DEVELOPMENT AND VALIDATION OF A NOVEL CFRP/STEEL HYBRID CRACK REPAIRING TECHNIQUE FOR THE STEEL STRUCTURES

Sampath Abeygunasekara

(138052C)

Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2023

DEVELOPMENT AND VALIDATION OF A NOVEL CFRP/STEEL HYBRID CRACK REPAIRING TECHNIQUE FOR THE STEEL STRUCTURES

Sampath Abeygunasekara

(138052C)

Thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2023

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or a Diploma in any other University or institute of higher learning and to the best of my knowledge and I believe that it does not contain any material previously published or written by another person except where the acknowledgement is made in this text.

Also, I hereby grant University of Moratuwa, the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future work (such as articles or books).

UOM	Verified	Signature
------------	----------	-----------

Signature:

Date: 01.03.2023

The above candidate has carried out research for the Doctor of Philosophy dissertation under my supervision.

Name of the supervisors: Prof. J.C.P.H. Gamage

Dr.S.Fawzia

Signature of the supervisor: *UOM Verified Signature* Date: 01.03.2023

Signature of the supervisor: **UOM Verified Signature** Date: 4/3/2023

ABSTRACT

Steel structures such as steel bridges greatly contribute to the socio economic development of the world. The current traffic demand has exhausted the service life of steel bridges paving the way for failures without prior warning due to fatigue. In fact, fatigue contributes to change the microstructure of a material which fails below the yield point. Therefore, fatigue could be considered as an issue related to materials, even though it is linked to the area of engineering. Interestingly, several unavoidable stress types on structures occur on steel bridges due to various reasons. As a result, avoiding fatigue on structures has become impossible during their service life. The result of stress fluctuation has caused crack initiation on steel structures while the initial stage is at a micro scale level and not visible to the naked eye. Thus, it should be controlled at the initial stage avoiding adverse effects later. Although the conventional crack repair techniques have extended service lives of structures they have led to numerous drawbacks too.

The crack stop hole technique could be considered as an emergency repairing technique to extend the fatigue life of a cracked steel structures that is quick, simple and economic. This technique was successfully applied in the aerospace industry primarily, however there had been irregularities due to the size of the hole with re-cracking appearing due to continuous service loads. Carbon fiber reinforce polymer (CFRP) materials have become popular as it has potential to replace the conventional repairing techniques with recent research focused on CFRP materials due to its light weight, corrosion resistivity, damping characteristics, fatigue resistivity and high tensile features. Therefore, this study proposes a crack stop hole (CSH) technique combined with a CFRP strengthening method to acquire the lost capacity due to fatigue in old structures with delaying re-cracking by further continue their services by steel bridges in the road and railway network operate at present.

An experimental test program carried out to determine the behavior of strengthened and nonstrengthened CSH in steel members subjected to low cycle flexural fatigue. Overall, the test program was focused on estimating yield strength losses and yield strength gained by CFRP. Interestingly, various types of fatigue testing apparatus are available in the open market for a relatively high cost which is not affordable in a university laboratory, thus a hydro-electric controlling fatigue loading apparatus was designed and fabricated as an initiation to this research study to fulfill this vacuum. In this development process, machine operation, and development technique with finite element analysis on the test frame was investigated.

In the next phase of this research, a numerical model was developed using an advanced finite element model (FEM) and results were validated using the laboratory test results. The proposed numerical model was based on the cyclic J-integral method under the detect cyclic mode. The test results agreed with the model results consisting nine key parameters affecting the final results. This CFRP strengthened CSH technique is significantly enhanced fatigue life of the structural members. This investigation reported the yield strength losses; which are in the range of 13.4 % to 25.2 % compared to the non-conditioned and yield strength gains with CFRP; which is in the range of 32.2 % to 45.3 % compared to the non-strengthened CSH with the diameter varies from 4 mm to 25 mm. A considerable amount of strain controlled were recorded by CFRP with respect to non-strengthened CSH. When considering the critical parameter effects, the test results recorded a yield strength gain with respect to off-set distance; which was in the range of 36 % to 131 % compared to the CSH at the midpoint. The yield strength variation recorded due to the length of CFRP layer was in the range of 89 % to 223 % compared to the least length considered. This investigation recommended by CFRP strengthened technique has significantly enhanced fatigue bearing capacity of structural members with CSH. Design guidelines are developed for practical implementations.

