improved
Job matching architecture for Computing Grids that allows job matching based on any
infrastructure property of the worker nodes. This dissertation introduces the proposed
architecture for a highly flexible and extensible Grid infrastructure monitoring design
and an improved job design for Computing Grids and the implementation of those de-
signs to derive important findings about the infrastructure of ALICE Computing Grid
while improving its job matching capabilities. This work provides a significant con-
tribution to the development of distributed Computing Grids, particularly in terms of
providing a more efficient and effective way to monitor infrastructure and match jobs
to worker nodes.

Keywords: Grid computing, Grid monitoring, Grid infrastructure, infrastructure monitoring,

Site Sonar, Job Matching, Infrastructure aware
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CHAPTER 1

INTRODUCTION

1.1 Overview

Computing Grids are used widely in large research organizations to cater the mas-
sive data processing requirements of the experiments. A Computing Grid is a virtual
collection of multiple Grid sites distributed globally and managed by a team of Grid
administrators. Even though a Computing Grid is composed and maintained by Grid
administrators in a single organization, Grid sites are built and controlled by site ad-
ministrators in different organizations. Grid sites pledge their computing power to
different Computing Grids allowing different Grids to use their data processing capa-
bilities when required. They also provide storage facilities to store data relevant to
the experiment or the output data from analyzing experiment data. Since Grid sites
are owned and managed by different parties, each site is built and configured depend-
ing on the requirement of the owning party. This makes a Computing Grid highly
heterogeneous as it contains a large number of computing nodes that have different ca-
pabilities and are configured different to each other. For example, one site could have
compute-optimized clusters with Ubuntu nodes whereas another site could have GPU-
optimized clusters with CentOS nodes. Since each Grid site is different from the other,
jobs running on one site could fail on the other due to the infrastructure limitations or
differences on that site. Therefore, it is important to consider the infrastructure avail-
able on one site when matching jobs to that site. Collecting the infrastructure details of
each site is a hard task because the sites are not under the control of Grid administrators
and the site administrators are reluctant to provide access or allow Grid administrators
to install different software in their nodes for monitoring purposes. While different
Grid infrastructure monitoring tools are available in the literature (described in chapter
2), those are very restricted with limited capabilities and they are completely isolated
from the job matching process making it impossible to allow job matching based on
infrastructure capabilities or limitations in Grid sites.

This research intends to address this problem by proposing a new flexible and ex-
tensible Grid monitoring architecture to collect Grid infrastructure metrics that can ul-
timately be integrated with the Job matching process to introduce Infrastructure Aware
Job Matching for Computing Grids. The architecture has then been used to develop a
software called “Site Sonar” that is currently monitoring 7,000+ worker nodes across
60+ Grid sites in ALICE Computing Grid in CERN, the European Organization for
Nuclear Research, which is one of the world’s largest and most respected centers for
scientific research. It has been used to provide Infrastructure Aware Job Matching
capabilities for the ALICE Grid and the software is being used in production at the

1



moment.

1.2 Background

1.2.1 Grid Site

A Grid site is a computing site that consists of a large number of worker nodes. Differ-
ent organizations build and maintain computing sites for their computational or storage
requirements. Since it is a waste to allow this amount of resources to stay idle even for
a small time, these computing sites share their resources with multiple research orga-
nizations or experiments so that the resources are fully utilized. Grid sites often pledge
their resources to large Computing Grids which in turn allow their users to access a
massive amount of resources than what is provided by the individual Grid site.

1.2.2 Computing Grid

A Computing Grid is a virtual combination of a large number of Grid sites. A Grid
middleware is run on all the Grid sites that presents the combination of individual Grid
sites as a massive computer to the end user allowing the end user to run large workloads
that require thousands of core hours to complete. Computing Grids are widely used in
large scale experiments which have large data processing requirements that cannot be
catered by a few computing sites.

1.2.3 CERN

The European Organization for Nuclear Research, famously known as CERN, is an
intergovernmental organization that operates the largest particle physics laboratory in
the world. CERN houses the largest particle accelerator in the world called the Large
Hadron Collider (LHC) [1] and more than 2660 staff members and hosts more than
12,000 users from more than 70 countries in the world[2]. CERN is largely famous
in the computing domain for the origination of the “World Wide Web” at CERN in
1989[3]. CERN generates more than 49 petabytes of data annually which are used to
do complex calculations and simulations related to physics[4].

1.2.4 ALICE experiment

A Large Ion Collider Experiment (ALICE) is one of the eight detector experiments
at the Large Hadron Collider at CERN. It is dedicated to studying heavy-ion physics
at LHC and intends to study the physics of strongly interacting matter at the highest
energy densities reached so far in a laboratory. The experiment results in outputting
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events building bandwidth of up to 3.5 TB/s and providing compressed data for per-
manent storage at a rate of 100 GB/s[5] leading to the requirement of having the most
advanced computing techniques for handling the experiment data.

1.2.5 ALICE Computing Grid

ALICE Computing Grid has been formulated to cater to the ever-growing data process-
ing and storage requirements of the ALICE experiment. It consists of over 0 Grid sites
that collectively contribute over 7,000 worker nodes to the Grid. JAliEn[6] middleware
developed by the ALICE Grid team presents all the Grid sites as a single Computing
Grid to the ALICE users to satisfy their data processing requirements. The study of
this research was done on the ALICE Computing Grid and the research outcomes are
now deployed in production as a new upgrade to JAliEn middleware.

Fig. 1.1: ALICE Grid in numbers

1.2.6 Grid Infrastructure Monitoring

As explained in the previous sections 1.2.1 and 1.2.2, a Computing Grid is a collection
of individual Grid sites operated by different parties. Given that these parties are often
independent and have their sites configured to cater to their own needs, each site is
different from one another leading to a highly heterogeneous network of computers.

To further intensify the problem, Grid admins do not have access to individual
nodes on the system and hence they do not have a way to check the configuration of
nodes in the site. The current process followed to address this is opening a ticket in
a portal that is maintained by the Grid site and asking the site administrators about
the configuration of the site if the Grid admins suspect that there is an issue with a
specific site. This could cause a lot of redundant work since the site configurations
could change from time to time.

In addition to that, while this is doable for a single site or two, it would be a
tedious task if there is a need to know the configuration of nodes across the Grid. For
example, as a part of a major update to the Grid middleware in ALICE computing Grid,
support to run jobs inside containers was introduced. However, for this functionality to
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work properly on a computing node, nodes were required to have some prerequisites
already setup and there was no easy way to collect this information which led to the
requirement of having a proper Grid infrastructure monitoring system.

A Grid infrastructure monitoring system possesses the capability to monitor the
infrastructure properties of all the individual nodes in the Computing Grid and provide
reports to the Grid administrators that eliminate the need to contact individual Site
admins to troubleshoot an issue. Operating System, CPU information, memory infor-
mation, available packages etc. are some of the infrastructure information monitored
by a Grid infrastructure monitoring system.

1.2.7 Jobs

Computing Grids allow a user to run a task that accomplishes a certain computational
requirement of that user. This kind of tasks are referred to as “Jobs” in Grid terminol-
ogy. Users can submit jobs with specific requirements like CPU, RAM, storage etc.,
and with a specific goal like doing a complex calculation or running an analysis on a
data set etc. Once the user defines their job and submits the job, the Grid middleware
will ensure that the job is executed in a worker node in the Grid and the output of the
job is made available to the user.

1.2.8 Pilot Jobs

Pilot Jobs are a kind of placeholder jobs that are submitted by Grid middleware to
different computing sites to reserve a job execution slot in a worker node. They hold the
place in the worker node until a suitable job is assigned to it which can execute in that
job execution slot. Pilot jobs are the most widely used Grid middleware approach at the
moment of this study as it allow lazy binding of the jobs to the worker node. The use of
Pilot jobs allows the Grid middleware to reserve slots in many computing sites across
the Grid and use those slots to develop a virtual centralized queue in the perspective of
the Grid middleware which facilitates advanced job scheduling mechanisms.

1.2.9 Job Matching

User jobs are executed on a selected computing node based on the decision taken by
the Grid middleware. Matching a user job to a Grid node is referred as “Job Matching”
in Grid terminology.

The Grid contains computing nodes of different capabilities and configurations and
the jobs submitted to the Grid by the users have different requirements. To ensure an
optimum use of the computing resources, it is essential to match the submitted jobs
to the nodes that fulfill the requirement with minimum idle resources. For example,
if a user job requires 6 CPU cores to process, and we have only a computing node of
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8 cores and 16 cores, we should assign the job to the computing node with 8 cores to
reduce resource wastage. This process is usually undertaken by a component called
“Job Matcher” or “Job Broker” in a Grid middleware.

Most Job Brokers are capable of matching jobs on a set of requirements like pre-
ferred grid site to run on, TTL (Time To Live) of the job, user type etc. However, they
have very limited capability to see and use the configuration/capabilities(and limita-
tions) of individual computing nodes to do the job matching. They have the visibility
of a limited set of hard-coded infrastructure parameters of the computing nodes that
are available for job matching. For example, Job Broker in JAliEn has visibility of the
number of CPU cores and the installed packages in the candidate computing nodes to
be considered in the job matching process. While the jobs are matched to individual
nodes based on this information, jobs could fail due to other issues like lack of mem-
ory, incompatible operating system, lack of Operating System (OS) libraries etc. and
the job matching could be considerably improved if the Job Broker has access to such
extra information about the node.

1.3 Motivation

A Computing Grid contains a massive amount of resources and it is the responsibility
of Grid owners/administrators to ensure that the available resources are optimally uti-
lized. On one hand, this can be done by matching jobs to the node with the minimum
amount of resources above the required amount in a job. On the other hand, this can be
improved by reducing the job failures on the Grid that utilize resources and ultimately
fail without giving a useful output. Jobs can fail due to multiple reasons like:

• Job is incompatible with the assigned computing node. (eg: Absence of GPUs
to run a GPU-bound job)

• Libraries missing in the computing node. (eg: Incompatible operating system

• Grid middleware expects functionality from the node that the nodes do not pos-
sess. eg: Ability to run singularity in the node

In addition to reducing the job failures due to incompatibilities, we can optimize
our middleware, job payload, and workflows to make maximum use of the Grid and
identify current bottlenecks in the Grid if it was possible to have a better idea about
the infrastructure capabilities and limitation of worker nodes in the Grid. This research
is motivated by this factor and intends to find a better way to provide a complete idea
about the infrastructure capabilities and limitations of a Computing Grid and to find a
way to improve the job matching process to account for such limitation and capabilities
when assigning jobs to worker nodes that could ultimately lead to reduced job failures
and increased efficiency in resource utilization.
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1.4 Problem Statement

“Introduce a flexible and extensible way to collect infrastructure parameters of a Com-
puting Grid and use that information to improve the job matching process in the Grid”

1.5 Research Objectives

1. Identify a methodology to collect infrastructure metrics of individual computing
nodes in a distributed Computing Grid

2. Introduce a new Grid infrastructure monitoring design

3. Design a new job matching architecture to account for infrastructure properties
in the Job matching process

1.6 Research Outcomes

After achieving each research objective, the new concepts were used to deliver the
following outcomes.

1. Develop a new Grid infrastructure metric collection framework

2. Implement an Analysis and visualization tool for collected metrics

3. Integrate infrastructure metrics to JAliEn Job Broker

1.7 Publications

K. Wijethunga, L. Betev, C. Grigoras, M. Stortvedt, I. Perera, G. Amarasinghe, and M.
Litmaath, “Site Sonar - A Flexible and Extensible Infrastructure Monitoring Tool for
ALICE Grid” 26th International Conference on Computing in High Energy & Nuclear
Physics (CHEP 2023)

1.8 Organization of Thesis

This thesis studies how the infrastructure properties of worker nodes in a Computing
Grid can be collected and how the job matching process in Computing Grids can be im-
proved to include these properties in the job matching process. The thesis is organized
as follows.

• Chapter 2 of the thesis discusses the literature associated with the research de-
scribing the existing Grid infrastructure monitoring systems and Grid job match-
ing processes by existing Grid middleware. The literature review also discusses
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the issues and limitations with the existing systems that led to the requirement
to develop system to address the existing problems

• Chapter 3 describes the methodology employed to achieve the research objec-
tive. It details out each aspects of the research and how the proposed methodol-
ogy helps to achieve the goals of this research

• Chapter 4 explains the implementation of the system that was developed by im-
plementing the proposed methodology to achieve the research outcomes

• Chapter 5 discusses the experimental results, analysis and findings of the re-
search and evaluates the new system to prove that the research goals were achieved
successfully

• Chapter 6 concludes the research presenting the achieved outcomes and conclu-
sions of the study

• Chapter 7 lays out the plan for future work that could be accomplished as an
extension of this research
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CHAPTER 2

LITERATURE REVIEW

2.1 Grid Infrastructure Monitoring

2.1.1 Grid Computing

Grid Computing is a concept that is closely related with High high-throughput com-
puting. While Grid computing does not always guarantee to provide high throughput,
it focuses on completing a large amount of work over a period of time[7]. A Comput-
ing Grid is created by seamlessly integrating geographically distributed and heteroge-
neous computing resources into a single unit using virtualization. From a user’s view,
the Grid can be seen as a single entity of massive computing power when in reality it
is a number of distributed computing resources in different computing sites working
in conjunction. These computing sites are owned and operated by individual organi-
zations with their own administrative and configuration policies. These organizations
come into an agreement to share their resources with each other forming a “Virtual
Organization”[8]. This concept allows each organization to receive computing power
that is much larger than any individual site can contain.

Fig. 2.1: Foster’s model of Grid Computing

Figure 2.1 presents the Grid computing model presented by Ian Foster et al. [9]
who are pioneers in introducing the concept of Grid computing. He proposes the Grid
to be a system that [9]:

• coordinates resources that are not subject to centralized control

• using standard, open, general-purpose protocols and interfaces

• to deliver nontrivial qualities of service
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2.1.2 Grid Monitoring

As a Computing Grid consists of a large number of resources and there is a criti-
cal requirement to use them efficiently, closely monitoring the system is an essential
task. Reducing the idle time of computing resources leading to an efficient use of
resources is a widely discussed research topic in academia. A lot of techniques like
task clustering[10], intelligent resource matching[11], advance resource reserving[12],
performance predictions[13] have been discussed in this regard.

This research focuses on collecting infrastructure details of the underlying nodes in
the computing grid and using that information to provide enhanced intelligence to the
resource matching process to use the node infrastructure properties in matching jobs to
the most suitable nodes. In that regard, the literature review can be broken into 2 main
sections: Studying the existing Grid monitoring systems and the possibility of using
them to collect infrastructure metrics of underlying computing nodes, and studying the
existing job matching processes and the possibility of using the collected infrastructure
metrics at the job matching stage.

While there are a lot of famous Grid monitoring tools, most of them are focused
on collecting information at the application level. Although these tools provide infor-
mation about the application layer and performance usage, they lack the capability to
provide an understanding of the infrastructure of the underlying nodes. Even though
the basic functionalities of a Computing Grid can be performed by only monitoring
the application layer, much more powerful functionalities can be offered if the Grid
middleware has access to the infrastructure details of the underlying nodes.

Given that a Computing Grid is setup by a virtual organization that comprises in-
dependent individual entities, they have their own ways to setup the computing cluster,
their own administrative policies, different security policies etc. Developing a Grid
middleware that is generic to all these sites and their configurations while providing
a good performance is a hard task. For example, ALICE Computing Grid[14] had a
requirement to support containerized jobs for its next stage of operation called “LHC
Run 3”[15], but developing JAliEn which is the ALICE Grid middleware to allow this
depended on all the computing sites running CentOS 6 or above to provide neces-
sary operating system features. An understanding of the infrastructure details of each
computing site and its nodes were essential for this which led to the requirement of
developing a new Grid Infrastructure Monitoring system.

2.1.3 Existing Tools

Zanikolas et al[16] classifies the Grid monitoring systems into four levels in their pro-
posed taxonomy as shown in Fig. 2.2. Their taxonomy includes a set of components:
“sensor”, “producer”, “consumer”, “republishers” which are introduced by the Global
Grid Forum[17].
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• Sensor(S) : A process that monitors an entity and generates events.

• Producer(P) : A process that implements at least one producer Application Pro-
gramming Interface (API) for providing events.

• Consumer(C) : A process that receives events by implementing at least one con-
sumer API

• Republisher(R) : Any single component implementing both producer and con-
sumer interfaces for functions like filtering, aggregating, broadcasting etc. There
can also be a hierarchy of republishers(H) with each republisher responsible for
one functionality.

In simple terms, a sensor can be identified as a data collecting probe that makes
the data available through a non programmable interface like a web page, producer
can be identified as a data provider, consumer as a data receiver and a republisher as a
component that consumes data, process data and output them in an improved format.

Fig. 2.2: Taxonomy of Grid monitoring systems

The Grid monitoring systems in which data flows directly from sensors to con-
sumers are categorized as Level 0. These are the most trivial systems that collect data
by running a periodic probe and make them available through a basic mechanism like
a log file or a web page.

In level 1 machines, either sensors are implemented in the same machine, or their
functionality is also provided by the producers, and the collected data is exposed to
consumers via an API. Level 2 monitoring systems consist of at least one republisher
with fixed functionality in addition to the producers. Highly flexible monitoring sys-
tems fall under level 3 featuring a hierarchy of configurable republishers when data
flows from producers to the consumers. All the Grid monitoring systems seem to fall
under one of these 4 categories and the following section discusses a few of the existing
systems that provide close functionality to the context of this research.

2.1.3.1 GridICE

GridICE[18] is a level 1 legacy Grid infrastructure monitoring system that was devel-
oped to monitor the INFN Grid. The system consist of individual agents installed at
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each Grid site which collect the infrastructure data and report to the central services
daily. With GridICE, local site administrators can decide what should be exposed to the
outside as monitoring data. Making use of GridICE then implies that the ALICE Grid
team would need to negotiate with each ALICE Grid site on the desired information to
be exposed, and yet again each time a change is desired, making for an unnecessarily
cumbersome operational model.

GridICE was designed by Andreozzi et al.[18] to monitor the INFN Computing
Grid in Italy. It consists of a layered architecture with multiple services as described
below.

• Measurement service: Responsible for collecting metrics and storing them in a
local repository (Resembling a sensor)

• Publisher service: Publish the collected information to consumers

• Data Collector service: Collect data from the publishers (Resembling to a con-
sumer)

• Detection/Notification and Data Analyzer services: These services are responsi-
ble for detecting issues in the Grid and send alerts to the relevant parties. Data
analysis layer provides performance analysis, usage levels and statistics to the
users.

• Presentation service : Present collected data in a web-based Graphical User In-
terface (GUI)

GridICE follows a Level 2 Grid monitoring system architecture with the presence
of sensors, producers, consumers, and a set of republishers with a fixed functionality.
It provides many infrastructure details of the nodes like Operating System, Processor,
Memory information etc. which are defined in the GLUE schema[19] and provide
many interesting information that we plan to gather in this research. However, the
GLUE schema is a legacy schema and GridICE uses old technologies like XML[20],
Globus Monitoring and Discovery Service (MDS) . In addition to that it uses the pull
model for collecting data which is covered in detail in section 3.1.4 which has been
shown as a major issue in monitoring systems. In order to collect data from nodes in
the Grid, GridICE has configured monitoring agents on the edge nodes. While this is
possible when each organization agrees, in larger Grids this approach is not feasible.