Key words: steel members, CSH, CFRP, cyclic flexural load, Low cycle fatigue, FEM, cyclic J-integral

ACKNOWLEDGEMENTS

This research paved the way to gain valuable experience on how to apply theoretical knowledge to produce important findings for the well-being and development of the community. Therefore, my gratitude should be conveyed to a number of academics and non-academics of the university of Moratuwa for assisting me to successfully complete this research investigation and dissertation.

First, I wish to express my sincere gratitude to my principal supervisor Dr. J.C.P.H. Gamage, Professor in Civil Engineering, Department of Civil Engineering, University of Moratuwa for her supervision, enthusiastic guidance and continual encouragement throughout the course of my candidature. I am indebted to her understanding, tolerance and precious support. I am very grateful to have a supervisor that believe in my work and always provide me with guidance and valuable suggestions towards completing this thesis. Without her support and guidance none of this would be possible. Furthermore, I highly appreciate the assistance of my associate supervisor Dr. S. Fawzia, Senior lecturer in School of Urban development, Queensland University of technology, Australia, for actively coaching me with her sound knowledge for the experimental work. Her expert technical suggestions and practical assistance were indispensable in improving the quality of this research work. I would like to thank the chairperson of the progress review panel, Prof. Thishan Jayasinghe, Senior Professor and Dr. Sujeewa Lewangama, Senior Lecturer and Prof. Ashoka Perera in the Department of Civil Engineering, University of Moratuwa, guiding me with valuable instructions to progress my research as progress review panel members.

The financial burden on pursuing a PhD program was eased by the department of Civil Engineering by waiving off the course fee.

I gratefully acknowledge the support of the staff in the Mechanical workshop, the Department of Mechanical Engineering at the University of Moratuwa for their valuable support. I would also like to express my gratitude to all non-academic staff members in the department and Mr. D.M.N.L. Dissanayaka, technical officer in the Structural Testing Laboratory, Mr. Yohan technical officer in the Computational Mechanics Laboratory, Mr. Charaka Satharasinghe, technical officer in the Computer Laboratory for their valuable support extended throughout my research period.

Moreover, I would like to thank Airow Solution (PVT) Ltd and research assistants Mr. Vimukthi, Miss Varakini, Miss. Aruga, Miss Tharika and Miss. Chamodi for their kind support throughout this period. Finally, I wish to acknowledge my wife Thanuja and my daughter Sanjalee, for their love, emotional support and encouragement.

Sampath Abeygunasekara Department of Civil Engineering University of Moratuwa 15.02.2023

LIST OF PUBLICATIONS AND AWARDS

International Conferences

- Abeygunasekara.S, Gamage.J.C.P.H, & Fawzia.S. (2021a). Influence of surface preparation on CFRP/Steel bond performance. In *Proceedings of the* 12th International Conference on Structural Engineering and Construction Management 2021(ICSECM-2021). Earl's Regency Hotel, Kandy, Sri Lanka, December17–19.
- Abeygunasekara.S, Gamage.J.C.P.H, & Fawzia.S. (2021b). Theoretical model for predicting re-cracking behavior of crack stop holes using J-integral technique. In *Proceedings of the 12th International Conference on Structural Engineering and Construction Management 2021(ICSECM-2021)*. Earl's Regency Hotel, Kandy, Sri Lanka, December17–19.
- 3. Abeygunasekara.S, Gamage.J.C.P.H, & Fawzia.S. (2020a). Design and demonstration of a low cost small scale flextural cyclic load testing apparatus for composite materials. In *Proceedings of the the International Conference on Architecture and Civil Engineering*, Kuala Lumpur, Malasiya.
- Abeygunasekara.S, Gamage.J.C.P.H, & Fawzia.S. (2020b). State-of-the-art review influences of environmental factors in CFRP steel bonding. In *Proceedings of the 11th International Conference on Sustainable Built Environment (ICSBE)*, Kandy, Sri Lanka,10th – 12th December.
- 5. Abeygunasekera, S., Gamage, J. C. P. H., & Fawzia, S. (2019). Low cycle fatigue behaviouir of steel/CFRP composite exposed to loads with constant amplitude. In *Proceedings of the International Conference on Civil Engineering and Applications 2019*. University of Moratuwa.
- Abeygunasekera, S., Gamage, J. C. P. H., & Fawzia, S. (2017). Effects of environmental humidity at installation phase on performance of CFRP strengthen steel I-beam. In *Proceedings of the 8th International Conference on Structural Engineering and Construction Management 2017* (pp. 18-22). *Earl's Regency Hotel, Kandy, Sri Lanka, December 13th –15th*.
- Abeygunasekera, S., Gamage, J. C. P. H., & Fawzia, S. (2013). Bond performance of CFRP strengthened steel members subjected to axial compression. In *Proceedings of the 4th International Conference on Structural Engineering and Construction Management 2013* (pp. 161-166). Nethwin Printers (Pvt) Ltd.

Indexed journal publications

- Abeygunasekara, S., Gamage, J.C.P.H. Fawzia. S (2018) 'Numerical Modelling of Re-cracking Behaviour in Retrofitted Crack Stop Holes in Steel Structures, *Lecture Notes in Civil Engineering*, Volume 94. pp. 9. DOI 978-981-13-9749-3_42, © 2020
- 2. Abeygunasekara.S, Gamage.J.C.P.H, & Fawzia.S. (2022). Investigating the Effects of Offset Distance in CSH on Steel Plates Under Three-Point Flexural Cyclic Loads in the LCF Range. In *Lecture Notes in Civil Engineering 174* (pp. 331–345).

Journal papers (under review)

1. A novel hybrid repairing technique to delay fracture initiation and propagation of steel structures subjected to low cyclic flexural fatigue

Awards

 Best student presentation awarded to Design and demonstration of a low cost small scale flextural cyclic load testing apparatus for composite materials at the International Conference on Architecture and Civil Engineering, Kuala Lumpur, Malasiya, March 12th -13th.

TABLE OF CONTENTS

DE	ECLA	RATIONi
AE	BSTR	ACTii
AC	CKN	OWLEDGEMENTSiii
LIS	ST O	F PUBLICATIONS AND AWARDS v
TA	BLE	OF CONTENTSvii
LIS	ST O	F FIGURESxvi
LIS	ST O	F TABLES xxiv
LIS	ST O	F ABBREVIATIONS xxvii
LIS	ST O	F SYMBOLS AND NOTATIONSxxviii
LIS	ST O	F APPENDICES
1.	INT	RODUCTION1
	1.1	Significance of the study
	1.2	Research background
	1.3	Problem identification and the research gap4
	1.4	Objectives
		1.4.1 Primary objectives
		1.4.2 Secondary objectives
	1.5	Methodology
	1.6	Outline of the Thesis
2.	LIT	ERATURE REVIEW9
	2.1	Introduction
		2.1.1 Historical development of fatigue investigations
	2.2	Fatigue failure
		2.2.1 Sequence of fatigue failure
		2.2.2 The microscopic explanation of fatigue failure
		2.2.3 Material behavior with fatigue loads
		2.2.4 Characteristics of fatigue

2.3	Classification of fatigue	. 15
	2.3.1 Low cycle fatigue and high cycle fatigue	. 16
2.4	Prediction of fatigue life	18
	2.4.1 Classification of fatigue life prediction techniques	20
	2.4.2 Minor rules	21
	2.4.3 Rain flow counting algorithm	22
2.5	CSH method as a repairing technique	23
	2.5.1 Arrest the crack	25
	2.5.2 Crack stop hole methods for crack control	27
	2.5.3 Crack detection and placement of CSH	28
2.6	Mechanical treatments for CSH subjected to fatigue	29
	2.6.1 The bottled CSH	29
	2.6.2 The pinned CSH	30
	2.6.3 The cold expanded CSH	31
	2.6.4 Ancillary holes in added CSH	32
	2.6.5 Comparison of different methods utilized in CSH strengthening	33
2.7	CFRP Material as a crack repairing technique	34
	2.7.1 Modules of CFRP material	. 37
	2.7.2 Flexural strength	39
	2.7.3 Shear strength	39
2.8	Effects of the geometrical dimension of CRFP material	39
	2.8.1 Effect of CFRP bond length	40
	2.8.2 Multiple layer of CFRP material	40
	2.8.3 Thickness of CFRP layer effects	40
2.9	Surface preparation	40
	2.9.1 Surface preparation techniques	42
	2.9.2 Steps of surface preparation	43
2.10	. Adhesives and adhesive properties	44
	2.10.1 Stress concentration of adhesives	45
	2.10.2 Stiffness effect of adhesives	45
2.11	Effects of environmental exposure on CFRP/steel bond performance	46