Using of GLUE schema to collect data reduces the flexibility of GridICE consider-
ably. While it gives a lot of information it is not possible to collect custom information
which makes the system less desirable. GridICE has an important feature of being
able to detect and notify abnormal behaviours in the Grid, however, it does not have
the capability to act on that information to provide a resolution.
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2.1.3.2 Paryavekshanam

Paryavekshanam[21] is a Grid infrastructure monitoring system developed by Prasad et
al to monitor the GARUDA[22] computing Grid. At the time of the paper, GARUDA
Grid consisted of 45 organizations distributed across 17 cities in India. It is capable
of providing both application level and infrastructure level monitoring including mon-
itoring of:

• Computing resources

• Network

• Grid Middleware

• Storage

• Jobs tracking

• Software Installed

Its architecture resembles a simple level 1 Grid monitoring system without the
presence of republishers and it consists of the following components.

1. Information Generator - Provides the functionality of a sensor/ producer by run-
ning as a daemon process in the Head node of every cluster collecting data from
all the nodes in regular intervals.

2. Information Receiver - A daemon residing on the monitoring server that period-
ically requests information from the Information Generator

3. Information Repository - Provides data persistence capability to the system. In-
formation Receiver and repository can be considered as the single monitoring
server

4. Paryavekshanama Visualizer - A service that takes data from the Information
Repository and displays them in the form of graphs and tables

The system queries job information every 20 minutes, middleware information
each hour, and other software information daily. The authors have properly defined
the data collection period with the frequency of the collected data type being pro-
portional to the probability of changing the considered data over time. But the data
collection in Paryavekshanam is done using the “Pull model” where a single process
tries to crawl the Grid and collect information. While this could be feasible for a small
computing Grid, it would become considerably harder when the Grid size increases
leading to scalability issues. As we have explained in detail in section 3.1.4 such a
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system had to run for a large number of hours to complete a single crawl in the ALICE
Computing Grid. Additionally, this could lead to different resource efficiency issues
like collecting data from idle sources, unnecessary load on nodes etc. However, this
eliminates the need to install agents on computing nodes which is a highly desirable
feature when developing a monitoring system to a Computing Grid.

In terms of infrastructure information collected, Paryavekshanam is more flexi-
ble than GridICE and monitors some important information regarding the computing
nodes which are close to what we plan to collect in this research. However, it is not
flexible enough to allow changing the structure of collected data dynamically. This es-
sentially leads to the problem of having to know the exact data that you need to collect
before you start collecting data. This is an infeasible task in a highly heterogeneous
Computing Grid like this because a Grid admin does not know what data to expect if
he is defining a new monitoring configuration as discussed in section 3.2.2.

Paryavekshanam uses a pull model to collect Grid information. The pull model
usually requires a large resource-intensive process to run the data collection continu-
ously, whereas most of the Grid monitoring system use a push model to send data to
the central servers only when necessary.

2.1.3.3 MonALISA

MonALISA[23] is a widely used level 2 Grid monitoring system that has been used to
monitor the ALICE Grid for more than 15 years. It specializes in collecting real-time
performance data rather than infrastructure data which doesn’t change that often.

Fig. 2.3: High level architecture of MonALISA

Fig. 2.3 presents the high-level architecture of MonALISA presented by Balcas et
al[24]. The bottom layer consists of lookup services that are used to discover other
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MonALISA agents. This layer is not related to the domain of this research and hence
it won’t be covered in this section. The second layer from the bottom shows how
MonALISA is created by installing agents in different computing sites. Since it is
not allowed to install different monitoring agents on computing nodes, MonALISA is
usually installed at edge nodes in each computing Site. These nodes collect highly
frequent metrics from computing nodes and provide a high-level idea of how the Com-
puting site is performing. Due to the reason that the Grid admins do not prefer to allow
external monitoring agents like MonALISA to be installed in their nodes, it is not
possible to collect granular metrics regarding the individual nodes using MonALISA.
MonALISA focuses on fast-changing parameters like CPU usage, latency, network
round trip time etc. Each monitored parameter typically is reported once per minute.
For each job, about 200 parameters are reported for an aggregated update rate of ap-
proximately 500 kHz(considering 2500 jobs which is the average number of jobs that
are running on ALICE Grid at any given time). The MonALISA agents can be seen as
the data producers.

The next layer of MonALISA consists of proxies distributed around the globe. The
proxies are central services that are placed between the agents and the high-level ser-
vices to aggregate the data from different computing sites. The main intention of the
proxies is to collect the data from individual Grid sites and make them available to
other services using publicly accessible endpoints. For accounting purposes, aggre-
gated higher-level metrics are collected centrally, while detailed information for each
parameter is available in real-time locally for a short recent history. These proxies
only consume and aggregate the data and make them available to high-level services
making them republishers with fixed functionality.

The top level of the MonALISA architecture consists of high-level services that
consume the collected data. These are the consumers of the data. An important feature
of MonALISA is that it uses a push model to collect the data where the lower-level data
producers push their data to central servers to be used for monitoring purposes. This
allows MonALISA to be highly scalable because there is low overhead on the central
servers and new agents can be added easily without any changes to the central servers.
However, the functionality of MonALISA is focused on providing the required metrics
to measure the health and performance of Grid jobs which eliminates infrastructure
monitoring out of its monitoring scope.

It uses a PostgreSQL database which allows built-in support for JSON[25]. This
provides some flexibility to the data collection process, however, it does not provide
much flexibility as the database is still SQL-based. It can be seen that it is very hard
to extend MonALISA as adding a new data collection parameter requires changing
multiple components and deploying those changes across the Grid. It does not have
any built-in options to detect or report anomalies as well. A main concern regarding
the suitability of MonALISA arises from the fact that it analyzes the variation of a
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specific parameter across time whereas we are looking to analyze the variation of a
specific parameter across worker nodes.

2.1.3.4 MONIT

MONIT[26] is a monitoring framework based on a suite of popular open-source sys-
tems. It was developed by CERN IT to replace the LEMON[27] framework used for
CERN Data Center infrastructure monitoring as well as the WLCG Dashboards[28]
which were used to monitor activities on the Worldwide LHC Computing Grid (WLCG)
until a few years ago.

MONIT collects high-frequency data about the health of CERN Data Center hosts
and their services. It completely removes the use of in-house data monitoring tools
that have been used so far and makes use of a technology stack that has become a
global standard for monitoring activities. This is an important feature in a monitor-
ing system because the monitoring domain has been standardized in the last couple
of years with the huge rise in popularity of tools like Elasticsearch[29], Kibana[30],
Apache Kafka[31] etc. Unlike the systems discussed above, usage of these tools pro-
vides a large number of advantages and powerful features like no-code visualizations,
schema-free data ingestion, built-in data indexing leading to fast query performance
etc. MONIT architecture consists of 4 major components described below.

Fig. 2.4: MONIT Architecture

1. Data Sources - Data sources resemble Producers in the discussed taxonomy. Un-
like the traditional system, MONIT offers a range of data sources due to the use
of new an improved data transport and processing technologies. CollectD lo-
cal agents are used for sending metrics that replace LEMON agents on every
node[32]. HTTP and ActiveMQ protocols are exposed for the external data pro-
ducers to inject data into the system. It also uses JDBC Query to periodically
pull external data for existing monitoring databases. Data is sent in a schema-
free JSON format delivering a high flexibility to the system allowing ad-hoc
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changes to data collection parameters and allows post data filtering which is an
important feature that we seek in a suitable monitoring system.

2. Transport and Processing - All the received data from the Data sources are trans-
ported to an Apache Kafka cluster. This introduces a separate layer(That can be
identified as a hierarchy of republishers that can be repurposed) between data
producer and consumer thus eliminating a major bottleneck that is available in
many existing systems. It also allows data handling via Apache Spark[33] with
Kafka data in real-time or HDFS data in batch processing. It provides important
features like enhancing the data to include additional fields, aggregating data
across multiple fields and time, data correlation etc. which are not available in
traditional monitoring systems.

3. Storage - Around 3 TB of data(per day in compressed mode) received by MONIT
are stored in different storage systems like HDFS[34] for long-term archival,
Elasticsearch for short-term indexing and visualizing and Influx DB for medium
storage of time series data.

4. Data Access - Data Access component resembles the Sensors in the discussed
taxonomy. MONIT offers data access via popular data visualization tools like
Kibana, Grafana[35], SWAN[36]. This approach provides much needed features
to the users for easy data visualization like simple query language, fast data re-
trieval, advanced plot types, powerful visualizations etc. The power of aban-
doning of the traditional in-house monitoring systems yields as this stage be-
cause the traditional system are not very well maintained(as they are not widely
adopted) and hence for example to add a new visualization type, a user has to
write code and design the type. Such needs are eliminated and now the users can
visualize their data in powerful visualizations with zero code additions

With the presence of Producers, Consumers, and a hierarchy of configurable re-
publishers, we can see that MONIT is a level 3 Monitoring system. We can see that
MONIT consists of a number of desirable features, however, MONIT is aimed at mon-
itoring a large data center(because it requires monitoring agent installation in nodes)
and not a computing Grid. Due to this reason, MONIT does not provide a suitable
solution to the research problem although it is closely related.

2.1.3.5 Site Sonar v1.0

Site Sonar v1.0 is a simple monitoring system developed for collecting infrastructure
information from the worker nodes[37] in the ALICE Computing Grid. The idea of the
project is to collect infrastructure information of the Grid worker nodes by submitting
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an actual job whose purpose is to collect infrastructure metrics instead of running an
actual payload.

Fig. 2.5: Site Sonar v1.0 architecture

It has a simple architecture as shown in Fig. 2.5. Site Sonar Tool is a simple
CLI utility that possesses the capability to submit jobs to the ALICE computing Grid.
A trivial job that executes a set of scripts that collect worker node information like
operating system, RAM, space left etc. is being continuously submitted by this tool
to each Grid site in the Computing Grid. The job executes the monitoring scripts
and sends back the result to a web server that is accompanied by the CLI tool which
persists the data for long-term usage. A separate web service uses this database to
expose a frontend[38] to query these data by the users to be used for their analysis
which is shown in 2.6.

Given its simple architecture, Site Sonar v1.0 possesses a set of major drawbacks
like flooding the Grid with jobs to collect data from nodes, high resource wastage, re-
quirement of manual intervention for data monitoring etc. These issues are discussed
in detail in section 3.1.3. It is important to note that, while Site Sonar v1.0 has its
drawbacks in terms of resource utilization, flexibility and extensibility etc., it provides
the basic functionality that is intended to be used in this research: It proves that it is
possible to collect infrastructure information from worker nodes in ALICE Computing
Grid without installing agents on any Grid sites. The steps taken to address the draw-
backs and the suggested solutions for these drawbacks are discussed under the section
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3.1.4.

Fig. 2.6: Site Sonar v1.0 Interface

2.1.4 Issues with Existing Tools

In the previous section, we have discussed several Grid monitoring tools that are
closely related to achieving the goals of this research. However, each of them has
its own pros and cons and none of the existing systems provide the final outcome ex-
pected in this research. Some of the essential requirements that we have identified to
support the final outcome are as follows:

1. Focus on infrastructure monitoring - Grid monitoring can be categorized into 2
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sections: Application level monitoring and infrastructure monitoring. Famous
application-level monitoring systems like MonALISA are already available and
widely used. Since they cannot be used for monitoring the infrastructure, it is
important to identify if the discussed tools focus on infrastructure or application-
level monitoring

2. Push model - We have identified the pull model in data collection poses major
scalability issues and performance bottlenecks in the monitoring process. This
is proved with experimental results in section 5.3.1.1 under the evaluation of the
study. Hence the new system must include a push model for collecting data from
nodes.

3. Absence of agent installation - Grid sites are owned and operated by individual
organizations and they often support multiple Virtual Organizations. Installing
different monitoring tools to support each Virtual Organizations’ requirement is
infeasible and Grid site administrators do not prefer this. Already established
and proven systems like Nagios[39], Ganglia[40] or SaaS platforms like Data-
Dog could have been easily used for our case if this was allowed.

4. Flexibility in data collection - It can be seen that there are number of infrastruc-
ture monitoring tools already for Grids. However, they are not flexible in terms
of data collection. Most of the tools are SQL backed leading to the requirement
of having a strict schema. This raises issues like the lack of Post Data Filtering
capabilities described in section 3.2.2 which are not ideal.

5. High extensibility - Most of the existing systems tend to be quite cumbersome
when adding a new data collection metric or a data visualization plot. The agent-
based tools need updating the agents across all deployment and the use of in-
house tools for data visualization lead to less developed data visualization tools
that require coding to add new visualizations and analysis.

6. Act upon alarming information - While all the above features are desirable in
an infrastructure monitoring system, there seem to be very few actions taken
based on the collected data. Each system has its own notification and alerting
mechanisms, but most of them do not seem to be able to use that information to
prevent future failures or increase resource utilization.

These features are evaluated with respect to the studied monitoring tools and Table
2.1 summarizes the presence of these features in each tool.

2.1.4.1 Issues with cloud monitoring systems

The development of monitoring software for Grid applications has been limited in
recent years, as most of the communities that might have an interest in Grid computing
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TABLE 2.1: ISSUES WITH EXISTING GRID MONITORING TOOLS

Feature
Tool

GridIce
Paryavek
-shanam MonALISA MONIT

Site Sonar
v1.0

Focus on infrastructure
monitoring ✓ ✓ ✓ ✓ ✓

Push Model × × ✓ ✓ ×

No agent installations
on sites ✓ ✓ × × ✓

Flexibility in
data collection × × × ✓ ×

High Extensibility × × × × ×

Can act upon
alarming information × × × × ×

have rather invested their efforts in cloud computing solutions instead. Although the
two fields are closely related, tools that are developed for monitoring cloud computing
centers cannot be used to monitor a computing Grid for the following reasons:

• A cloud computing center is managed by a single organization that by construc-
tion already knows the properties of the resources it makes available to cus-
tomers.

• Similarly by construction, customers already know what kinds of resources (hard-
ware and software configurations) they requested and presumably received, deem-
ing the collection of such information unnecessary.

• The monitoring software that does get used, whether by resource providers or
consumers, is rather concerned with performance data instead of infrastructure
data.

2.2 Job Matching

Job Matching is the process of assigning the jobs submitted by users to the most suit-
able nodes in the computing Grid. One of the critical functionalities of the Grid mid-
dleware is to undertake the job matching for the Grid. Different requirements related
to the job are defined by users in the job submission request. Job submission requests
are written in different formats as decided by the Grid administrators. For example,
ALICE Computing Grid uses a language called Job Description Language (JDL) [41]
to define the Job requirements.

User = "alidaq";

Packages = {
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"VO_ALICE@O2PDPSuite::gpu-nightly-20230320-1"

};

Executable = "/alice/cern.ch/user/a/xxxx/alien_mergeCurrents.sh";

InputFile = {

"LF:/alice/data/2022/xxxx/tpcCurrents/tpcSPCalibration.xml"

};

JDLPath = "/alice/cern.ch/user/a/xxxx/mergeCurrents.jdl";

OutputDir = "/alice/data/2022/xxxx/tpcCurrents/";

Requirements = ( member(other.GridPartitions, "merger") )

&& ( other.TTL > 72000 )

&& ( other.Price <= 11 );

MemorySize = "128GB";

CPUCores = "16";

Type = "Job";

Above code section1 shows an extract of a real job that has run on the ALICE
Computing Grid. The fields InputFile, Executable, OutputDir are self-explanatory.
The most important part to note is the MemorySize and CPUCores fields defined in
the JDL. These fields correspond to the minimum amount of RAM and number of
CPU Cores necessary to run the job. It is important to match the job to a node that has
more than the requested amount of these components as otherwise, the job will fail to
execute or take days to execute up to completion.

2.2.1 Issues with Existing Tools

The suitability of a node for a given job is decided by using multiple parameters. A
few of them are discussed below.

1. CPU Cores - No. of CPU cores in a worker node is one of the main parameters
considered in job matching. In order to reduce resource wastage, a node that
provides the exact number of cores as required by the job. If such a node is not
available, a node that has the least number of cores that is more than the required
amount is assigned so as to reduce the number of idle cores in the job execution
period.

2. Memory - Memory(RAM) is used in a similar manner to CPU cores in job
matching processes, however not all middleware is capable of matching jobs
based on RAM.

1Some fields are redacted to preserve the privacy of the data
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3. Disk space - Many jobs require a certain amount of space in the node that exe-
cutes the job to ensure that the job does not run out space to write the intermedi-
ary results while processing the data. Therefore the matched node should have
more space than required by the job.

4. Geographical distance to data - Jobs submitted to Grids are large scale jobs that
cannot be executed using normal computers. Some of them analyze terabytes of
data that is stored in the Grid. In such cases, it is important to execute these jobs
in sites that are closer to the node that is executing the job in order to reduce
the network latency on reading Input/Output (I/O) and to reduce the extra stress
on network bandwidth due to having to transfer data from one place to another.
Therefore, it is desirable to match jobs to nodes that exist closer to the data.

While these are some parameters that are often used in the job matching process,
Grid administrators desire to have more parameters available so that they can do a
more optimized job matching. Given the heterogeneity of the users in the Grid, Grid
resources are used to execute jobs related to a number of domains and use cases. Each
of these has its own specifics and sometimes poses requirements that are not covered
by the parameters used in the job matching process.

Some jobs need specific libraries installed in the worker node like language in-
terpreters, utility functions etc. Some jobs can run only on some operating systems.
Since the Grid contains nodes with different Operating systems, these jobs can easily
fail execution on some Grid sites. For example, the new “hyperloop” jobs in ALICE
Computing Grid can only execute in computing nodes that support AVX architecture
as they make use of newer CPU instructions for providing improved performance[42].
If these requirements are not met, those jobs cannot be executed successfully. How-
ever, the existing job matching systems can support only a limited set of hardcoded
parameters like CPU cores, Disk space etc., and cannot collect granular information
like software versions, libraries installed, CPU architecture etc. of the worker node.
The jobs will be matched to unsuitable nodes that do not support these requirements
owing to the fact that such granular information is not included in the job matching pro-
cess. Such jobs will start executing on the matched node and ultimately fail wasting the
Grid resources due to the absence of said requirements. Even if the Grid administrators
decide to introduce a new infrastructure parameter to their job matching process, this
requires the following lengthy, multi-step process that makes it cumbersome to add or
remove parameters which leads the administrators to decide to only have mandatory
parameters in the job matching process.

1. Initially, Grid middleware job matchers should be updated to accept the parame-
ter if it is sent from the worker nodes. These job matchers are mission-critical to
the functionality of Grid middleware and they are updated only if its absolutely
necessary.
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2. Once the job matchers are updated, the change should be propagated to other
central servers which is a careful process.

3. Then the job pilots(Grid middleware clients) should be updated to read these
parameters and send this information to the job matchers. Since the existing
systems do not have any integration with infrastructure monitoring tools, they
are unable to obtain this information.

4. If the monitoring work is done in the pilot job, the code for the pilot should
be updated and propagated across the Grid. Since any change to the pilots also
breaks the functionality of the Grid, such updates are rolled out gradually across
the Grid over a span of a couple of days or weeks.

As it is evident from the above process, updating Grid middleware causes code
changes to critical code bases, large manual effort and a multi-week upgrade process
and often it is deemed unnecessary to follow this process just to add a new match-
ing parameter to the job matching process leading the Grid middleware developers to
consider only a set of mandatory hard coded parameters in job matching.

This research focuses on addressing this problem by having a flexible way to use
any of the infrastructure parameters in a worker node in the job matching process and
providing an extensible way to add or remove new parameters to the job matching
process without any changes to the codebases or updates to Grid middleware by using
the information collected through the newly designed Grid monitoring system.

In the following section, we discuss a few of the famous Grid middleware that
undertake job matching and how they are limited in terms of having extended job
matching capabilities as discussed above.

2.2.2 Existing systems

2.2.2.1 PanDA

A Toroidal LHC Apparatus (ATLAS) is the largest experiment in the Large Hadron
Collider (LHC) which is responsible for discovering the Higgs-Boson particle in
2012[43].