	2.11.1	Effects of environment moisture level on CFRP/Steel bond	
		performance	. 46
	2.11.2	Cyclic temperature effects on CFRP/Steel bond performance	. 47
	2.11.3	Ultraviolet (UV) radiation effects on Steel/CFRP bond	
		performance	. 49
	2.11.4	Combined effects of environmental factors on Steel/CFRP bond	
		performance	. 49
2.12	Differe	ent types of testing method for Steel/CFRP bond performance	. 51
	2.12.1	Tensile load effects related investigations	. 51
	2.12.2	Compression load effects related investigations	. 51
	2.12.3	Combined effects of bending and compression loads	. 51
	2.12.4	Impact load related investigations	. 51
	2.12.5	Fatigue load related investigations	. 52
2.13	Testing	g standards	. 54
2.14	Behavi	or of fatigue	. 55
	2.14.1	Pre-stressed and non- pre-stressed behavior of Steel/CFRP bond	
		under fatigue load	. 57
	2.14.2	Failure mechanism of Steel/CFRP bond under fatigue	. 57
	2.14.3	Co-relation between geometry specimen's and fatigue	. 58
2.15	Field a	pplications of CFRP strengthened material	. 59
	2.15.1	Rectangular Hollow Section (RHS)	. 59
	2.15.2	Circular hollow section (CHS)	. 60
	2.15.3	Bridge repair related applications	. 61
2.16	Theor	y of material hardening	. 62
	2.16.1	Kinematic hardening	. 63
	2.16.2	Isotropic hardening	. 64
2.17	Fatigu	e related parameter effects on structural element	. 64
	2.17.1	Stress intensity factor	. 65
	2.17.2	Stress concentration	. 65
	2.17.3	Crack tip opening displacement (CTOD)	. 65
	2.17.4	Rate of energy release (G)	. 66
	2.17.5	Crack growth direction	. 66

	2.18	Sum	mary of literature review	66
3.	DE	SIGNI	ING AND FABRICATING A FATIGUE LOADING	
	AP	PARA	TUS	71
	3.1	Introc	luction of design and fabricated fatigue loading apparatus	71
		3.1.1	History of fatigue test apparatus	71
		3.1.2	Types of fatigue loading	72
	3.2	Class	ification of existing fatigue loading apparatus	73
		3.2.1	Rotating bending type fatigue testing apparatus	74
		3.2.2	Constant deflection amplitude cantilever bending type fatigue	
			testing apparatus	75
		3.2.3	Axial loading fatigue testing apparatus	76
		3.2.4	Other types of fatigue testing apparatus	77
		3.2.5	The modern fatigue testing machine	78
	3.3	Desig	n and detailing of fatigue loading apparatus	79
		3.3.1	Considering factors for design fatigue loading apparatus	80
		3.3.2	Essential components of any fatigue loading apparatus	80
	3.4	Desig	ning steps of fatigue loading apparatus	80
		3.4.1	Designing a loading frame	81
		3.4.2	Loads on the loading frame	82
		3.4.3	The machining process and assembling of testing apparatus	82
		3.4.4	Selection of load applying mechanism	83
		3.4.5	Designing the hydraulic circuit of fatigue loading apparatus	84
		3.4.6	The controlling system of loading apparatus	88
	3.5	The	test setup and instrumentation of loading apparatus	89
		3.5.1	Measuring procedure of test apparatus	89
		3.5.2	Calibration of load	90
		3.5.3	Calibration of loading frequency	91
	3.6	Feat	ures and benefits of the fatigue loading apparatus	92
		3.6.1	Cost estimation of fatigue loading apparatus	93
		3.6.2	Limitations and operating range of fatigue loading apparatus	94
		3.6.3	Safety aspects of fatigue loading apparatus	94