The Production and Distributed Analysis (PanDA) workflow management sys-
tem(also known as Grid middleware) is developed for managing workloads in ATLAS
experiment[44]. PanDA typically runs around 600,000 jobs concurrently while pro-
cessing more than 5 million jobs per week.

When the modern Grid WMSs are considered, we can identify that each of the
WMSs follows a common high-level architecture which has become the standard ar-
chitecture for Grid WMSs. Each WMS has a central server that acts as the central
point of the system. They also have a service running at Grid sites that submits pilot
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jobs to batch queues in Grid sites. These pilot jobs are assigned to execute on worker
nodes by the batch queue and once started, they communicate with the central server
to complete job execution. The Fig. 2.7 shows the high-level overview of the system.

Fig. 2.7: PanDA WMS Overview

The central server of PanDA is called the PanDA server which is responsible for
centralized management of the WMS. It also has a component called pilot scheduler
which submits pilots as discussed above. PanDA has an additional component called
Harvester[45] which has been introduced recently with the intention of providing a
common machinery for pilot provisioning on ATLAS computing resources. Harvester
sits between the PanDA server and pilot scheduler and is designed to run on edge
nodes in HPC centers. The harvester handles the job submissions to worker nodes via
the pilot scheduler.

The harvester is capable of collecting a set of worker node information and trans-
ferring it to the central PanDA server. Following is a sample of worker node data
collected by the Harvester[46].

"AGLT2": {

"cmtconfigs": [

"x86_64-centos7-gcc62-opt",

"x86_64-centos7-gcc8-opt",
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"x86_64-slc6-gcc49-opt",

"x86_64-slc6-gcc62-opt",

"x86_64-slc6-gcc8-opt"

],

"containers": [

"any",

"/cvmfs"

],

"cvmfs": [

"atlas",

"nightlies"

],

"architectures": [

{

"arch": ["x86_64"],

"instr": ["avx2"],

"type": "cpu",

"vendor": ["intel","excl"]

},

{

"type": "gpu",

"vendor": ["nvidia","excl"],

"model":["kt100"]

}

]

}

As we can see from the data, Harvester can report information like the type of contain-
ers supported, CPU architectures, Available GPUs etc. of the worker node. However
as it is evident from the data, Harvester does not provide granular information like Op-
erating systems, installed libraries etc. and it is not easy to add or remove monitoring
parameters due to the long process needed to roll out upgrades to site services like
Harvester. Therefore, PanDA cannot do brokering based on granular information on
parameters like the Operating system.

2.2.2.2 GlideIns

GlideIns[47] is a workflow management system that is used for job execution in mul-
tiple organizations like The Compact Muon Solenoid (CMS) experiment at CERN,
Fermilab in the United States etc. It is developed as an extension to the HTCondor[48]
which is the most famous batch queue system worldwide. HTCondor undertakes the
task of managing the resources of an individual computing site and functions as a local
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resource manager that assigns tasks submitted by a pilot scheduler to nodes. GlideIns
WMS extends its functionality to include the submission of pilot jobs to worker nodes
and providing support for managing jobs in a Computing Grid instead of a single Grid
site.

GlideIns WMS manages jobs of a Grid by submitting a process called GlideIn to
worker nodes of the Grid. GlideIn intends to reserve a job execution slot in a worker
node similar to a pilot job thus creating a Global job queue for the relevant Computing
Grid.

In GlideIns, User jobs are submitted to Condor Pools. In parallel GlideIn factory
keeps submitting Glidins to Grid sites that reserve the slots for job execution. Once
the GlideIns land on sites, they choose the jobs that are most suitable to them and start
execution.

When the infrastructure parameters of worker nodes are considered GlideIns WMS
supports a limited parameter set like CPU Cores, request memory etc. and there is no
evidence to show it supports granular parameters like Operating System or installed
libraries which seems to be lacking in all the major Grid WMSs.

2.2.2.3 JAliEn

Java ALICE Environment (JAliEn) [49] is a new Grid middleware developed to sup-
port the operations of the ALICE Computing Grid. It handles Grid operations across
60+ Grid sites contributing a total of 70,000+ cores of computing power. It was de-
veloped since few years ago to replace the existing Grid middleware AliEn[41] and
has been deployed in production across all Grid sites by the end of the first quarter of
2023. Owing to its novelty, JAliEn introduces new features like containerized job[50],
resource oversubscription[51] etc. that are known to be some of the latest updates on
the Grid computing domain.

JAliEn consists of a few separate components that constitute the complete middle-
ware.

• jCentral - jCentral is the interface that opens up the central services of the WMS
to the outside. Clients and other services communicate to jCentral for vari-
ous purposes like job matching, reporting monitoring information, retrieving
database information etc. It is the only component that communicates directly
with the database to provide necessary information to clients

• Computing Element - Computing Element (CE) is a service that runs on edge
nodes in individual Grid sites. It is the only node that is exposed to outside
from the Grid site and the last point of access to ALICE Grid administrators. It
keeps submitting JobAgents to the local batch queue similar to the functionality
provided by Harvester in PanDA WMS.
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Fig. 2.8: Components of JAliEn WMS

• JobAgent - JobAgents are the pilot jobs that are submitted to Grid sites in JAliEn
with the intention of reserving job slots in advance in the worker nodes. Job
Agent is responsible for reserving the worker node for future job execution, re-
questing a matching job from Central, and spinning up a Job wrapper once it
receives a job to execute.

• JobWrapper - JobWrapper is the last unit of component in the JAliEn WMS
and it wraps the actual job payload that is required to be executed. Multiple
JobWrappers can be spun up by the Job Agents leading to parallel execution of
multiple jobs.

The job Matching process in JAliEn is undertaken by a component called “Job Bro-
ker” that sits inside the jCentral. When JobAgents land on a worker node, it collects
some preliminary information about those worker nodes like CPU cores, space left on
the node, available memory etc. and reports them to the JobBroker via jCentral. Job-
Broker queries the database for the pending job and picks the most suitable job for that
node considering multiple factors like matching of the said infrastructure parameters,
priority of the job, Time To Live (TTL) of the job etc.

In terms of the Job matching processes, JAliEn Job Broker is not very mature at
the moment and it is only able to do some basic matchings like checking if enough
resources are available to run the job or if the requested criteria are available in the
node. The parameters sent from the JobAgent in the form of a JSON document named
“SiteMap“ are used for the Job matching process. Site Map contains the said parame-
ters like CPU Cores of the node. This parameter collection logic is hard coded in the
Job Agent and thus it can only collect details about a limited set of parameters. Sim-
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ilarly in the Job Broker, how to use these parameters of matching is hard coded. This
leads to a highly limited job matching system in terms of the parameters that can be
used for the successful matching of jobs to the most suitable nodes. Adding, removing,
or updating a parameter could require updating Job Agents used across all Grid sites
and pushing a change to jCentral which is a mission-critical component for the WMS.
Therefore, the JAliEn Grid administrators were looking for a flexible and extensible
way to add new parameters to the Job Brokering process without affecting the existing
components. One of the focuses of this research is to provide a solution to this gap
using the newly developed Grid infrastructure monitoring design.

28



CHAPTER 3

METHODOLOGY

3.1 Data Collection

The initial part of the research was focused on identifying the most ideal way to col-
lect infrastructure information from the Grid nodes without reducing the job perfor-
mance. Several approaches were tried and the following section describes each of the
approaches along with their pros and cons.

3.1.1 Initial data collection with a Job

The approach that has been tried out in the Site Sonar v1.0 model was tested initially to
get an understanding of the data collection process. To try out if it is possible to collect
infrastructure metrics from a worker node as done by Site Sonar v1.0, a simple job that
tries to read the operating system from the worker node it gets landed on was submitted
to the Grid. The goal of this task was to ensure that all sites allow reading their system
information as an external entity that does not have root access and understanding the
overheads and complications associated with the current method of collecting data.

The sample job description file is shown below.

//job.jdl

Executable = "/localdomain/user/j/jalien/testscript.sh";

OutputDir = "/localdomain/user/j/jalien/output_dir_new";

Output = {stdout@disk=1};

The executable used in the JDL is given below.

//testscript.sh

#!/bin/bash

echo "Starting execution"

echo $(lsb_release -a)

sleep 10

Once its functionality was verified, a large number of jobs of the same type were
submitted to the Grid without any Grid site restrictions to check the output from differ-
ent sites. Analyzing the output from a number of sites showed that reading information
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is unrestricted across the Grid. Therefore this approach was considered as a viable so-
lution as a proof-of-concept implementation of the data collection part of the research.

3.1.2 Site Sonar v1.0 Implementation

This model has been built with Python as a Grid client which is capable of repeatedly
submitting jobs to the Grid. However, Grid job submission allows only binding jobs to
specific sites, not to specific nodes. Therefore, there is no direct way to collect infras-
tructure metrics of all the nodes in the Grid. Hence, the client has been programmed to
submit jobs in the scale of twice the presumed number of nodes in each Grid site with
the assumption that it will hopefully land on all the nodes in each Grid site providing a
full Grid coverage. The collected information was pushed to a PostgreSQL repository
which stored the results as plain text.

3.1.3 Site Sonar v1.0 Drawbacks

Site Sonar v1.0 is the existing system used by ALICE Computing Grid to monitor their
infrastructure. This system for data collection has major drawbacks in its implementa-
tion which are discussed below.

3.1.3.1 Grid Flooding

Site Sonar v1.0 floods the whole Grid with jobs in the scale of twice the number of
nodes in each Grid site in a single round of data collection. This causes a severe
bottleneck in Grid usage, as when the tool is running it not possible for other users
to easily obtain a slot to run their job because job slots in multiple Grid sites will be
occupied by the Site Sonar at the same time.

3.1.3.2 Low Grid coverage

When a worker node starts accepting jobs, it tends to keep running for some time
even after it finishes running its jobs to keep accepting future jobs. This is a measure
implemented in the Job Agents(Controller task that handles the job execution in worker
nodes) to keep utilizing the same node instead of reserving multiple nodes to run jobs
with short life spans. Site Sonar v1.0 jobs fall into this exact category as it sends
bursts of very short jobs that do a simple task and exit. Therefore Site Sonar v1.0 jobs
easily tend to land on the same node in a specific site, when a large number of jobs are
submitted to that site which reduces the number of worker nodes covered in a single
data collection run.
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3.1.3.3 Resource Utilization

To increase the Grid coverage, the solution in place was to increase the lifespan of the
submitted jobs. Each job was appended with 5 minutes of sleep time to ensure they
do not keep landing on the same node. This resulted in a huge waste of core hours
of the Grid due to the intentional idle time in Site Sonar job causing low efficiency in
Grid usage at the time of running Site Sonar. The calculated lost core hours amounts
without this 5 minute delay are presented in section 5.3.1.2 under the evaluation. The
lost core hour count would spike much higher when this delay is also considered.

3.1.3.4 Manual Intervention

Site Sonar v1.0 was based on pull model where it tries to pull infrastructure metrics
from each of the nodes. Since the Grid consists of a large number of worker nodes,
it takes around 24 hours to complete a single data collection run of Site Sonar v1.0.
As this is a heavy resource-intensive process and it causes Grid flooding and Resource
utilization issues discussed above, it was essential to manually execute and monitor
this run to ensure minimum effect on usual Grid workloads.

3.1.3.5 Partial Overview

Given that Site Sonar yields a low Grid coverage as discussed above, most of the
time we will see configuration information of only a part of the Grid site. It would
be incorrect to use this data to represent the complete site as the nodes that were not
covered could have different infrastructure metrics that would provide an incorrect
idea about the Grid site. Therefore, Site Sonar v1.0 can be used to only have a partial
overview of the Grid site.

3.1.3.6 Data Querying

Site Sonar v1.0 uses a PostgreSQL database to store and manage the data as explained
in the section 3.1.2. Although PostgreSQL supports JSON format, the tool uses plain
text for storing test results which is not ideal for storing this kind of data. It was not
interoperable with any new NoSQL storage engines like Elasticsearch. Even though
PostgreSQL supports querying data with JSON, it does not offer strong JSON indexing
capabilities leading to very low data querying performance. The issue is intensified by
the fact that it has to search more than 300,000 to provide the result for a data retrieval
query. Although this was improved by the work of Evan Sandvik[52] in his project to
develop an improved visualization interface for Site Sonar v1.0, the system still had a
latency between 600 milliseconds to 20 seconds depending on the complexity of the
query. One of the main aspects of this study was to optimize and improve the query
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performance of the system to an acceptable level. Fig. 3.1 shows the execution analysis
of one of the most basic queries in Site Sonar v1.0.

Fig. 3.1: Query Analysis of Site Sonar v1.0

3.1.4 Proposed Solution

Site Sonar v1.0 follows a Pull model where it tries to pull data from the nodes in the
computing Grid. Most of the Site Sonar v1.0 drawbacks discussed in section 3.1.3 are
a result of limitations introduced to the software due to the use of Pull model. It causes
the software to run a largely resource intensive process for a very long time(around 24
hours) to collect data which requires a considerable manual intervention and causes
resource utilization issues in the central machine where the process runs as well. The
lack of a central way to communicate with the Grid nodes causes low Grid coverage
and Partial Overview issues as described in the previous section.

3.1.4.1 New version based on Push Model

Since the pull model of data collection was identified as a major limitation of the
existing system, the initial research goal was focused on devising a new data collection
framework based on the push model for collecting data from Grid nodes. In this model,
we plan to push data from individual nodes to a set of central servers rather than pulling
data from the individual nodes using a central process.
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The following concerns were considered when researching the feasibility of the
push model.

1. Outbound network connectivity - A major blocker in pushing data from Grid
nodes would be pushing data from Grid nodes to a central domain as firewall
restrictions are enforced in any Grid node. However, each Grid site already
allows outbound connection to a central domain for uploading job monitoring
data which is essential for a Grid system. The same domain/server can be reused
in our scenario without requiring new network whitelisting for site admins.

2. Installing agents - As we have discussed in the Literature review in section 2.1.4,
the existing infrastructure monitoring systems require installing agents on the
nodes to collect and push data. This is not accepted by Site administrators as
they do not prefer to install optional software on their Grid sites to support ex-
periments. On the other hand installing monitoring/data reporting agents on
all the Grid nodes (around 7,000 nodes) with different site configurations and
maintaining them will be a task that will require a massive effort and manpower.
Reusing the existing Job Agents was identified as the ideal solution as they do
not require any additional installations and can do the data collection without an
issue.

3. Grid performance - Since Job Agent runs for each Job submitted to the Grid,
adding long running tasks to run before the execution of the job would cause a
detrimental impact on the efficiency of the Grid usage. As we discussed in sec-
tion 3.1.3.3, this would essentially cause large resource wastages if not properly
managed and the impact would be much worse in this approach as the wastage
would occur each time a job runs. To avoid this, only short running data col-
lection probes are used and the delays added in the section 3.1.2 were removed.
Additionally, the data is collected only once within a day from a node which
minimizes the impact of this.

4. Grid coverage - A major concern of the push model was the lack of Grid cov-
erage. This problem is automatically avoided in the new approach because Job
Agent is inherently developed to run on all nodes in the Grid and have a dis-
tributed workload on all nodes. Additionally, unlike the Site Sonar v1.0 job
submission process(section 3.1.2), Job Agents continuously get spun up across
every minute every day causing each node in the Grid ultimately to run a Job
Agent and report infrastructure data.

In addition to this, it answers the issues discussed in 3.1.3 as follows.

1. Grid flooding - Since the new model pushes data from the nodes to the central
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servers, there is no job submission required and hence the Grid won’t receive
any job extra submissions for collecting data.

2. Low Grid coverage - The old model had a concept called “Run” which refers to
a single round of data collection by submitting jobs to flood the Grid. The new
model has no concept of a Run and it runs on demand instead. Since the data
collection task always runs before the job execution, if a node has accepted a
job, it will definitely return the infrastructure metrics which means that if a node
is up and running it will eventually report its metrics at some point yielding a
higher Grid coverage.

3. Resource Utilization - The requirement to have idle time in data collection is
removed with the new model. Therefore, there is no resource idling and the
full process will take only a few tasks to execute leading to negligible resource
wastage.

4. Manual Intervention - As the data collection is integrated with the Job Agent,
there is no requirement to run this task manually, instead it will run on demand.

5. Partial Overview - The higher Grid coverage leads to providing the results from
almost all nodes across the Grid sites leading to a full overview of each Grid site
and allowing to derive conclusions about the Grid site out of the collected data
without much uncertainty.

3.2 Data Storage

For the purpose of this research, we have evaluated both SQL and No SQL data storage
options to check their suitability for the needs of the project. The existing data collec-
tion tool on Site Sonar v1.0 uses a SQL database engine and its implementation was
used to evaluate the introduction of a new NoSQL database in the research to identify
the pros and cons of the two database types.

3.2.1 SQL Storage

The existing implementation of Site Sonar v1.0 uses a PostgreSQL database and stores
the data inside multiple tables. Existing system support only direct key-value pairs in
the following form.

key1 : value1

key2 : value2

eg:-
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OS : Ubuntu 22.04

GCC_VERSION : 11.3.0

This limitation has been introduced because native SQL does not support objects
and expects the data to be in a format similar to above which can be directly mapped
to a table row. One of the major requirements in designing the monitoring architecture
in this research is making the system highly flexible allowing the monitoring probes
to change at any time in an ad-hoc manner without having to change the underlying
architecture. The general SQL table format does not support this requirement because
we are unable to add multiple values for the same key without adding a new column
in the table or using additional tables. The issue intensifies when it is required to
store complex objects like nested maps which is hard to manage with SQL databases.
Changing the database structure in an ad-hoc manner will also create major issues and
hence the existing approach is not suitable for the purposes of this research.

3.2.2 Post Data Filtering

When it comes to the computing resources in a Grid computer, it can be considered as
a black box from a Grid administrator’s point of view. Although the Grid sites pledge
their computing power to the Grid, there is no guarantee on how these computing
nodes would be configured or managed. Therefore, often when there is a probable
configuration issue to be debugged in the Grid, Grid administrators do not have an
exact idea of what exactly should be checked and what values to expect. This makes
working with existing infrastructure monitoring systems much harder because there
is no straightforward way to collect unknown parameters with SQL-based systems as
they follow a rigid schema.

When we need to monitor a new parameter in a computing Grid, there is no way
to assume what values we see at the end. To increase the gravity of the problem,
sometimes the administrators are not sure of what to monitor as well. To have a good
idea about the Grid, they would initially like to collect a bunch of data although only
some of that data will be useful in the end. None of the existing systems provide the
capability to collect a considerable amount of data at first and then narrow down on
the interesting data which means the administrator must know what he is looking for
in advance which is not the case usually. Also when the administrator assumes what
should be monitored, he might be loosing some important information in the process
if his assumption is not correct.

When working with a highly heterogeneous system like a Computing Grid with
a large number of nodes, each monitored configuration leads to a number of possible
values. For example, if we look at the number of cores per node across the Grid there
are about 15 possible values(Fig. 3.2 and if we look at CPU models across the Grid it
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show more than 50 values(Fig. 3.3). It is not possible to anticipate what needs to be
monitored in a large system like this.

Fig. 3.2: No. of nodes with given CPU Core count

Fig. 3.3: CPU model distribution in the ALICE Grid

This research proposes storing objects using JSON to address this problem. This
would allow collecting any number of parameters as the number of key-value pairs
in the JSON object can be changed without an issue. Although the native SQL does
not support complex objects, PostgreSQL offers support for JSON objects. All the
monitoring probes in Site Sonar v1.0 were converted to output results in JSON format
to utilize this feature of PostgreSQL allowing the monitoring probes to be changed in
an ad-hoc manner that results in a highly flexible data collecting tool.