		3.6.4	Environmental impact assessment of the fatigue loading apparatus	95
		3.6.5	The maintenance procedure	95
		3.6.6	Modification for variable loads	96
	3.7	Sum	mary of design and fabricated fatigue loading apparatus	97
4	EX	PERIN	MENTAL INVESTIGATIONS	.99
	4.1	Introd	luction of experimental investigation relating with CSH/CFRP	
		hybrid	d system	99
	4.2	Mater	rial selection and specimen preparation 1	100
		4.2.1	Selection of steel 1	100
		4.2.2	Selection of the adhesive material 1	101
		4.2.3	Selection of CFRP material 1	103
		4.2.4	Procedure of CFRP installation with steel 1	103
		4.2.5	Material properties 1	105
	4.3	Test p	program1	105
		4.3.1	Test setup and instrumentation 1	107
		4.3.2	Cyclic flexural loading setup for applying fatigue load on	
			specimen 1	107
		4.3.3	Tensile test setup for measuring the retained average strength on	
			specimens 1	108
	4.4	Behav	vior of steel element with respect to loading cycles 1	108
		4.4.1	Behavior of non-strengthened steel element without CSH under	
			fatigue load1	109
		4.4.2	Behavior of non-strengthened steel element with CSH under fatigue	9
			load 1	111
		4.4.3	Behavior of CFRP-strengthened steel element without CSH under	
			fatigue load 1	13
		4.4.4	Behavior of CFRP-strengthened steel element with CSH under fatig	gue
			load1	16
		4.4.5	Comparison of fatigue behavior with respect to load cycles	18
	4.5	Effect	ts of CSH diameter on LCF 1	121

	4.5.1	Behavior of non-strengthened steel element with CSH under non
		conditioned121
	4.5.2	Behavior of CFRP-strengthened steel element with CSH under a non-
		conditioned situation
	4.5.3	Behavior of non-strengthened steel element with CSH under fatigue
		load
	4.5.4	Behavior of CFRP strengthened steel element with CSH under fatigue
		load
	4.5.5	Comparison of strength variation of non-strengthened and CFRP
		strengthened CSH
	4.5.6	Strain variation of non-strengthened steel element with CSH under
		fatigue load131
	4.5.7	The Strain variation of CFRP strengthened CSH under fatigue
		load
	4.5.8	Comparison of strain behavior of non-strengthened and CFRP
		strengthened CSH
4.6	Effect	ts due to distance from mid-point to CSH
	4.6.1	Fatigue behavior of non-strengthened CSH with respect to distance
		from the mid - point
	4.6.2	Fatigue behavior of CFRP-strengthened CSH with respect to distance
		from the mid-point
	4.6.3	Comparison of fatigue behavior of CSH with respect to distance 141
	4.6.4	Strain variation of non-strengthened CSH with respect to offset
		distance
	4.6.5	Strain variation of CFRP strengthened CSH with respect to offset
		distance
	4.6.6	Comparison of strain behavior of non-strengthened and CFRP
		strengthened CSH
4.7	Fatigu	he behavior of CFRP strengthened steel element with respect to bond
	length	n
	4.7.1	Fatigue behavior of CFRP strengthened CSH with respect to bond
		length

		4.7.2	Fatigue behavior of CFRP strengthened steel plate with respect to)
			bond length	154
		4.7.3	Comparison of CFRP length effects	157
	4.8	Bond	stress variation	159
	4.9	Summ	nary of experimental investigation related to the CSH/CFRP hybrid	d
		syster	n	160
5	FIN	ITE F	ELEMENT MODELLING OF FATIGUE BEHAVIOR OF CS	H
	SUI	BJECT	FED TO CYCLIC FLEXURAL LOADING	162
	5.1	Introc	luction of finite element modelling related to CSH/CFRP hybrid	
		syster	n	162
		5.1.1	Background of FEM	163
		5.1.2	Procedure of simulation	163
	5.2	Detai	led steps of simulation	165
		5.2.1	Geometry of the crack model	165
		5.2.2	Material properties	166
		5.2.3	Assembling of geometrical components	167
		5.2.4	Configuration of the FEM	168
		5.2.5	Mechanical interaction between contact surfaces	168
		5.2.6	Loads and boundary conditions	169
		5.2.7	Meshing of the model and mesh sensitivity analysis	169
		5.2.8	Analysis and model results	173
	5.3	Valid	ation of the model	174
		5.3.1	Non-strengthened and CFRP strengthened CSH	176
		5.3.2	FEM results compared with experimental results for non-strength	ened
			and CFRP strengthened CSH	179
		5.3.3	FEM results compared with experimental results for position char	nge
			of non-strengthened and CFRP strengthened CSH (Stress based)	182
	5.4	Sumn	nary of finite element modelling related with CSH/CFRP hybrid sy	ystem
				184