This will ultimately introduce a much-needed Post Data Filtering feature to the
proposed system allowing the Grid administrator to monitor some suspicious configu-
rations at the beginning, see what values they report, and then narrow down on what
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seems to be interesting. This process is explained in detail in section 5.2.3 where this
option is used to change monitoring probes on demand to identify issues in the Grid.

3.2.3 NoSQL Storage

Although storing data as JSON in PostgreSQL provides the required flexibility to the
system, it takes a considerable time to query and retrieve JSON data via the Post-
greSQL database. While the query times are much better than storing data as text
fields and aggregating them manually, the retrieval speed becomes considerably slow
when querying a large data set. This is explained and proven with experimental results
in section 3.1.3.6 and Fig. 3.1.

Since Elasticsearch provides a much better data retrieval speed, this research pro-
poses the use of Elasticsearch as the backend for storing data which provides some
additional features as well. Some of the main features that we compared when moving
the storage to Elasticsearch are summarized in table 3.2.3

Feature
MySQL with

Plain Text
PostgreSQL
with JSON

Elasticsearch

JSON support × × ✓

Fast query time × × ✓

Visualization support × × ✓

Flexible schema changes × ✓ ✓

Inject data without schema × × ✓

3.3 Data Visualization

Data visualization plays a crucial role in any data collection system. Since it is hard to
analyze the collected data in text formats, they are often built into charts and tables that
can be easily analyzed visually. Data visualization technologies had a major improve-
ment in recent years with the introduction of new tools like Kibana, Grafana etc. that
completely replaced the existing data visualization systems used by the organizations.

One of the critical issues with existing systems can be seen as the lack of data
visualization capabilities. Most of the existing systems use in-house data visualization
tools that lack a lot of features or are not being actively developed anymore. These
tools can be seen as not up to date with the latest visualization technologies because
advent of tools like Kibana, Grafana etc. recently has become the accepted standard
for data visualization. We identified visualization of infrastructure monitoring data as
an important feature that can be considerably improved in the course of this research
in comparison to the existing literature.

Fig. 3.4 and Fig. 3.5 show the visualizations generated by systems that exist in
the literature using old technologies and new technologies respectively. It is evident
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Fig. 3.4: GridICE Interface

Fig. 3.5: MONIT Interface
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from the images that compared to modern visualization tools like Kibana, the existing
visualizations based on old technologies seem to be considerably less intuitive and
user-friendly.

3.3.1 No Code Visualizations

In addition to the lack of features in the existing visualization systems, having to create
visualizations using code was identified as a major drawback in them. Given that each
system is developed in-house, they have their own visualization libraries and the user
has to learn them add a new visualization to the existing dashboards. It is also necessary
to deploy this code in the production system as a new release of the monitoring system
often.

It can be clearly seen that this is a very hectic process especially when it is required
to develop dashboards that consist of a number of visualizations. Additionally, most
systems like MonAlisa and GridICE do not have the capability to create dashboards
and there is no easy way to compare one plot with another because each one resides in
its own window. A detailed breakdown of new features that can be easily provided by
using modern visualization technologies are listed in table 3.3.1.

Feature
Old Visualization
Systems(In house)

Modern Visualization
Systems(Eg: Kibana)

Flexible Schema × ✓

Quick data retrieval × ✓

Combine multiple visualizations × ✓

No-code visualizations × ✓

Complex filters × ✓

No code visualizations can be seen as the most prominent feature out of the above
list because one of the major requirements in this course of research is providing Post
Data Filtering as described in 3.2.2. In order to effectively use post-data filtering,
there should be a possibility to quickly and frequently change the visualization on
demand which is explained in section 5.2.3. This is very cumbersome with existing
tools because updating the code frequently to change a visualization and deploying in
production often requires a lot of effort and redundant efforts while causing human
errors and deployment failures often.

Considering the above facts, we decided that the proposed Grid architecture must
use a standard visualization engine that would reduce a lot of work and provide ad-
vanced capabilities out of the box. Kibana and Grafana were evaluated as the best op-
tions because they are considered standard and are the most widely used visualization
solutions in the computing domain at the moment. Given that the 2 systems provide
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very similar features, Kibana was chosen as the most suitable solution for this approach
as it is directly related to Elasticsearch and directly bundled with Elasticsearch as well.

3.4 Proposed Monitoring Architecture

Fig. 3.6: Proposed Architecture for Grid Infrastructure Monitoring Tool

Figure 3.6 shows the full architecture proposed for the Grid infrastructure monitor-
ing system that is discussed in this research.

The monitoring tool consists of 2 main components: The data collection framework
and the Data Analysis framework which are discussed below.

3.4.1 Data Collection Framework

The Data Collection framework is responsible for collecting and persisting data. It de-
fines how the monitoring probes should run and report data to match the requirements
of the system. A number of factors are considered when designing the data collection
framework.

1. Easy Extensibility

2. High Flexibility

3. Easy integration with Job Pilots
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3.4.1.1 Easy Extensibility

A major requirement in a monitoring system is the ability to add or remove monitoring
probes (i.e. new components of the existing types) to the system with minimum archi-
tectural impact. All the SQL-backed systems will require updating their databases in
advance of adding a new monitoring probe. Other than that, a new version of the soft-
ware that includes the new probe should be rolled out across the Grid which makes it
nearly impossible to add or remove new probes easily without having an architectural
impact on the system.

The proposed system follows a novel approach to address this issue which com-
pletely removes the architectural impact on the system. Each Computing Grid uses a
distributed file system. The distributed file system is mounted to each computing node
when they become a part of the Grid and this partition is used to provide the common
dependencies and libraries that are required for the execution of jobs. We propose to
have a separate directory on this shared file system that hosts the individual monitor-
ing probes and requires the job pilot to fetch the monitoring probes directly from this
directory. This approach has several advantages over the conventional approach.

• Since the monitoring probes are not packaged as a part of the data collection
framework, there is no requirement to update or release a new version of the
monitoring tool to include the new probes which results in zero architectural
impact on the system

• Distributed file systems have their own mechanism to distribute a new file added
to it. Therefore no additional steps are needed to add a new monitoring probe
rather than copying the probe file to the monitoring directory.

• Distributed file systems update their content periodically(within a few minutes)
to ensure that their content is up-to-date and they are in sync with their peers.
Therefore the new probe is shared across the Grid within a few minutes removing
the extra manual effort needed to share the probe in the conventional approach.

For edge cases like limiting the monitoring probes that should be run on a specific
site, a database table that provides a whitelist of probe names are used. However, this
table is not required to be used and all probes run for each site by default. This feature
is added only as a precautionary measure for edge cases.

3.4.1.2 High Flexibility

As explained in the section 3.2.2, one of the major requirements that comes with the
system is the ability to change the collected data in an ad-hoc manner which allows the
Grid administrators to identify areas of interest and narrow down to the details in those

41



areas. This is achieved by using the NoSQL storage described in section 3.2.3. The
non-rigid JSON schema will allow the collection of unstructured data and changing
the keys of the collected data without any issues.

In addition to that, we propose using shell scripts to define the monitoring probes.
This would provide a massive degree of freedom in data collection as it allows to read
any file that can be accessed by a user of the system. Another reason for this is to
ensure that minimal tools are used in data collection as the worker nodes might not
have additional libraries like Python or Java installed and using them in probes could
cause data collection failures in some sites.

We have verified that this does not pose a threat to the host system(worker node)
as we can read only the files that are accessible by a general user in the system. Since
most of the required configurations can be read by a user, there is no hindrance to the
functionality of the software due to this. Additionally, only a very limited number of
Grid administrators have the permission to update the distributed file system which
further minimizes the risk of a potential security breach.

3.4.1.3 Easy Integration

As we have identified through the course of this research, the incapability of integration
with the Grid WMSs seems to be a major drawback of the existing Grid monitoring
systems. Each Grid monitoring system so far has required the Grid administrators to
deploy a new layer of software relevant to monitoring to provide infrastructure mon-
itoring to the system. This is heavily unwelcome by Grid administrators because this
adds another layer of software that they have to manage across thousands of computing
nodes that are already too complex to manage. This can be identified as the major rea-
son why most of the infrastructure systems have not been adopted by the community
leading to their end of life sooner than anticipated. Easy integration with existing Grid
middleware without deploying a new control layer across the Grid has been heavily
studied in this research and the following section describes the associated concerns
and how each of them were resolved.

• Since we are proposing a general architecture, that can be used in any Grid
middleware, it was critical to identify an integration point that is common to all
Grid middleware, and the submission of pilot jobs was identified as the most
common feature among all the Grid WMS[46].

• Given that the Grid middleware is carefully developed to match the specific re-
quirements of the relevant Computing Grid, middleware developers are not keen
on introducing additional code that is irrelevant to its functionality. To address
this, we have developed a controller function that the middleware can call when
starting to execute the job ensuring that their usual flow is not broken. Calling
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this function will ensure that the monitoring probes are executed, and data is
collected and reported back to the central servers without any impact on the ex-
isting functionality. The controller is available both as a Java function and a bash
script to be used at the integration according to the preference of the developers.

• As the data collection controller will run at the beginning of a job, it was essential
to ensure that the data collection will not have a performance impact on the job.
Several measures were taken to ensure this.

1. Data would be collected only once per day for each node as the infrastruc-
ture metrics do not change frequently

2. Data is collected from very short and fast monitoring probes

3. Provide the ability to enable/disable running any probe on any site depend-
ing upon the requirement

The experimental results presented in the section 5.3.1.1 show that the overhead
of the new design is minimal amounting to around 3.5 seconds of overhead per
node per day which is negligibly small.

3.4.2 Data Analysis Framework

The Data Analysis framework is responsible for analyzing and visualizing the collected
results in the proposed monitoring system. This process consists of 3 major sections:
Data Collection(section 3.1), Data Storage(section 3.2), and Data Visualization (sec-
tion: 3.3). We have selected Elasticsearch, Logstash, and Kibana as the technologies
to develop our data analysis framework. This would require a self-hosted ELK cluster
running in the environment of the monitoring system maintainer or a cloud subscription
to an ELK stack. However each technology can be replaced with a similar technology
like Grafana, Splunk etc. because they provide roughly the same functionality and
can switch from one to another easily, It is foreseen that with the wide use of these
technologies, each organization usually has either of those setups already and those
instances can be reused to implement the monitoring system.

Usually, each Grid WMS consists of a central server or a server farm to accept the
incoming details from the job pilots. We recommend introducing a new HTTP service
in the server to accept the new monitoring data sent by the pilots. This approach
provides two layers of security.

• Usually job pilots are allowed to communicate with a few whitelisted domains.
Rather than whitelisting an additional domain for the purpose of monitoring,
we would recommend reusing an existing domain and accepting the traffic from
there to reduce the surface vector in case of a security breach.
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• Usually the ELK stack of an organization is hosted within the private network(or
private cloud) and contains sensitive information. Therefore, it is not usually ex-
posed to the public internet. But if it is necessary to accept the traffic directly
to the Logstash instance, it requires the Logstash instance to be public which in-
creases the risk of the potential security breach. Therefore, making the Logstash
instance private increases data security.

Considering the above reasons, we recommend accepting the traffic through a new
service in the Central server(s) and routing that traffic to the Logstash instance via an
internal network which will inject the data to Elasticsearch as shown in Fig. 3.7.

Fig. 3.7: Data flow from Job pilot to Elasticsearch cluster

3.5 Infrastructure Metrics Integration

The main goal of this research is to introduce infrastructure aware job matching to
reduce job failures in Computing Grids. The previous sections described how we can
collect, analyze, and store the infrastructure metrics from a Computing Grid in an op-
timized way to be used in the Job matching process. While the collected data will also
be useful in many other aspects like understanding the Grid limitations, Optimizing
Grid middleware etc., improving job matching was one of the usages.

At the end of the successful implementation of our Grid monitoring architecture,
the Grid administrators will have a complete overview of infrastructure of the each
node in the Computing Grid. A small sample of such collected data will look as fol-
lows. This is only a highly summarized sample of the actual data and the details of
the sample will be explained in detail in section 4.1.3.1 and a complete data sample is
available in Annex A.

"_source": {

"@timestamp": "2023-04-03T00:00:00.000Z",

"host_id": 2083748958,

"addr": "192.108.46.230",

"port": 55036,

"last_updated": 1680480000,

"ce_name": "FZK",

"hostname": "c01-011-183.gridka.de",
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"test_results_json": {

"home": {

"HOME": "/tmp/condor_execute/dir_52414"

},

"max_namespaces": {

"MAX_NAMESPACES": 15000

},

"ram_info": {

"RAM_kB_MemTotal": 594138448

},

"gcc_version": {

"GCC_VERSION": "gcc (GCC) 7.3.0"

},

"os": {

"OS_REDHAT_SUPPORT_PRODUCT_VERSION": "7.9",

"OS_REDHAT_SUPPORT_PRODUCT": "Scientific Linux",

"OS_PRETTY_NAME": "Scientific Linux 7.9 (Nitrogen)",

"OS_NAME": "Scientific Linux"

},

"cpu_info": {

"CPU_model_name": "AMD EPYC 7742 64-Core Processor",

"CPU_vendor_id": "AuthenticAMD",

"CPU_cpu_cores": 64,

"CPU_cache_size": "512 KB"

}

}

}

In summary, the above data sample provides information about CPU, Operating
system, RAM and the GCC Compiler installed information in the computing node
with hostname "c01-011-183.gridka.de". However, these are only available in the Data
analysis framework and this section focuses on identifying the best way to integrate
these data into the job matching process.

3.5.1 Job Matching

Job matching is the process of assigning a job created by a user to a computing node
for execution. As a Computing Grid consists of a large number of worker nodes with
different processing capabilities and configurations, it is important to identify the most
suitable node for a given job so that it matches the minimum requirement of the job,
while not having additional resources that stay idle in the course of the job execution.
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This is a widely discussed topic in the research community and a lot of techniques have
been presented that try to make optimal usage of resources as discussed under chapter
2.

However, those researchers focus only on matching jobs to the closest node that
satisfies the minimum requirement of the user job. We can identify that most of the
research focuses only on a very few infrastructure properties like the number of CPU
cores, RAM and storage of a computing node. Given that this is only a couple of
parameters, all WMSs like PanDA,JAliEn are sending these parameters as a set of
hardcoded key-value pairs from a node. Although these are enough to provide a basic
job matching based just on those parameters, we see that a much more intelligent job
matching can be done if there is a flexible way to collect any worker node parameters.

The prominent concern we have identified is that although we can try to have op-
timal resource usage using just those hardcoded parameters, a considerable resource
wastage could occur due to a job that tries to execute halfway and fail in the Grid due
to multiple reasons:

• Lack of dependencies (eg: Missing libraries)

• Incompatibilities with infrastructure (eg: Some jobs can run only on specific
operating systems)

• Maximum resource usage limits in worker node (eg: Exceeding maximum open
files on the node could cause the job to get killed by the operating system)

Therefore, we identify that it is important to consider a large number of parameters
in the job matching process depending on the use cases of the considered Grid. Given
that these parameters are hardcoded and sent from the node, there is no way to achieve
this using conventional approaches and we propose a new job matching architecture in
section 3.6 section based on the new infrastructure monitoring architecture presented
in section 3.4 we presented on this research. Because the monitoring architecture is
designed in a highly flexible and extensible way, we can use that to collect any num-
ber of infrastructure parameters of interest from the computing node(that can also be
changed easily on demand) and use that in the job matching process.

3.5.2 Unlimited Infrastructure Constraints

Each Computing Grid uses its own syntax for defining a job. Users can define jobs in
this syntax and submit them to the Grid WMS for execution. The below example shows
a simple job definition that requests the execution of a script called “sample-job.sh” in
the ALICE computing Grid. The important field to note here is “Requirements”. This
field allows the user to impose some constraints on the job like where it should be
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Constraint
Tool

GlideIns PanDA JAliEn Proposed Tool

CPU Cores ✓ ✓ ✓ ✓

Disk space ✓ ✓ ✓ ✓

Memory ✓ ✓ ✓ ✓

GPU ✓ × × ✓

CPU Architecture ✓ ✓ ✓ ✓

Container Support × × × ✓

Software versions × × × ✓

TABLE 3.1: Constraints supported by different WMSs

executed, how many cores it requires etc. At the moment this is very limited set of
parameters as discussed in section 3.5.1.

Executable = "/alice/user/k/kwijethu/sample-job.sh";

Requirements = other.CE == "ALICE::RAL::LCG";

Jobtag = {

"Site:ALICE::RAL::LCG"

};

OutputFile = {

"std*", "*log"

};

OutputDir = "/alice/user/k/kwijethu/sample_job";

TTL="1200";

OutputErrorE = {"std*@disk=1"};

For example, Table 3.1 shows constraints that are supported by different Grid mid-
dleware in comparison to the proposed tool. It is important to note that the proposed
tool will allow any infrastructure constraint in addition to the summarized list due to
its flexible job matching architecture presented in section 3.6.

This set of constraints very rarely changes in a Grid middleware because intro-
ducing a new constraint requires a major change to the middleware. The process of
introducing a new such constraint to ALICE Computing Grid and the time taken for
each step are listed below.

1. Update the central server code to accept values for the new parameter

2. Test the functionality of the updated code in a central server (Duration: ∼1 day)

47



3. Deploy and test the update code across the central server farm after testing (Du-
ration: ∼3 days)

4. Update the pilot job code to collect the values from the computing node before
starting job execution

5. Deploy the new pilot job code in a few sites and test (Duration: 1-3 days)

6. Rollout the new pilot job code across all Grid sites (Duration: 1-2 weeks)

Other Computing Grids also follow the same process with different durations de-
pending upon the amount of testing required. As it is evident from the list, this is a
major change that takes a couple of weeks to be deployed in production even though it
provides functionality similar to other parameters that are already collected. The rea-
son for this is that Grid middleware runs 24x7 on a large number of computers and a
single breaking change could cause thousands of jobs to fail and weeks of work to fix,
test, and deploy a new release. Hence Grid middleware (especially central server code)
is changed very rarely and updating constraint lists is not possible. The proposed Job
Matching Architecture in section 3.6 provides a generalized way to define constraints
so that the system is flexible add, remove, or update constraints at any time. That ulti-
mately provides the capability to introduce unlimited infrastructure constraints to jobs
that can be used to reduce job failures in the Grid due to infrastructure limitations.

3.6 Proposed Job Matching Architecture

Fig. 3.8 shows an overview of the proposed job matching architecture. In the proposed
architecture, we suggest to introduce another web service in the data collection com-
ponent called “Constraint Generation Service” to generate the constraints. Initially, the
pilot job will run the infrastructure monitoring probes, collect the results, and report
them to the data collection service as explained previously. This will provide us with a
massive amount of information regarding the current worker node. The constraint gen-
eration service can make use of this data to identify what values would be of interest
to the job matching process. Making a GET call to the constraint generation service
from a worker node will return a set of key-value pairs in the form of (constraint name:
value relevant to that constraint in the node that made the GET request). To achieve
this, the constraint generation service queries the collected data and filters out only
the interesting key-value pairs when it receives a request from a worker node. This
service can be used to add, remove, or update new constraints that are to be used in job
matching process.

Once the worker node receives the constraint pairs, it can update the job matching
request to include additional constraints. The Job matcher will then use these addi-
tional constraints to match the job to the most suitable node considering not only a few
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Fig. 3.8: Proposed Job Matching Architecture

parameters like CPU cores and storage but also many other parameters like Operating
system, cache size, container support etc. Job matcher code would have to be improved
just once to include additional constraints in the job matching process. The complete
flow of this proposed architecture is shown in Fig. 3.9

It is important to note that the additional constraints are added to the job matching
request with zero changes or code additions/removals to the Grid middleware. There-
fore, unlike adding a new constraint using the previous approach which takes a couple
of weeks, we can add a new constraint with the proposed architecture within hours.
The complete process for searching for a new infrastructure parameter and adding a
new constraint based on that under the new job matching process is described below.

1. Add the new monitoring probe to the distributed file system (1 hour)

2. Add the new constraint filtering code to the constraint generation service (1 - 15
min: Time taken to update the server code)

With just these 2 steps, users will be able to use the new constraint in their job
matching process to impose additional requirements on how the job should be matched.
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Fig. 3.9: Proposed Architecture Flow Diagram

With the proposed architecture we can define any number of constraints and use that
in the job matching process within a few hours with zero code changes to the Grid
middleware.
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CHAPTER 4

IMPLEMENTATION

In the Methodology (Section 3) we have discussed the concerns associated and design
decisions that led to the development of a new Grid Infrastructure monitoring archi-
tecture to monitor distributed Computing Grids and a new Job Matching architecture
to account for infrastructure constraints in Grid job matching. The implementation
and evaluation of the proposed architecture was carried out in the ALICE Comput-
ing Grid at CERN which contains more than 7,000 worker nodes distributed globally
across 70 Grid sites. This chapter describes the complete implementation of the new
tool called “Site Sonar v2.0” which is developed using the proposed architecture, that
provides enhanced Infrastructure monitoring capabilities to ALICE Computing Grid
while providing improved job matching architecture to its Grid middleware, Java AL-
ICE Environment (JAliEn) .

4.1 Site Sonar Architecture

Site Sonar v2.0 (here onwards referred to as “Site Sonar”) is a new Grid infrastructure
monitoring tool developed to monitor the ALICE Grid. Site Sonar collects information
about infrastructure and configuration of the worker nodes in ALICE Grid, aggregates
and visualizes the results in monitoring dashboards with flexible filtering options. Site
Sonar is set apart from the existing systems mainly by its high flexibility and extensibil-
ity. Site Sonar allows collecting any type of information from the worker nodes, from
text strings up to complex JSON objects, and provides the ability to change or add any
monitoring probes without having to make any changes to the Site Sonar framework.
Additionally, it facilitates creating no-code visualization of the collected data with the
help of the ELK stack. The architecture of Site Sonar is shown in Fig. 4.1 which has
been explained in detail in the following sections.

4.1.1 Probe

The basic unit of Site Sonar is called a “Probe”. A probe is a program that queries
the worker node it runs on for some specific information and outputs the result as a
JSON object. In practice, each probe is a shell script. Following is one such simple
data collection probe deployed in the ALICE Grid.

#!/bin/bash

# Print the OS description

# and return the exit code of lsb_release
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# Tested on lxplus (CentOS 7) and Ubuntu 20.04

LSB_RELEASE=$(lsb_release -s -d | cut -d\" -f2 | xargs)

if [[ $? == 0 ]]

then

echo "{ \"LSB_RELEASE\" : \"$LSB_RELEASE\" }"

else

exit_code=$?

echo "{ \"LSB_RELEASE\" : \"\" }"

exit $exit_code

fi

This probe is responsible for collecting the operating system information of the
worker node and the output of the probe will look as follows.

{ "LSB_RELEASE" : "CentOS Linux release 7.9.2009 (Core)" }

Site Sonar consists of 30+ such probes as shown in Fig. 4.2 with more probes being
added daily without any code changes to the Grid middleware. To add a new probe,
it is simply required to copy the script to ‘/cvmfs/alice.cern.ch/sitesonar‘ directory in

Fig. 4.1: Site Sonar v2.0 Architecture
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CernVM File System (CVMFS) . An additional configuration is added in Site Sonar
v2.0 implementation where each probe can be configured with a TTL after which its
results are considered obsolete and need to be collected again. This is done to provide
the ability to collect different metrics at different intervals allowing more granular
control over how the data should be collected. Usually, the time interval is set to
24 hours because the infrastructure metrics do not change that often, reducing the
performance impact on the Job Agent in JAliEn which is the equivalent of a pilot job
in a Grid.

Fig. 4.2: List of Site Sonar probes

4.1.2 Sonar

The “Sonar” is the main component used for data collection in Site Sonar. Sonar
is a controller function that is written in Java which controls the data collection and
reporting process of the worker node. When an empty slot opens up on a worker node,
JAliEn submits a pilot job which invokes a process called “Job Runner” in that slot.
Depending on the number of cores in that computing node and the cores required by
the jobs waiting for execution, Job Runner spins up multiple “Job Agents” on the node.
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Each “Job Agent” is responsible for preparing the environment for executing job(s) on
the node. When a Job Agent starts, it will contact the central services to check if
there are waiting jobs and execute if any. We have identified this as the most suitable
integration point in JAliEn to integrate the Sonar component in Site Sonar v2.0. This
is shown in Fig. 4.3

Fig. 4.3: Site Sonar Integration with JAliEn

Before a Job Agent starts the execution of the payload, it runs the Sonar which calls
the Central Services to identify which probes need to be run on the current node. This
is done to avoid sending results from probes that already had results reported for the
given worker node within the TTL values of those probes. The probes whose results
are absent or outdated are fetched from CVMFS, executed, and the newly obtained
infrastructure metrics of that node are then reported back to the Central Services by
the Sonar.

More than 300,000 such metrics are reported every day to the Central Services by
Sonars running across the ALICE Grid. This data is used for monitoring and providing
improved job matching to worker nodes.

After execution of the Sonar, Job Agent moves on to create the necessary envi-
ronment for the Job and ultimately spins up a “Job Wrapper” which is responsible for
executing the actual job payload.

54



4.1.3 Central Services

In JAliEn, web services are hosted and handled by a set of services in a central server
farm referred as “Central Services”. The Site Sonar data collection service and con-
straint generation service are hosted as a part of Central Services in the form of Java
Server Pages (JSP) . These are 2 basic services that are capable of handling incoming
Sonar requests and can be easily written in any other language as well.

4.1.3.1 Data Collection Service

The Data Collection Service act as the controller for data inflow from Sonar. It controls
which probes should run, what their TTLs should be, and which parts of the collected
data should be visible to the users. The data collection service hosts 2 endpoints.

GET https://alimonitor.cern.ch/sitesonar/queryProbes.jsp?

hostname=<name-of-the-host>&ce_name=<site-name>

Response:

{

cgroups2_checking,

connectivity,

container_enabled ...

}

The initial “queryProbes” endpoint is used to decide which probes should run on
the worker node. When the Sonar calls the queryProbes endpoint with the hostname of
the node and CE Name(Name of the Grid Site), the service checks which probes have
not been run in this node for some time (by checking the TTL of its previous results)
and returns the names of the probes that should run in that worker node.

The Sonar will then fetch each script from CVMFS, execute it on the worker node,
and upload the results to the “uploadResults” endpoint in the Data Collection Service
as shown below.

POST https://alimonitor.cern.ch/sitesonar/uploadResults.jsp

{

hostname: <name-of-the-host>

ce_name: <site-name>

test_name: "lsb-release"

test_code: 0

test_message: "CentOS Linux release 7.9.2009 (Core)"

}

55



Central Services stores the data reported by Sonars directly in a database for long-
term persistence. We run a daily job that aggregates the collected metrics per node and
prepares JSON documents of metrics reported per node. These JSON documents are
then uploaded to Elasticsearch through Logstash.

Although the data can be routed directly to the analysis framework by injecting to
Logstash as we have presented in our architecture in section 3.4, this extra step is taken
considering deployment concerns like reducing traffic on Logstash instance and longer
duration for data persistence. A sample of collected data for a node is shown below
and a complete data object for a node is attached in Annex A

"_source": {

"@timestamp": "2023-04-03T00:00:00.000Z",

"host_id": 2083748958,

"addr": "192.108.46.230",

"port": 55036,

"last_updated": 1680480000,

"ce_name": "FZK",

"hostname": "c01-011-183.gridka.de",

"test_results_json": {

"home": {

"HOME": "/tmp/condor_execute/dir_52414"

"EXITCODE": 0,

"EXEC_TIME": 0

},

"cpu_info": {

"CPU_model_name": "AMD EPYC 7742 64-Core Processor",

"CPU_vendor_id": "AuthenticAMD",

"CPU_cpu_cores": 64,

"CPU_cache_size": "512 KB",

"EXITCODE": 0,

"EXEC_TIME": 2

}

}

}

The data is structured in the following format where the node metadata contains
important information like hostname, ip address, site name etc. of the node. The
“test_result_json” section includes the results of all monitoring probes. Each probe
returns a JSON document including the parameters, exit code of the probe, and exe-
cution time of the probe. A collection of such documents representing each node is
uploaded to Logstash every day.
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{

node_metadata,

test_results_json : {

test1 : {

parameter1: value1,

parameter2: value2,

EXITCODE: <code>,

EXEC_TIME: <execution-time>

},

test2 {

...

}

}

}

4.1.3.2 Constraint Generation Service

Constraints Generation Service is used to populate key-value pairs that contain the
value for a given constraint for a computing node. Constraint Generation Service hosts
a single endpoint that generates the relevant key-value pairs for a given hostname. Af-
ter the results from the monitoring probes are executed, Sonar makes a call to the Con-
straint Generation endpoint which returns the constraint value pairs. This conforms to
the design proposed in Fig. 3.9.

GET https://alimonitor.cern.ch/sitesonar/constraints.jsp?

hostname=<name-of-the-host>&ce_name=<site-name>

Response:

{

"container_support" : true,

"cpu_cores" : 64,

"OS" : "CentOS 9",

"CGROUPSv2_AVAILABLE" : true,

"containsAVX" : 1

....

}

In JAliEn, a job matching request to the Job broker is accompanied by a JSON
object called “SiteMap” which provides some basic information about the node like
CPU cores, disk space, memory etc. The following section shows a real SiteMap
extracted from the ALICE Computing Grid before the Site Sonar integration.
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INFO: {Site=CERN, CE=ALICE::CERN::Yerevan,

Platform=Linux-x86_64, Host=voboxalice3.cern.ch,

TTL=87000, alienCm=voboxalice3.cern.ch:10000,

workdir=/pool/condor/dir_97385,

Localhost=b9s14p2116.cern.ch, CEhost=voboxalice3.cern.ch,

Disk=3208648912, CPUCores=1, CVMFS=1}

With the introduction of Site Sonar integration, all the constraint values returned
from the Constraint Generation service are injected into the SiteMap. This allows
JAliEn to collect any information from a worker node and include them in the job
matching request to be used in the job matching process at the central services. The
following sections show a real SiteMap of the same computing node after the Site
Sonar integration.

INFO: {Site=CERN, CE=ALICE::CERN::Yerevan,

Platform=Linux-x86_64, Host=voboxalice3.cern.ch,

TTL=87000, alienCm=voboxalice3.cern.ch:10000,

workdir=/pool/condor/dir_97385,

Localhost=b9s14p2116.cern.ch, CEhost=voboxalice3.cern.ch,

Disk=3208648912, CPUCores=1, CVMFS=1,

CGROUPSv2_AVAILABLE=true, containsAVX=1}

Note that two new fields named “CGROUPSv2_AVAILABLE” and “containsAVX”
have been added at the end which depicts the availability of Control Groups v2.0 which
is used for resource isolation and the availability of AVX CPU Instruction set in the
worker node respectively. These fields can be used in the job matching process after
that. For example the ALICE Hyperloop jobs require the AVX instruction set as dis-
cussed in the section 2.2.1 to execute, and the updated SiteMap fields returned from
Site Sonar are to be used in the future to ensure that the Hyperloop jobs are matched
only to nodes with AVX instruction set. Any other feature of the worker node can also
be added to the job matching process easily following the same approach as discussed
in 3.5.2

4.2 Improved Job Broker

“Job Broker” is the JAliEn component that is responsible for handling the process of
matching jobs to the most suitable node. It accepts Job matching requests that are
sent by Job Agents running on different nodes and provides the most suitable job that
matches the node. As explained in section 4.1.3.2, the job matching request will be ac-
companied by a SiteMap which contains information regarding the node. The SiteMap
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contains a set hardcoded information collected from the worker node and the Job Bro-
ker provides some hard coded methods to do the job matching which considerably
reduces the flexibility of the system and the ability to define a new constraint in JAliEn
as explained in section 3.5.2

Fig. 4.4: JAliEn Job Broker Constraint Matching Logic

Fig. 4.4 shows the existing logic that is being used by JAliEn to evaluate the pa-
rameters sent from the Job Agent in the job matching process. A new code section is
added for each parameter leading to hardcoded set of constraints.

The current approach to adding new constraints is not flexible as they are hardcoded
and it cannot be easily extended to add new constraints to the job matching process.
Each new parameter requires adding a new code block on the job broker which is at
the core of the system that could lead to critical system failures if not tested properly.
This also requires rolling out a new software update across central servers to include
the new code. This issue is explained in detail in section 3.5.2. To address this, we
have improved the JAliEn Job Broker to be highly flexible to accept any number of
parameters allowing to create unlimited constraints as shown in Fig. 4.5.
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Fig. 4.5: Updated Job Broker Constraint Matching Logic

The improved logic allows any number of constraints to be added in the job match-
ing process without any change to the code avoiding the introduction of bugs and the
need to do new releases with complex deployment rollouts. The new constraints can
be easily defined by adding the entry to the database and the logic in Fig. 4.5 will fetch
the constraints from the database and impose them using the collected parameters.

4.2.1 Site Sonar ELK Stack

ELK is a collection of three widely used open-source log analysis products - Elastic-
search, Logstash and Kibana[53]. It is widely used for analyzing and visualizing large
collections of data to provide insights of interest.

Elasticsearch is used for storing large amounts of documents and indexing those
documents for fast and efficient querying. Logstash is used for processing and trans-
ferring data. Kibana is used as a flexible and user-friendly data visualization tool.

Due to the reasons discussed in 3.2.3 section and since the ALICE team already
has an ELK cluster that is being used for other projects, we have decided to create the
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visualization framework with the use of an ELK stack.
Site Sonar v2.0 injects more than 7,000 documents into the Site Sonar ELK stack

every day, with each document containing more than 30 metrics collected on a worker
node in the ALICE Grid. The data is visualized through preconfigured Kibana dash-
boards for the scrutiny of ALICE Grid team.

Using an ELK stack in Site Sonar provides the following advantages:

• Fast response times for queries running over large amounts of data.

• A query language with complex functionality that is easy to use.

• Availability of complex analysis and visualization features out of the box.

• Flexibility for the user to create desired visualizations without writing code.

• No need to maintain an in-house data visualization system.

4.2.1.1 Logstash

The Logstash instance is set up using Docker in one of the central machines. It exposes
an endpoint to accept Site Sonar Central services and inject them to Elasticsearch for
indexing. The following pipeline configuration is used to set up the instance.

input {

tcp {

port => 5402

}

}

filter {

# this is done in order for ES to interpret the

# message as a JSON object

json {

source => "message"

}

# this is used to import logs in retrospective

# (the @timestamp field will be set to the

# date the log was created)

date {

match => ["last_updated", "UNIX"]

}

61



mutate {

remove_field => [ "message" ],

}

}

output {

elasticsearch {

hosts => [ "https://es-alicecs1.cern.ch:443/es/" ]

index => "sitesonar-%{+YYYY.MM.dd}"

user => "logstash"

password => "${ES_LOGSTASH_PASSWORD}"

ssl => "true"

cacert => "/config-dir/ca/cern_grid_cert.pem"

}

}

We use Logstash to convert the JSON documents to an Elasticsearch index. In
addition to that, data transformations like deriving new fields by combining multiple
existing fields, mutating existing fields etc. are done at the Logstash level before being
indexed at Elasticsearch.

4.2.1.2 Elasticsearch

A standard Elasticsearch cluster is used in Site Sonar to store the data. However, an
additional step is taken to index the data in a more meaningful way rather than storing
the plain data so that it can be used in visualizations. A component template that
describes how each field should be indexed in Site Sonar is defined in Elasticsearch
for this. A sample component template is shown below and the complete template is
available in Annex B.

"properties" : {

"cpu_model" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"last_updated" : {
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"format" : "epoch_second",

"type" : "date"

},

"cpu_cores" : {

"type" : "integer"

}

}

Component templates allow indexing each key of the data map with its own data
type allowing the much better performance and much complex analysis. For example,
it allows storing cpu model as a string, and cpu cores as a number etc. This allows us to
provide different analysis and filtering options based on the data type, like range filters
and histograms for cpu core counts, date ranges for ‘last_updated‘ field etc. An SQL
database would restrict us from storing all these different data values as strings(because
we don’t add a column per each key with the correct data type) which would lead to
very rigid schema with only basic functionalities.

4.2.1.3 Kibana

Kibana is used to create visualizations based on the collected data. Site Sonar injects
nearly 7,000 documents daily, containing over 300,000 key-value pairs to Elasticsearch
every day as shown in Fig. 4.6 and it is nearly impossible to analyze them manually.
Hence, this is one of the 2 most important components for a Grid administrator because
it allows aggreagating and visualizing the collected data with many capabilities like
filtering and sorting. Additionally, Kibana allows creating data visualization without
having to write any code that eliminates the requirement to create releases or to update
the production deployments.

Fig. 4.6: No. of documents injected per day

Depending on the requirements of the ALICE Grid team, we have created a number
of visualizations and combined them to create dashboards that are used to monitor the
status of the Grid which are explained in the following chapter.
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4.2.2 Summary

In summary, Site Sonar consists of 2 main components: The data collection framework
and the Data analysis framework. The data collection framework runs inside the Job
Agent which is responsible for executing the job on the worker node. Before the Job
Agent runs the payload, it calls the Sonar which checks the probes that are needed to
run on the given node and invokes the probes one by one. The resulting output is sent
to Central Services by the Sonar for long term persistence.

Data analysis framework is a separate component that is built based on an ELK
stack that ingests the data reported from the Data collection framework, and allows
users to create analysis and visualization on that data without the need to write code.

These 2 components are used to improve the functionality of JAliEn Job Broker
providing infrastructure aware job matching capabilities to the ALICE Computing
Grid.
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CHAPTER 5

RESULTS

This chapter focuses on analysing the results obtained in the course of this research
and evaluating them to identify the success of this study. This chapter is divided into 3
sections. Section 5.1 analyzes the information collected throughout the study, presents
them, and describes the importance of this information. Section 5.2 describes the find-
ings of this research based on the collected data that resulted in discovering important
flaws in the ALICE Grid. Section 5.3 presents the evaluation of the tool in compar-
ison to its predecessor Site Sonar v1.0 and related tools and discusses the results to
conclude that the study has achieved the initial outcomes that were set out as research
outcomes

5.1 Analysis

Currently Site Sonar monitors a large number of infrastructure metrics in ALICE Com-
puting Grid starting from basic information like the operating system up to more com-
plex information like benchmarks or in which ways containers are supported. It has the
capability to monitor any parameter of the worker node: both software and hardware,
as long as it can be read by a user with non-root access. The collected monitoring
information is used to develop visualizations that provide useful information to Grid
Administrators about the infrastructure of the Grid. Few of those dashboards are pre-
sented below.

5.1.1 Operating System Distribution

The development of Grid software often involve having a good understanding of the
features offered by the Operating Systems as they can be used to provide useful features
like job isolation, job optimization, resource limitation etc.

For example, Control Groups (CGroups) are a famous tool for implementing re-
source isolation in Linux environments[54]. However, implementing resource limi-
tation solutions for Grid jobs using CGroups required the base worker nodes to have
compatible operating systems that support CGroups v2. Site Sonar analysis and visu-
alizations were directly used in this study to check the Operating Systems across the
Grid and conclude that the Grid is not ready to have CGroups v2.0-based features yet.

Fig.5.1 shows one of the monitoring dashboards of Site Sonar presenting the oper-
ating system version of worker nodes in the ALICE Grid as of 2023-04-21. The top
charts of the dashboard show meta information regarding the data collection. The first
chart on the first row shows how many unique Grid sites have reported data in total
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within the given period of time and the chart next to it shows how many unique worker
nodes have reported the data in the same period. The right side chart on the second row
shows the distribution of worker nodes across the Grid. Until the origin of Site Sonar,
there was no way to know how many nodes the actual Grid contained and how big each
site was. This chart provides this information visualizing the scale of each Grid site.
All the dashboards follow a similar structure with the ability to customize the view and
add new visualizations on demand without any code changes. Dashboards can be used
to easily filter out data by sites and/or attributes and create visualizations as well as
summaries.

The left side chart on the second row lists all the unique operating systems that are
available in the Grid nodes. The actual distribution of the Operating system is depicted
in the pie chart in the third row. This is important to get an idea about the latest trends
related to operating system usage and site wide transitions from one operating system
to another.

Fig. 5.1: Operating System Monitoring Dashboard

The most widely used operating systems and their versions in the ALICE Grid at
two different points of time that are about 8 months apart as reported by Site Sonar
are summarized in Table 5.1 and Table 5.2. We can clearly see the movement of Grid
sites away from CentOS to other alternatives like AlmaLinux following the sudden
discontinuation of the widely used CentOS by Red Hat Linux in 2020. It is important
for a Grid administrators to have an idea about this kind of movement as the Grid
middleware often uses features offered by operating systems and this helps them to
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plan ahead and avoid issues that arise due to changes in operating systems.

Operating System coverage%
CentOS Linux release 7.9.2009 (Core) 90.74%
Scientific Linux release 7.9 (Nitrogen) 6.78%
CentOS Linux release 7.7.1908 (Core) 1.13%

TABLE 5.1: Operating system distribution of ALICE Grid as of 2022-08-30

Operating System coverage%
CentOS Linux release 7.9.2009 (Core) 83.18%
Scientific Linux release 7.9 (Nitrogen) 10.63%

AlmaLinux 8.7 6.19%

TABLE 5.2: Operating system distribution of ALICE Grid as of 2023-04-22

5.1.2 Singularity Support

All the latest Grid middleware aims to run jobs in containerized environments like Sin-
gularity / Apptainer1 to provide job isolation along with a uniform environment for the
jobs to run in. The new JAliEn[49] Grid middleware also had the requirement to adapt
the standard approach of running jobs in containers to serve this purpose. However,
there was no way to check if the sites(worker nodes in sites to be exact) possessed
the necessary infrastructure to support the use of Singularity. One of the initial and
critical usages of Site Sonar was to check which sites do not support Singularity on
their worker nodes. This was tested using a probe that attempts to start a Singularity
container in the two ways that are supported by JAliEn[50]: 1) via a local, privileged
installation; 2) via the unprivileged installation provided on CVMFS by the ALICE
Grid team. On a number of sites, neither method worked. Contacting the respective
site admins led to Singularity being supported at almost all sites.

Fig. 5.2 extracted from Site Sonar’s “Singularity Support Dashboard” presents
the percentage of nodes supporting Singularity across the Grid. The percentage of
Singularity support either through local installation or CVMFS stood at 96.6% as of
2023-04-23.

Given the critical importance of this feature, it was important to identify the sites
that do not offer singularity support at the moment. Fig. 5.3 shows the information
about these sites and nodes which helped the ALICE Grid team to easily communicate
with the site admins to configure the necessary parameters required for the proper
singularity functionality.

1‘Singularity” project was renamed as “Apptainer” by the relevant organizations during the course
of this research. Therefore the 2 words are used interchangeably.
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Fig. 5.2: Singularity Support Dashboard of ALICE Grid on 2023-04-21

5.1.3 Grid Overview

Fig. 5.4 shows the main dashboard of Site Sonar that provides an overview of the
infrastructure of the whole Grid in one page. Other than the usual metadata that is
available in all dashboards, this dashboard contains the most important information
from each dashboard. The left side chart on the second row shows the Operating
System distribution of the ALICE Grid that has been discussed in detail in the 5.1.1
section. The right side chart of the same row shows the number of cores available in
each worker node. This is a piece of vital information to the ALICE Grid administra-
tors as JAliEn is rolling out multi-core support and 8-core queues and this dashboard
can be used to see how many worker nodes can support it. The charts on the third row
show the different CPU models available in the ALICE Grid and their CPU vendor. A
separate study is already on the way to analyze the impact of different CPU models on
the job performance in the Grid.

5.2 Findings

Since its introduction, Site Sonar has been heavily used by the ALICE Grid adminis-
trators to understand the structure of the ALICE computing Grid. So far, the use of Site
Sonar has led to multiple interesting discoveries about the ALICE Grid. The following
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Fig. 5.3: Sites not supporting Singularity in ALICE Grid on 2023-04-21

section describes a few such discoveries.

5.2.1 Sites running CentOS 6

CentOS 6 was the most widely used to operating system across worker Grid worker
nodes until recently. CentOS 6 does not by default come with sufficient support for
running Singularity. As explained in section 5.1.2, this imposed a major limitation
in rolling out the containerized job feature for ALICE Grid. Hence, when checking
whether the ALICE Grid is ready for containerized jobs, one of the essential require-
ments was to check if all sites are running CentOS 7 or higher.

While the relevant packages can be installed and configured by talking to local
Grid administrators, communicating with around 70 Grid sites first to check their OS
version and then co-ordinating with them to do the upgrades is a daunting task. With
Site Sonar, we easily narrowed down which sites are running CentOS 6 and their con-
figurations that allowed the ALICE Grid administrators to easily get them upgraded to
CentOS 6 or higher versions. At the end of this effort, the Grid admins were able to
achieve 100% singularity support across the Grid as shown in Fig. 5.1 allowing the
JAliEn to introduce the much needed feature of containerized jobs.
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Fig. 5.4: ALICE Grid Overview on 2023-04-21

5.2.2 Reusing hostnames on different nodes

For logging and monitoring purposes, each worker node on the Grid should have a
unique identifier. The worker node hostname usually is sufficient to play that role,
but through Site Sonar it was found that some sites have such high turnover rates of
hostnames that Site Sonar results for those sites then eclipsed the results of much bigger
sites, at the same time suggesting that the ALICE Grid was bigger than it actually is.
At one such site, each job runs in a Docker container which is given a hostname that
is unique per job. At another site, jobs run in VMs with lifetimes of a few days and
hostnames that are unique per instantiation. Such special cases had gone unnoticed
until the introduction of Site Sonar because there was no way to track such information.

After identifying the issue, a special environment variable was added in sites with
special cases to ensure that always provides a unique identifier only per host, which
Site Sonar then uses instead. On the first site, hostname of the underlying hosts was
setup in this environment variable whereas the hypervisor hostnames were set up in
the second site as those VM hostnames happen to be extensions of the ones of the
underlying hypervisors.
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5.2.3 Use of Site Sonar as a Grid debugging tool

Although almost all sites ended up supporting Singularity, Site Sonar showed that
many of the worker nodes often failed to start Singularity. This was observed as an
intermittent issue on worker nodes across the Grid. Even when a worker node appeared
to support Singularity, it sometimes failed due to some unknown cause. Traditional
debugging in the ALICE Grid is done through reading job logs and traces, but in this
case none of the jobs were showing this issue. Due to the high flexibility of Site
Sonar which allows adding and changing monitoring probes on the fly, it was used as
a debugging tool to track down the root cause of this issue by monitoring additional
parameters relevant to the invocation of Singularity. In the end, the issue was caused
by a specific payload script that originally had been used to test an early version of Site
Sonar through a specific class of jobs and had not been adjusted when the Site Sonar
functionality was moved up into the Job Agent to have it run by all jobs instead. This
was an important finding which highlighted the potential of Site Sonar to be a Grid
debugging tool that is lacking in the Grid Computing domain at the moment, which
would be very useful in resolving Grid issues.

5.3 Evaluation

This section compares and contrasts the proposed design against the existing designs
and evaluates the improvements gained by the new design.

5.3.1 Quantitative Evaluation

Since the proposed architecture cannot be directly evaluated quantitatively, the Site
Sonar v2.0 solution implemented using the proposed design is evaluated quantitatively
against the existing system Site Sonar v1.0. The qualitative evaluation of the architec-
ture is available in section 5.3.2.

5.3.1.1 Execution Time evaluation

This section intends to compare the time taken for data collection between the new
design and the old design based on the 2 versions of Site Sonar implementations. The
experiment setup uses a setup called “JAliEn replica” which emulates a distributed
Computing Grid in a local computer. It uses the actual components of the Grid and
deploys them in the form of minimal containers that can provide the basic functionality
of an actual Grid. The setup was run on an HP Elitebook x360-1040-GT Notebook PC
equipped with 11th Gen Intel Core i5 (2.40GHz) 8 core processors running Ubuntu
20.04.6 LTS Operating system.
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As explained in the previous chapters, both Site Sonar v1.0 and Site Sonar v2.0
collects the infrastructure information of the node that its Job Agent lands on by ex-
ecuting a set of scripts that query the infrastructure data and report to the central ser-
vices. However, the time taken for the collected information to be available is different
based on the approach that is used to collect data. Site Sonar v1.0 submits its own jobs
to collect data which means that in order for the data to be available its job should run
up to the completion. This requires a considerable time as initiating a job, running a
job, finishing the job, cleaning up the environment, and uploading the results to the
relevant locations take a considerable amount of time.

Site Sonar v2.0 takes a different approach to solve this problem. In Site Sonar v2.0
the data is collected and reported back even before the job is started. Since it is located
in the JobAgent, it does not have to face any delays or overheads associated with
running a job. Therefore Site Sonar v2.0 reports the results back within a few seconds
after the job agent lands on a computing node which provides a large improvement in
the time taken for reporting back the data from a computing node.

Batch name Site Sonar v1.0(seconds) Site Sonar v2.0(seconds)
Batch 1 140 3
Batch 2 146 4
Batch 3 527 4
Batch 4 605 3
Batch 5 636 3
Batch 6 152 4
Batch 7 146 4
Batch 8 639 3
Batch 9 769 3
Batch 10 646 4

TABLE 5.3: Time taken for Data Collection in Site Sonar

Time taken for collecting and reporting back the data in a single computing node
has been collected in the two systems by running 10 batches of jobs in JAliEn replica.
Each batch contains 10 jobs and the average time to report back the data in each batch
is present in table 5.3 and the results are plotted in the chart 5.5.

It can be seen that the time taken for the data collection varies considerably in
Site Sonar v1.0. This is mainly because it requires a complete job execution for the
data to be available which will depend on many factors like downloading input files,
transferring data to storage elements etc. which can also vary on multiple factors like
I/O waitings, delay for processes to be completed etc. On average it takes 440 seconds
for data collection in Site Sonar v1.0 which amounts to 7.3 minutes.

In Site Sonar v2.0 the overhead of other processes is completely removed because
it is detached from the actual job. It runs as the initial task at the beginning of a
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Fig. 5.5: Time taken for Data Collection in Site Sonar

JobAgent execution which does not have any dependencies. As a result of that, we
can see that Site Sonar v2.0 always provides results within an identical range of time
providing an average of 3.5 seconds which is a massive improvement compared to the
existing system.

The results show that Site Sonar v2.0 possesses a much better data collection speed
compared to Site Sonar v1.0. However, it is to be noted that the the considerable
improvement is not due to improving the existing design, but rather due to using an
entirely new design to address the problem.

5.3.1.2 Core hour wastage evaluation

In Grid domain number of work done is usually referred to as “core hours” where 1
core hour refers to allocating 1 core of a CPU for a specific job for one hour. The
allocated core could be doing computation or not in this period. One of the most
critical goals of a Grid environment is to use the core hours in an optimum manner.
The efficiency of a job can be calculated in terms of core hours as follows.

Efficiency of the job =
No. of core hours spent doing useful computations

Total core hours spent by the job

This highlights the fact that it is critical to reduce the no. of core hours that are
spent on other work than doing the actual computation thus resulting in wastage of
core hours in a Computing Grid. In this context, collecting infrastructure information
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is considered a wastage of core hours because it is not executing an actual job payload
when collecting information.

Site Sonar v1.0 causes a considerable wastage of Grid resources because it submits
a job that is only targeted for the data collection of nodes. Executing a job in a Grid
node contains multiple steps.

1. Acquiring an execution slot in the worker node

2. Initiating the relevant services in the node

3. Downloading packages and dependencies

4. Executing the job

5. Uploading the results

6. Cleaning up the worker node

7. Replicating results between multiple nodes if necessary

Each of these steps has a considerable overhead and spending valuable compute
time of a Computing Grid just for data collection is a considerable waste. Site Sonar
v2.0 considerably minimizes this overhead as it runs as a part of the JobAgent instead
of an actual job. This eliminates the requirement to submit an entirely new job for
monitoring and does monitoring as a part of actual jobs that contain useful computa-
tions.

Batch name Site Sonar v1.0(core hours) Site Sonar v2.0(core-hours)
Batch 1 272.22 5.83
Batch 2 283.89 7.78
Batch 3 1024.72 7.78
Batch 4 1176.39 5.83
Batch 5 1236.67 5.83
Batch 6 295.56 7.78
Batch 7 283.89 7.78
Batch 8 1242.50 7.78
Batch 9 1495.28 5.83

Batch 10 1256.11 7.78

TABLE 5.4: No. of core hours spent for Data Collection in Site Sonar

The number of core hours wasted for monitoring in Site Sonar v1.0 and Site Sonar
v2.0 is presented in 5.4 and plotted in chart 5.6. The chart uses the same setup de-
scribed in section 5.3.1.1. The execution time of the 2 services on the JAliEn replica
is used to do the calculation and the total wastage in each job batch is calculated by
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Fig. 5.6: Core-hours wastage in Site Sonar v1.0 vs v2.0

assuming each job takes 1 core. The average core-hour wastage per batch is then mul-
tiplied by 7,000 to project an estimate for the actual core-hours that will be lost if the
setup was run in the actual ALICE Computing Grid.

It can be clearly noticed that Site Sonar v1.0 wastes a considerable amount of core-
hours, sometimes wasting more than 1000 core hours for a single data collection run.
The average lost core-hours can be seen as 856.72 in Site Sonar v1.0 whereas it is
mere 6.81 hours in Site Sonar v2.0. This is a 99.67% reduction of core hour wastage
compared to the existing system.

Note that the numbers in an actual computing Grid could be different from the
estimates due to different factors like network speed, different CPU models etc. How-
ever, in total Site Sonar v1.0 would still have a larger amount of core hours because of
the overhead associated with its design. If we consider the actual total number of lost
core-hours in a single data collection round, Site Sonar v1.0 will report a much larger
wastage because it submits jobs in the scale of twice the number of the worker nodes
in the Grid which would essentially increase the wastage by a factor of 2. This leads
to the conclusion that Site Sonar v1.0 is much less efficient than Site Sonar v2.0.

5.3.1.3 Query Performance evaluation

A major drawback of the Site Sonar v1.0 was the time taken to query the data which
had a considerable impact on the usability of the system. A single data retrieval query
could take up to 20 seconds. Hence using the system to explore the data with small
adjustments to the data like changing the date ranges, adding/removing filters etc. and
building conclusions out of it was extremely difficult. To address this problem, the
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proposed architecture included moving the database engine from PostgreSQL to Elas-
ticsearch as discussed in detail in section 3.2.3 which improved the querying time of
the system to a couple of seconds for any query. This experiment compares the time
taken to retrieve the data in each system from the database backend.

The experiment was done on actual ALICE Grid servers that hold the same data in
both PostgreSQL database and Elasticsearch backends. A predefined set of queries that
intends to output the same results by querying data in a specific time period(16/04/2023
- 23/4/2023) were executed on each server and the time taken to execute the query and
return the results were collected. The set of queries that were run are shown in Table
5.5. The queries are simplified(not the actual query) for readability and the uniqueness
of each query is also described.

Number Uniqueness Example
Query 1 All data Select *
Query 2 All values of a metric Select CGROUPv2_AVAILABLE

Query 3 Specific value of a metric
Select
CGROUPv2_AVAILABLE:true

Query 4 Specific values of multiple metrics
Select
(CGROUPv2_AVAILABLE:true)
AND (CPU_CORES:16)

Query 5 Multiple values of a specific metric
Select CPU_FLAGS:
is one of [avx,avx512]

Query 6 Combination of Query 4 & 5

Select
(CGROUPv2_AVAILABLE:true)
AND (CPU_CORES:16)
AND (CPU_FLAGS:
is one of [avx,avx512])

TABLE 5.5: Simplified queries used for the evaluation

Observed values from the experiment are plotted in Fig. 5.7. It can be observed
that all the queries provide faster results with Elasticsearch-backed Site Sonar v2.0
and all the results are returned under 4 seconds. It is to be noted that PostgreSQL
also return results with an acceptable latency for basic queries like query 2 and 3. The
performance gap is highlighted when many complex queries are executed in the two
systems leading Site Sonar v1.0 to report very high latency values up to 14 seconds for
the considered dataset. Therefore, it can be concluded that Site Sonar v2.0 performs
better in terms of Data retrieval speed as compared to Site Sonar v1.0.

5.3.1.4 Time taken for Introducing a new matching parameter

As discussed in section 3.5.1, it requires large changes in core parts of the Grid mid-
dleware to introduce a new job matching parameter. Due to the number of changes and
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Fig. 5.7: Data Retrieval Time in Site Sonar v1.0 vs v2.0

effort needed, introducing new matching parameters is done very carefully and infre-
quently. The new architecture addresses this problem by allowing the introduction of
parameters without any code changes.

The time taken to introduce a new parameter in the existing and new design of
JAliEn is evaluated in this section. The deployment and testing times are recorded by
observing the time taken by the Grid administrators to follow the software deployment
lifecycle and create releases. Table 5.6 presents the time taken to add a new parameter
to the JAliEn Grid middleware following the existing practices and table 5.7 presents
the time taken to add a new parameter in the improved version of JAliEn Grid middle-
ware that is integrated with Site Sonar v2.0.

Action Time taken
Update the central server code to accept values for the new parameter 1 day
Test the functionality of the updated code in a central server 1 day
Deploy and test the update code across the central server farm after testing 3 days
Deploy the new pilot job code in few sites and test 1-3 days
Deploy the new pilot job code across all Grid sites 1 week

TABLE 5.6: Deployment time for adding a new job matching parameter in the
existing design

As shown in Table 5.6, adding a new job matching parameter in the existing JAliEn
implementation can usually take 1-3 weeks. This is because adding the new parameter
will require updating both central servers and the JobAgent, and each of these com-

77



Action Time taken
Deploy the new probe in CVMFS and allow distribution 1 day
Define the new constraint in the database and check data integrity 6 hours
Update the constraint servlet to include the new parameter 6 hours

TABLE 5.7: Deployment time for adding a new job matching parameter in the
proposed design

ponents has its own deployment cycle. Changes to central servers are tested on one
server and rolled out across the server farm whereas changes to JobAgent are tested
on one site and the update is gradually propagated across other sites over a span of
approximately 1 week ensuring updated sites are not showing abnormal behaviors.

Since Site Sonar v2.0 completely avoids the requirement to change any of the code
related to central servers and JobAgent, adding a new parameter is much easier. It
requires updating one of the database tables with the new constraint and updating the
HTTP endpoint(that hot deploys the changes to its source code) that outputs the results
from this database. Since both these components are completely independent from the
critical components: Central servers and the JobAgent in the Grid WMS, there is no
such rigorous testing or deployment processes which reduces the new parameter intro-
duction time to about 2 days. Therefore, it can be seen that Site Sonar v2.0 drastically
reduces the time taken to introduce a new job matching parameter from 1-3 weeks to
2 days while avoiding the need to update critical components of Grid middleware.

5.3.2 Qualitative Evaluation

The proposed architecture is mainly focused on providing new and important features
that cannot be provided by using the existing architectures. Therefore, the system
provides more features that can be compared qualitatively instead of quantitatively.
This section intends to qualitatively evaluate the proposed architecture.

5.3.2.1 Extensibility

One of the 2 major goals in designing the new monitoring system is the possibility
to easily extend the system. This is a critical feature because all the existing systems
are limited by the fact that they cannot be extended as required. This is addressed in
Site Sonar v2.0 data collection framework with the use of the distributed file system
used by the relevant Grid. The data collection scripts will reside on the distributed
file system and be called on demand at the data collection step. This allows to add or
remove data collection probes as necessary or enable/disable them on demand.

The discussed monitoring tools in this study are divided into two models: the Data
Pull Model and the Data Push Model. The monitoring systems that follow data pull
model like GridIce, Paryavekshanam etc. also offer some extensibility, but their model
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of collecting data introduces many limitations in terms of functionality as discussed in
section 3.1.3 and performance issues as discussed in section 5.3.1.1. So the pull model
cannot be used to achieve the goals of this research. While the systems with data push
model like MonALISA, MONIT etc. aligns with some of the goals, they are unable to
provide this level of flexibility because they run agents on nodes and updating those
agents with new probes often require new rollouts and updates to all the nodes which
considerably hinder the extensibility of the system. Therefore, it is clear that the new
design provides higher extensibility than the existing systems.

5.3.2.2 Flexibility

The other main goal of designing the new monitoring system is to offer high flexibility
in terms of data collection. This refers to allowing changing of the data structure and
the data type of data collection and allowing the collection of arbitrary data.

Site Sonar v2.0 provides these features by the use of an ELK stack. Due to the ex-
tensibility of the system, monitoring probes can be updated and deployed on demand.
Any of these changed parameters can be collected without any changes in code in Site
Sonar v2.0. Further, it allows doing high-level analysis of any data without additional
changes. This leads to the provision of Post data filtering feature which is described in
section 3.2.2 that is very helpful in things like Grid debugging which is explained in
section 5.2.3.

All of the discussed systems except MONIT are based on SQL databases. This
imposes a critical limitation on their flexibility because SQL requires all the data types
to be predefined. Different data types cannot be collected unless all are defined as
strings which limits their indexing capabilities. While changing parameter keys can be
handled with SQL by creating a table that accepts any key, this would largely restrict
analysis and visualizations using that data as it makes it hard to group different mon-
itoring parameter values by their name. Therefore, providing the level of flexibility
given by Site Sonar v2.0 will require the support of a noSQL database, and out of the
discussed systems, only MONIT is capable of achieving the desired level of flexibility.

5.3.2.3 Supported parameters

Very low time taken for parameter introduction and zero impact to the core framework
allows the improved JAliEn version to support any number of parameters without a
problem. However, due to the limitations discussed in 3.5.2, usual Grid middleware
supports only a limited set of parameters.

The table 3.1 shows the number of parameters that can be supported by the existing
Grid middleware compared to the improved JAliEn. It can be seen that all the existing
systems can support only a limited set of infrastructure parameters with a maximum of

79



around 6-10 parameters. These are hardcoded in the Pilot job code and updated very
infrequently.

Improved JAliEn integrated with Site Sonar presents the possibility of introducing
an unlimited no. of infrastructure properties in the job matching process. Due to this
reason, it can be concluded that the introduced design is much more versatile than the
existing designs.

5.3.3 Associated projects

Since its introduction, Site Sonar v2.0 has been a very useful tool for Grid adminis-
trators to understand the nature of the Grid in addition to the improved job matching
it provides. In ALICE Computing Grid, multiple studies are being undertaken to im-
prove different aspects of the Grid usage and some of them have already started using
the data collected from Site Sonar to base their observations on.

5.3.3.1 CPU Oversubscription

One of the studies in ALICE Computing Grid presently is to devise a dynamic schedul-
ing strategy that identifies the idle resources in the nodes that are executing jobs and
oversubscribe the node to run extra jobs This requires up-to-date information about the
CPU cores, memory and other hardware information of the worker node to understand
if the node has extra resources and how much of them can be reused. Such hard-
ware information is collected from Site Sonar and they are used to plan the dynamic
scheduling strategy which has yielded promising results.

5.3.3.2 Open File Limit Comparison

A study in ALICE Grid has been undertaken on why some jobs with large I/O require-
ments are being killed in some Grid sites without a reason. These sites have been
identified as very large size with enough I/O capabilities to process the job, yet fail to
do so. Upon observing the infrastructure of the worker nodes, it has been noted that
the worker nodes use a OS level default value for the maximum number of open files
and hence they kill the job when the job exceeds the set limit even if it has the capa-
bility to fully execute it. These levels set in different worker nodes are collected via
Site Sonar and the relationship between the number of open files and the number of
cores in the node is being studied to propose new maximum open file limits and other
relevant parameters to the sites.

5.3.3.3 Profiling and Duration Estimation of the MonteCarlo Jobs

An ongoing project in the ALICE Grid aims to improve the scheduling algorithms
for the CPU-intensive jobs (MonteCarlo simulations) based on their run history. The
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project attempts to determine the components that impact the job performance. Thus, it
combines data extracted from job traces (time spent by the job, site and hostname) with
information extracted from SiteSonar such as CPU model and its flags, host configu-
rations (containerization, job scheduler applications, as well as other metrics). More-
over, thanks to SiteSonar’s extensibility, new scripts can be easily integrated into the
platform to extract additional information that may be necessary during the analysis
(virtualization, vulnerability mitigations, DMI configuration).
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CHAPTER 6

CONCLUSION

6.1 Contribution

This research focused on studying distributed Computing Grids to propose a highly
flexible and extensible Grid infrastructure monitoring architecture design and a new
infrastructure aware job matching architecture for them. The research studied the ex-
isting Grid monitoring tools and Grid workflow managements systems and the lack of
interoperability between these systems which restricts providing infrastructure aware
job matching in computing Grids.

The research identified that the existing Grid infrastructure systems are not equipped
to achieve the present monitoring requirements and discussed the limitations of these
systems. A new Grid monitoring architecture that is based on noSQL backend with
the ability to extend and change monitoring parameters on-demand was proposed in
this research to address this. The proposed design is used to develop a tool called
“Site Sonar v2.0” that is currently being used in production to monitor 7,000+ worker
nodes in 60+ Grid sites across the ALICE Computing Grid. It is a valuable addition
to the Grid and proves to achieve the required flexibility and extensibility, leading it
to be used successfully even as a Grid debugging tool. The introduced tool has also
led to new findings about the ALICE Computing Grid which is not possible with tra-
ditional monitoring systems and has surpassed its predecessor Site Sonar v1.0 in both
performance and usability perspectives.

This research recognized the importance of the new Grid monitoring capabilities
introduced in the proposed design to match jobs to worker nodes based on their in-
frastructure properties and proposed a novel architecture to integrate Grid monitoring
tools with Grid workflow management systems. The new design bridges the gap be-
tween the Grid monitoring systems and workflow management systems allowing the
monitoring information to be used in the job matching criteria. The proposed design
is implemented in JAliEn Grid workflow management system that is used to handle
workflows in the ALICE Computing Grid. Implementation has proven to be very use-
ful allowing the Grid administrators to match jobs based on any infrastructure metric
of the worker nodes. Monitoring systems and WMSs have been largely independent
so far and we intend that the new design will inspire advanced job matching designs in
the future in light of the new parameters introduced in the job matching process in this
design. Both the tools have been successfully implemented and are running in produc-
tion across the nodes and servers in ALICE Computing Grid leading to a new way of
monitoring worker nodes and matching jobs to worker nodes in distributed computing
Grids.
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6.2 Limitations and Future Work

This research focused on providing a modernized way of monitoring Distributed Com-
puting Grids with a new perspective of job matching in Computing Grids. The pro-
posed designs can be seen as novel concepts and hence there are aspects that can be
considerably improved but are out of the scope of this research. This section describes
the future work that can be done based on this research that can contribute to the ad-
vancement of the Grid Computing domain.

Identifying anomalies in the monitoring data can be seen as a significant contribu-
tion to the Grid monitoring domain. When the data is used for analyzing the issues in
the ALICE Computing Grid, it was noticed that the anomalies in the data could help to
understand the abnormal behavior of jobs in specific sites. For example, the absence of
specific monitoring parameters in some worker nodes could hint that the worker nodes
or the whole site are incorrectly configured to run jobs. In such cases, job failures can
be directly mapped to the incorrect nodes by correlating the two factors. Although this
can be done manually at the moment, it would be a good addition to automate such
anomaly detection and notify relevant parties about the behavior automatically.

The proposed job matching design introduces imposing constraints on the job de-
scription about the infrastructure capabilities a worker node should suffice to be able
to run that job. This allows the job to define what kind of worker nodes can run the
job. From the studies, we have identified that it is also important for the sites to be
able to impose constraints declaring which kind of jobs they would prefer to accept.
This is becoming important with the addition of new special sites like GPU equipped
Grid sites that would prefer to accept jobs that can execute parallelly leading to better
utilization of the site resources. The current design can be extended to achieve this by
improving the job matching process further allowing both the job and the Grid site to
define their constraints and preferences of each other.

This research lays the initial steps for bridging the gap between Grid infrastructure
monitoring systems and Grid WMSs. However, we have not considered how the job
monitoring systems can also be integrated with the infrastructure monitoring systems.
While the current integration provides the basic functionality, integration with a job
monitoring system would allow the Grid administrators to get a full picture of the
Grid infrastructure and Grid jobs and correlate between them easily to narrow down
and identify the root cause of Grid issues. This would also be an important research
area because none of the existing systems are seen to have both infrastructure and job
monitoring data correlated with each other while being used for job matching as well.
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APPENDIX A

FULL DATA SET COLLECTED FROM A WORKER NODE

This appendix shows the full set of data collected from a single worker node in the
ALICE Computing Grid using the Site Sonar Data Collection Framework introduced
in this research.

{

"_index": "new-mapping-sitesonar-2023.04",

"_type": "_doc",

"_id": "314CwIcBwP3PkOBT6JBF",

"_version": 1,

"_score": null,

"_source": {

"port": 59266,

"host_id": 83851870,

"@timestamp": "2023-04-26T09:57:28.000Z",

"ce_name": "NIPNE",

"addr": "81.180.86.124",

"@version": "1",

"test_results_json": {

"ram_info": {

"RAM_kB_Inactive(anon)": 6936452,

"RAM_HugePages_Surp": 0,

"RAM_kB_Cached": 17984532,

"RAM_kB_DirectMap2M": 19728384,

"RAM_kB_Hugepagesize": 2048,

"RAM_kB_Active(anon)": 13954640,

"RAM_kB_WritebackTmp": 0,

"RAM_HugePages_Total": 0,

"RAM_kB_SwapFree": 31962860,

"RAM_kB_HardwareCorrupted": 0,

"RAM_kB_Slab": 905852,

"RAM_kB_CmaFree": 0,

"RAM_kB_Bounce": 0,

"RAM_kB_Mlocked": 0,

"RAM_kB_Buffers": 224,

"RAM_kB_AnonHugePages": 0,

"RAM_kB_Active": 22863220,
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"RAM_kB_KernelStack": 16336,

"RAM_kB_SUnreclaim": 272568,

"RAM_kB_VmallocTotal": 34359738367,

"RAM_kB_Inactive": 15686420,

"RAM_HugePages_Rsvd": 0,

"RAM_kB_PageTables": 126560,

"RAM_kB_MemTotal": 65780016,

"RAM_kB_SReclaimable": 633284,

"RAM_kB_DirectMap4k": 176512,

"RAM_kB_VmallocUsed": 404104,

"RAM_kB_DirectMap1G": 47185920,

"RAM_kB_CmaTotal": 0,

"RAM_kB_SwapCached": 29676,

"RAM_kB_Active(file)": 8908580,

"EXITCODE": 0,

"RAM_kB_Writeback": 12,

"RAM_kB_NFS_Unstable": 4,

"RAM_kB_SwapTotal": 32767996,

"RAM_kB_Shmem": 326164,

"EXECUTION_TIME": 899,

"RAM_kB_Inactive(file)": 8749968,

"RAM_kB_MemAvailable": 42660680,

"RAM_kB_Unevictable": 0,

"RAM_kB_Percpu": 17408,

"RAM_kB_AnonPages": 20537956,

"RAM_kB_VmallocChunk": 34300112892,

"RAM_HugePages_Free": 0,

"RAM_kB_CommitLimit": 65658004,

"RAM_kB_Dirty": 2336,

"RAM_kB_Mapped": 229224,

"RAM_kB_MemFree": 25304120,

"RAM_kB_Committed_AS": 43775252

},

"os": {

"OS_ANSI_COLOR": "0;31",

"OS_CPE_NAME": "cpe:/o:centos:centos:7",

"OS_PRETTY_NAME": "CentOS Linux 7 (Core)",

"OS_CENTOS_MANTISBT_PROJECT": "CentOS-7",

"OS_NAME": "CentOS Linux",

"EXITCODE": 0,
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"OS_VERSION": "7 (Core)",

"OS_REDHAT_SUPPORT_PRODUCT": "centos",

"EXECUTION_TIME": 503,

"OS_BUG_REPORT_URL": "https://bugs.centos.org/",

"OS_HOME_URL": "https://www.centos.org/",

"OS_ID": "centos",

"OS_ID_LIKE": "rhel fedora",

"OS_VERSION_ID": "7",

"OS_REDHAT_SUPPORT_PRODUCT_VERSION": "7",

"OS_CENTOS_MANTISBT_PROJECT_VERSION": "7"

},

"underlay": {

"UNDERLAY_ENABLED": "yes",

"EXECUTION_TIME": 146,

"EXITCODE": 0

},

"gcc_version": {

"GCC_VERSION": "gcc (GCC) 7.3.0",

"EXECUTION_TIME": 174,

"EXITCODE": 0

},

"cpuset_checking": {

"CPUSET_CPUS": "0-31",

"EXECUTION_TIME": 2366,

"EXITCODE": 3,

"CPU_AMOUNT": 32,

"CPUSET_PREFIX": "/",

"CPUSET_ENABLED": true,

"CPUSET_CGROUP": "/sys/fs/cgroup/cpuset"

},

"profiling_checking": {

"PTRACE_SCOPE": "0",

"VTUNE_PROFILING_ENABLED": false,

"EXECUTION_TIME": 129,

"PERF_EVENT_PARANOID": "2",

"EXITCODE": 0

},

"cvmfs_version": {

"CVMFS_VERSION": 15271,

"EXECUTION_TIME": 290,
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"EXITCODE": 0

},

"singularity_debug": {

"SINGULARITY_CVMFS_SUPPORTED_BOOL": true,

"SINGULARITY_LOCAL_SUPPORTED_BOOL": true,

"EXECUTION_TIME": 1366,

"EXITCODE": 0

},

"uname": {

"EXECUTION_TIME": 248,

"UNAME": "Linux",

"EXITCODE": 0

},

"vulnerabilities": {

"EXECUTION_TIME": 564,

"kernel_vulnerabilities": [

{

"output": "permission_error",

"name": "itlb_multihit"

},

{

"output": "permission_error",

"name": "l1tf"

},

{

"output": "permission_error",

"name": "mds"

},

{

"output": "permission_error",

"name": "meltdown"

},

{

"output": "permission_error",

"name": "mmio_stale_data"

},

{

"output": "permission_error",

"name": "retbleed"

},
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{

"output": "permission_error",

"name": "spec_store_bypass"

},

{

"output": "permission_error",

"name": "spectre_v1"

},

{

"output": "permission_error",

"name": "spectre_v2"

},

{

"output": "permission_error",

"name": "srbds"

},

{

"output": "permission_error",

"name": "tsx_async_abort"

},

{

"output": "Present",

"name": "FEATURE IBPB_SUPPORT"

},

{

"output": "Not Present",

"name": "FEATURE SPEC_CTRL"

},

{

"output": "not found in dmesg",

"name": "MDS"

},

{

"output": "not found in dmesg",

"name": "MMIO Stale Data"

},

{

"output": "Mitigation: untrained return thunk",

"name": "RETBleed"

},

93



{

"output": "Mitigation: Full retpoline",

"name": "Spectre V2"

},

{

"output": "not found in dmesg",

"name": "SRBDS"

},

{

"output": "not found in dmesg",

"name": "TAA"

}

],

"EXITCODE": 0

},

"cpu_info": {

"EXITCODE": 0,

"CPU_clflush_size": 64,

"CPU_power_management": [

"ts",

"ttp",

"tm",

"100mhzsteps",

"hwpstate",

"cpb"

],

"CPU_flags": [

"fpu",

"vme",

"de",

"pse",

"tsc",

"msr",

"pae",

"mce",

"cx8",

"apic",

"sep",

"mtrr",

"pge",
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"mca",

"cmov",

"pat",

"pse36",

"clflush",

"mmx",

"fxsr",

"sse",

"sse2",

"ht",

"syscall",

"nx",

"mmxext",

"fxsr_opt",

"pdpe1gb",

"rdtscp",

"lm",

"constant_tsc",

"art",

"rep_good",

"nopl",

"nonstop_tsc",

"extd_apicid",

"amd_dcm",

"aperfmperf",

"pni",

"pclmulqdq",

"monitor",

"ssse3",

"cx16",

"sse4_1",

"sse4_2",

"popcnt",

"aes",

"xsave",

"avx",

"lahf_lm",

"cmp_legacy",

"svm",

"extapic",
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"cr8_legacy",

"abm",

"sse4a",

"misalignsse",

"3dnowprefetch",

"osvw",

"ibs",

"xop",

"skinit",

"wdt",

"lwp",

"fma4",

"nodeid_msr",

"topoext",

"perfctr_core",

"perfctr_nb",

"cpb",

"hw_pstate",

"ssbd",

"rsb_ctxsw",

"ibpb",

"vmmcall",

"retpoline_amd",

"arat",

"npt",

"lbrv",

"svm_lock",

"nrip_save",

"tsc_scale",

"vmcb_clean",

"flushbyasid",

"decodeassists",

"pausefilter",

"pfthreshold"

],

"CPU_cpuid_level": 13,

"CPU_initial_apicid": "103",

"CPU_cpu_MHz": 2400,

"EXECUTION_TIME": 5160,

"CPU_address_sizes": "48 bits physical, 48 bits virtual",
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"CPU_vendor_id": "AuthenticAMD",

"CPU_physical_id": 3,

"CPU_model": 1,

"CPU_cache_size": "2048 KB",

"CPU_fpu_exception": true,

"CPU_cpu_cores": 4,

"CPU_stepping": 2,

"CPU_fpu": true,

"CPU_core_id": 3,

"CPU_bogomips": 5199.3,

"CPU_model_name": "AMD Opteron(TM) Processor 6212",

"CPU_microcode": "0x600063e",

"CPU_wp": true,

"CPU_TLB_size": "1536 4K pages",

"CPU_cpu_family": 21,

"CPU_siblings": 8,

"CPU_processor": "31",

"CPU_cache_alignment": 64,

"CPU_processor_count": 32,

"CPU_apicid": 135

},

"cpulimit_checking": {

"CGROUP": "/sys/fs/cgroup/cpu",

"ACCESS_QUOTA": "",

"ACCESS_PERIOD": "",

"EXECUTION_TIME": 2223,

"EXITCODE": 2,

"ALLOCATED_CPUS": ""

},

"taskset_other_processes": {

"PERCENTAGE_PINNED_CPUS": 0,

"ENTRIES": "ffffffff",

"ENTRY_COUNT": 1,

"EXECUTION_TIME": 808,

"EXITCODE": 0

},

"running_container": {

"RUNNING_IN": "no container",

"EXECUTION_TIME": 204,

"EXITCODE": 0
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},

"container_enabled": {

"EXECUTION_TIME": 326,

"EXITCODE": 1

},

"tmp": {

"TEMP_DIR": "/mnt/scratch/arc/gMJNDm2zm/ALICE/tmp",

"EXECUTION_TIME": 146,

"EXITCODE": 0

},

"cpu_architecture": {

"CPUs_node6": "24-27",

"EXITCODE": 0,

"NUMA_NODES": "8",

"CPUs_node7": "28-31",

"CPUs_node0": "0-3",

"CPUs_node4": "16-19",

"EXECUTION_TIME": 245,

"CPUs_node2": "8-11",

"CPUs_node3": "12-15",

"CPUs_node1": "4-7",

"CPUs_node5": "20-23"

},

"taskset_own_process": {

"EXITCODE": 0,

"PERCENTAGE_PINNED": 0,

"EXECUTION_TIME": 370,

"USING_PINNING": 0,

"TASKSET": "ffffffff"

},

"lhcbmarks": {

"LHCbMarks": 8.041,

"EXECUTION_TIME": 154297,

"EXITCODE": 0

},

"get_jdl_cores": {

"EXECUTION_TIME": 83,

"ALIEN_JDL_CPUCORES": "",

"EXITCODE": 0

},
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"cvmfs_cache_size": {

"CVMFS_CACHE_SIZE": 49,

"EXECUTION_TIME": 247,

"EXITCODE": 0

},

"overlay": {

"OVERLAY_ENABLED": "try",

"EXECUTION_TIME": 991,

"EXITCODE": 0

},

"wlcg_metapackage": {

"EXECUTION_TIME": 617,

"WCLG_METAPACKAGE": "HEP_OSlibs-7.3.1-2.el7.cern.x86_64",

"EXITCODE": 0

},

"isolcpus_checking": {

"ISOLATED_CPUS": "",

"EXECUTION_TIME": 77,

"EXITCODE": 1

},

"processes_visibility": {

"EXECUTION_TIME": 708,

"USERS_COUNT": 12,

"EXITCODE": 0

},

"connectivity": {

"CURL_IPv6_Status": 7,

"IPv4_ICMP_Status": 0,

"EXECUTION_TIME": 1681,

"EXITCODE": 2,

"CURL_IPv4_Status": 0,

"IPv6_ICMP_Status": 2,

"IPv4_ICMP_avg_rtt": 34.811

},

"lsb_release": {

"LSB_RELEASE": "CentOS Linux release 7.9.2009 (Core)",

"EXECUTION_TIME": 298,

"EXITCODE": 0

},

"ulimit": {
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"ulimit_current_max_memory_size": 999999999,

"ulimit_hard_virtual_memory": 999999999,

"ulimit_hard_max_user_processes": 256612,

"ulimit_hard_max_memory_size": 999999999,

"ulimit_nropen": 1048576,

"EXITCODE": 0,

"ulimit_current_core_file_size": 999999999,

"ulimit_current_scheduling_priority": 0,

"ulimit_hard_open_files": 32768,

"ulimit_hard_stack_size": 999999999,

"ulimit_hard_pending_signals": 256612,

"EXECUTION_TIME": 662,

"ulimit_current_pipe_size": 8,

"ulimit_current_data_seg_size": 999999999,

"ulimit_hard_core_file_size": 999999999,

"ulimit_current_virtual_memory": 999999999,

"ulimit_hard_POSIX_message_queues": 819200,

"ulimit_current_max_user_processes": 256612,

"ulimit_current_cpu_time": 999999999,

"ulimit_current_stack_size": 999999999,

"ulimit_hard_pipe_size": 8,

"ulimit_current_file_locks": 999999999,

"ulimit_hard_max_locked_memory": 64,

"ulimit_current_max_locked_memory": 64,

"ulimit_hard_data_seg_size": 999999999,

"ulimit_current_file_size": 999999999,

"ulimit_hard_scheduling_priority": 0,

"ulimit_current_pending_signals": 256612,

"ulimit_filemax": 6472526,

"ulimit_hard_cpu_time": 999999999,

"ulimit_hard_real-time_priority": 0,

"ulimit_current_POSIX_message_queues": 819200,

"ulimit_hard_file_size": 999999999,

"ulimit_current_open_files": 32768,

"ulimit_current_real-time_priority": 0,

"ulimit_hard_file_locks": 999999999

},

"home": {

"HOME": "/mnt/scratch/arc/gMJNDm2zm",

"EXECUTION_TIME": 118,
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"EXITCODE": 0

},

"loop_devices": {

"shared_loop_devices": "no",

"EXECUTION_TIME": 807,

"EXITCODE": 0,

"max_loop_devices": 256

},

"derived_fileds": {

"ulimit_hard_max_user_processes_per_core": 64153,

"ulimit_filemax_per_core": 1618131,

"ulimit_hard_openfiles_per_core": 8192,

"ulimit_nropen_per_core": 262144,

"ulimit_current_max_user_processes_per_core": 64153,

"ulimit_current_openfiles_per_core": 8192

},

"max_namespaces": {

"MAX_NAMESPACES": 10000,

"EXECUTION_TIME": 302,

"EXITCODE": 0

},

"cgroups2_checking": {

"CGROUPSv2_AVAILABLE": false,

"EXECUTION_TIME": 412,

"CGROUPSv2_RUNNING": false,

"EXITCODE": 0

}

},

"host": "gateway",

"last_updated": 1682503048,

"hostname": "wn59.nipne.ro"

},

"fields": {

"last_updated": [

"2023-04-26T09:57:28.000Z"

],

"@timestamp": [

"2023-04-26T09:57:28.000Z"

]

},
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"sort": [

1682503048000

]

}
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APPENDIX B

SITE SONAR V2.0 COMPONENT TEMPLATE

This appendix presents the complete component template that is used to index Site
Sonar v2.0 data in Elasticsearch.

{

"component_templates" : [

{

"name" : "new_mapping_sitesonar_template",

"component_template" : {

"template" : {

"mappings" : {

"properties" : {

"hostname" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"last_updated" : {

"format" : "epoch_second",

"type" : "date"

},

"port" : {

"type" : "integer"

},

"test_results_json" : {

"properties" : {

"wlcg_metapackage" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"WCLG_METAPACKAGE" : {

"type" : "text",
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"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"lhcbmarks" : {

"properties" : {

"LHCbMarks" : {

"type" : "float"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"ram_info" : {

"properties" : {

"RAM_kB_Inactive(file)" : {

"type" : "long"

},

"RAM_kB_AnonHugePages" : {

"type" : "long"

},

"RAM_kB_Bounce" : {

"type" : "long"

},

"RAM_kB_Hugepagesize" : {

"type" : "long"

},

"RAM_kB_Active(anon)" : {
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"type" : "long"

},

"RAM_kB_SReclaimable" : {

"type" : "long"

},

"RAM_kB_WritebackTmp" : {

"type" : "long"

},

"RAM_kB_FileHugePages" : {

"type" : "long"

},

"RAM_kB_SwapCached" : {

"type" : "long"

},

"RAM_kB_KReclaimable" : {

"type" : "long"

},

"RAM_kB_Shmem" : {

"type" : "long"

},

"RAM_kB_Inactive(anon)" : {

"type" : "long"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"RAM_kB_CmaTotal" : {

"type" : "long"

},

"RAM_kB_Active(file)" : {

"type" : "long"

},

"RAM_kB_MemAvailable" : {

"type" : "long"

},

"RAM_kB_PageTables" : {

"type" : "long"

},

"RAM_kB_DirectMap2M" : {

"type" : "long"
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},

"RAM_kB_Unevictable" : {

"type" : "long"

},

"RAM_kB_MemFree" : {

"type" : "long"

},

"RAM_kB_KernelStack" : {

"type" : "long"

},

"RAM_kB_Mlocked" : {

"type" : "long"

},

"RAM_kB_HardwareCorrupted" : {

"type" : "long"

},

"RAM_kB_NFS_Unstable" : {

"type" : "long"

},

"RAM_kB_ShmemPmdMapped" : {

"type" : "long"

},

"RAM_kB_AnonPages" : {

"type" : "long"

},

"RAM_kB_VmallocChunk" : {

"type" : "long"

},

"RAM_kB_SwapTotal" : {

"type" : "long"

},

"EXITCODE" : {

"type" : "integer"

},

"RAM_kB_Dirty" : {

"type" : "long"

},

"RAM_kB_SwapFree" : {

"type" : "long"

},
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"RAM_HugePages_Free" : {

"type" : "long"

},

"RAM_kB_Buffers" : {

"type" : "long"

},

"RAM_kB_CmaFree" : {

"type" : "long"

},

"RAM_kB_Cached" : {

"type" : "long"

},

"RAM_kB_DirectMap1G" : {

"type" : "long"

},

"RAM_kB_DirectMap4k" : {

"type" : "long"

},

"RAM_kB_VmallocUsed" : {

"type" : "long"

},

"RAM_kB_FilePmdMapped" : {

"type" : "long"

},

"RAM_kB_SUnreclaim" : {

"type" : "long"

},

"RAM_kB_Hugetlb" : {

"type" : "long"

},

"RAM_kB_VmallocTotal" : {

"type" : "long"

},

"RAM_kB_Writeback" : {

"type" : "long"

},

"RAM_HugePages_Total" : {

"type" : "long"

},

"RAM_kB_Active" : {
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"type" : "long"

},

"RAM_HugePages_Surp" : {

"type" : "long"

},

"RAM_kB_Slab" : {

"type" : "long"

},

"RAM_kB_MemTotal" : {

"type" : "long"

},

"RAM_kB_Percpu" : {

"type" : "long"

},

"RAM_kB_Committed_AS" : {

"type" : "long"

},

"RAM_kB_Inactive" : {

"type" : "long"

},

"RAM_HugePages_Rsvd" : {

"type" : "long"

},

"RAM_kB_CommitLimit" : {

"type" : "long"

},

"RAM_kB_Mapped" : {

"type" : "long"

},

"RAM_kB_ShmemHugePages" : {

"type" : "long"

}

}

},

"cpu_info" : {

"properties" : {

"CPU_bugs" : {

"type" : "text",

"fields" : {

"keyword" : {
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"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_apicid" : {

"type" : "integer"

},

"CPU_clflush_size" : {

"type" : "integer"

},

"CPU_cpu_cores" : {

"type" : "integer"

},

"CPU_cpu_family" : {

"type" : "integer"

},

"CPU_lflush_size" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_wp" : {

"type" : "boolean"

},

"CPU_power_management" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"
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},

"CPU_cpuid_level" : {

"type" : "integer"

},

"CPU_microcode" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_cache_alignment" : {

"type" : "integer"

},

"CPU_processor" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_stepping" : {

"type" : "integer"

},

"CPU_cache_size" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_TLB_size" : {

"type" : "text",

"fields" : {
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"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_initial_apicid" : {

"type" : "integer"

},

"CPU_cpu_MHz" : {

"type" : "float"

},

"CPU_fpu" : {

"type" : "boolean"

},

"CPU_address_sizes" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_p" : {

"type" : "boolean"

},

"EXITCODE" : {

"type" : "integer"

},

"CPU_fpu_exception" : {

"type" : "boolean"

},

"CPU_flags" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}
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}

},

"CPU_model_name" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"CPU_processor_count" : {

"type" : "long"

},

"CPU_physical_id" : {

"type" : "integer"

},

"CPU_siblings" : {

"type" : "integer"

},

"CPU_core_id" : {

"type" : "integer"

},

"CPU_model" : {

"type" : "integer"

},

"CPU_bogomips" : {

"type" : "float"

},

"CPU_pu_exception" : {

"type" : "boolean"

},

"CPU_hysical_id" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}
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},

"CPU_vendor_id" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

}

}

},

"singularity_debug" : {

"properties" : {

"SINGULARITY_CHECK_SECCOMP" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"SINGULARITY_CVMFS_DEBUG" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"SINGULARITY_LOCAL_SUPPORTED_BOOL" : {

"type" : "boolean"

},

"SINGULARITY_LOCAL_DEBUG" : {

"type" : "text",
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"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

},

"SINGULARITY_CVMFS_SUPPORTED_BOOL" : {

"type" : "boolean"

}

}

},

"gcc_version" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

},

"GCC_VERSION" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

}

}

},

"max_namespaces" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"MAX_NAMESPACES" : {
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"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"underlay" : {

"properties" : {

"UNDERLAY_ENABLED" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"cgroups2_checking" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"CGROUPSv2_AVAILABLE" : {

"type" : "boolean"

},

"CGROUPSv2_RUNNING" : {

"type" : "boolean"

},

"EXITCODE" : {

"type" : "integer"

}
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}

},

"taskset_other_processes" : {

"properties" : {

"PERCENTAGE_PINNED_CPUS" : {

"type" : "float"

},

"ENTRY_COUNT" : {

"type" : "integer"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

},

"ENTRIES" : {

"type" : "text"

}

}

},

"container_enabled" : {

"properties" : {

"SINGULARITY_BINDPATH" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"SINGULARITYENV_PANDA_HOSTNAME" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

116



},

"SINGULARITY_COMMAND" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"SINGULARITY_BIND" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"SINGULARITY_NAME" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"SINGULARITY_CONTAINER" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},
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"SINGULARITY_ENVIRONMENT" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"SINGULARITYENV_FRONTIER_LOG_FILE" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"cpulimit_checking" : {

"properties" : {

"ALLOCATED_CPUS" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"ACCOUNTING" : {

"type" : "text",

"fields" : {
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"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"ACCESS_QUOTA" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"ACCESS_PERIOD" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

},

"CGROUP" : {

"type" : "text"

}

}

},

"tmp" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"TEMP_DIR" : {

"type" : "text",

"fields" : {
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"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"singularity" : {

"properties" : {

"SINGULARITY_CVMFS_SUPPORTED" : {

"type" : "boolean"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

},

"SINGULARITY_LOCAL_SUPPORTED" : {

"type" : "boolean"

}

}

},

"taskset_own_process" : {

"properties" : {

"USING_PINNING" : {

"type" : "integer"

},

"TASKSET" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}
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},

"EXECUTION_TIME" : {

"type" : "integer"

},

"PERCENTAGE_PINNED" : {

"type" : "float"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"cvmfs_cache_size" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"CVMFS_CACHE_SIZE" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"get_jdl_cores" : {

"properties" : {

"ALIEN_JDL_CPUCORES" : {

"type" : "integer"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"os" : {

"properties" : {
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"OS_REDHAT_SUPPORT_PRODUCT" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_SUPPORT_URL" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_REDHAT_BUGZILLA_PRODUCT_VERSION" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_VERSION_ID" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_CPE_NAME" : {

"type" : "text",

"fields" : {

"keyword" : {
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"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_NAME" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_HOME_URL" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_PRETTY_NAME" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

},

"OS_REDHAT_BUGZILLA_PRODUCT" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,
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"type" : "keyword"

}

}

},

"OS_VERSION_CODENAME" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_REDHAT_SUPPORT_PRODUCT_VERSION" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_ID" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_CENTOS_MANTISBT_PROJECT_VERSION" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},
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"OS_VERSION" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"OS_ID_LIKE" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_BUG_REPORT_URL" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_ANSI_COLOR" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_PRIVACY_POLICY_URL" : {
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"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_CENTOS_MANTISBT_PROJECT" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"OS_UBUNTU_CODENAME" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

}

}

},

"overlay" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"OVERLAY_ENABLED" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}
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}

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"uname" : {

"properties" : {

"UNAME" : {

"type" : "text"

}

}

},

"derived_fileds" : {

"properties" : {

"ulimit_current_openfiles_per_core" : {

"type" : "integer"

},

"ulimit_nropen_per_core" : {

"type" : "integer"

},

"ulimit_hard_openfiles_per_core" : {

"type" : "integer"

},

"ulimit_current_max_user_processes_per_core" : {

"type" : "integer"

},

"ulimit_hard_max_user_processes_per_core" : {

"type" : "integer"

},

"ulimit_filemax_per_core" : {

"type" : "integer"

}

}

},

"isolcpus_checking" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

127



},

"ISOLATED_CPUS" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"cpuset_checking" : {

"properties" : {

"CPU_AMOUNT" : {

"type" : "integer"

},

"CPUSET_CGROUP" : {

"type" : "text"

},

"CPUSET_ENABLED" : {

"type" : "boolean"

},

"CPUSET_CPUS" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"
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},

"CPUSET_PREFIX" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

}

}

},

"ulimit" : {

"properties" : {

"ulimit_current_stack_size" : {

"type" : "integer"

},

"ulimit_current_max_user_processes" : {

"type" : "integer"

},

"ulimit_current_max_locked_memory" : {

"type" : "integer"

},

"ulimit_hard_max_memory_size" : {

"type" : "integer"

},

"ulimit_hard_core_file_size" : {

"type" : "integer"

},

"ulimit_hard_file_size" : {

"type" : "integer"

},

"ulimit_hard_cpu_time" : {

"type" : "integer"

},

"ulimit_filemax" : {

"type" : "integer"

},

"ulimit_current_data_seg_size" : {

"type" : "integer"
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},

"ulimit_current_max_memory_size" : {

"type" : "integer"

},

"ulimit_hard_max_user_processes" : {

"type" : "integer"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"ulimit_nropen" : {

"type" : "integer"

},

"ulimit_current_file_size" : {

"type" : "integer"

},

"ulimit_current_virtual_memory" : {

"type" : "integer"

},

"ulimit_current_open_files" : {

"type" : "integer"

},

"ulimit_hard_max_locked_memory" : {

"type" : "integer"

},

"ulimit_hard_virtual_memory" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

},

"ulimit_current_pipe_size" : {

"type" : "integer"

},

"ulimit_hard_data_seg_size" : {

"type" : "integer"

},

"ulimit_hard_pipe_size" : {

"type" : "integer"

},
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"ulimit_current_cpu_time" : {

"type" : "integer"

},

"ulimit_current_core_file_size" : {

"type" : "integer"

},

"ulimit_hard_open_files" : {

"type" : "integer"

},

"ulimit_hard_stack_size" : {

"type" : "integer"

}

}

},

"process_visibility" : {

"properties" : {

"USERS_COUNT" : {

"type" : "integer"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"loop_devices" : {

"properties" : {

"shared_loop_devices" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

131



},

"max_loop_devices" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"home" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

},

"HOME" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

}

}

},

"cvmfs_version" : {

"properties" : {

"CVMFS_VERSION" : {

"type" : "integer"

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}
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},

"vulnerabilities" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"

},

"kernel_vulnerabilities" : {

"properties" : {

"output" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"name" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

}

}

},

"EXITCODE" : {

"type" : "integer"

},

"kernel_flags" : {

"type" : "text"

}

}

},

"running_container" : {

"properties" : {

"EXECUTION_TIME" : {

"type" : "integer"
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},

"RUNNING_IN" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXITCODE" : {

"type" : "integer"

}

}

},

"lsb_release" : {

"properties" : {

"LSB_RELEASE" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"EXECUTION_TIME" : {

"type" : "integer"

},

"EXITCODE" : {

"type" : "integer"

}

}

}

}

},

"ce_name" : {

"type" : "text",

"fields" : {

"keyword" : {
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"ignore_above" : 256,

"type" : "keyword"

}

}

},

"host" : {

"type" : "text",

"fields" : {

"keyword" : {

"ignore_above" : 256,

"type" : "keyword"

}

}

},

"test_code" : {

"type" : "integer"

},

"addr" : {

"type" : "ip"

},

"host_id" : {

"type" : "long"

}

}

}

}

}

}

]

}
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