6.	THEORETICAL APPROACH FOR EVALUATE RE- CRACKING			
	BE	HAVI	OR OF CSH	186
	6.1	Theor	retical background of the CSH technique	186
	6.2	Theor	ry of fracture mechanics	187
		6.2.1	Linear elastic fracture mechanics (LEFM)	187
		6.2.2	Elastic-plastic fracture mechanics (EPFM)	188
		6.2.3	The fatigue mechanism	189
	6.3	Theor	retical model to predict crack growth	191
		6.3.1	Total fatigue life	191
		6.3.2	The Paris law	192
		6.3.3	The Power law	194
		6.3.4	Comparison of Paris law and Power law	195
		6.3.5	Developing a theoretical model to predict the rate of the crack g	growth
	64	Facto	rs that affect re-cracking of the CSH	195 200
	0.1	641	Effects of the CSH diameter	200
		6.4.2	Effects of member thickness	201
		6.4.3	Effects of the crack length	202
		6.4.4	Position of the CSH	203
		6.4.5	Amplitude of the load	204
		6.4.6	Loading frequency	205
		6.4.7	Stress ratio effects	206
		6.4.8	Effects of fiber direction of the CFRP	207
		6.4.9	Effects of the CFRP length.	208
	6.5	Summ	nary of the theoretical model relating with the CSH	209
7	PA	RAMF	ETRIC STUDY	211
•	7.1	Introdu	uction of parametric study	211
	7.2	Fatig	ue performance of CSH varving with geometry related parameter	rs211
		7.2.1	Member thickness	211
		7.2.2	Crack length	214
	7.3	Load	related parameters	216
			-	

		7.3.1 Amplitude of load	17
		7.3.2 Loading frequency	.19
		7.3.3 The stress ratio	21
	7.4	Fatigue behavior of CSH varying with Polymer material related	
		parameters	24
		7.4.1 Fiber direction angle of the CFRP	24
	7.5	Summary of the parametric study relating to CSH/CFRP hybrid system . 2	26
8	DIS	CUSSION AND CONCLUSIONS 2	28
	8.1	Conclusions2	28
	8.2	Contributions	30
	8.3	Future research works	31
	8.4	Engineering implications	32
RE	FEI	RENCES	34
Ap	pend	lix – A	54
Ap	pend	lix – B	62

LIST OF FIGURES

	Page
Figure 2 1:	Main steps of fatigue12
Figure 2 2:	Crack growth with number of cycles13
Figure 2 3:	HCF to LCF transition
Figure 2 4:	Fatigue bearing capacity variation with number of cycles16
Figure 2 5:	Various aspects of fatigue life prediction of steel structures19
Figure 2 6:	Methods of fatigue life evaluation20
Figure 2 7:	Stress variations with time linked to variable amplitude loads
Figure 2 8:	Stress variation with number of cycles21
Figure 2 9:	Rain-flow counting methods related to (a) Pagoda roof (b) stress
	history23
Figure 2 10:	CSH placed at the crack tip (a) schematic view of crack stop hole
	(b) re-cracking of crack stop hole
Figure 2 11:	Bolted crack stop hole
Figure 2 12:	Pinned crack stop hole
Figure 2 13:	Cold expanded CSH
Figure 2 14:	Schematic diagram of the ancillary holes added CSH
Figure 2 15:	Elephant's foot buckling failure of hollow sections
Figure 2 16:	Uni-axial stress-strain curve
Figure 2 17:	Kinematic hardening curve
Figure 2 18:	Isotropic hardening behavior
Figure 3 1:	The picture of first fatigue testing machine72
Figure 3 2:	Rotating Bending Testing Machine75
Figure 3 3:	Cantilever bending testing machine76
Figure 3 4:	Axial loading fatigue testing machine77
Figure 3 5:	Conventional fatigue testing apparatus (a) rotating cantilever
	bending fatigue testing apparatus (b) rotating bending fatigue
	testing apparatus78
Figure 3 6:	Modern fatigue testing machines
Figure 3 7:	The layout of developed fatigue test apparatus
Figure 3 8:	Different types of energy conversion in each step

Figure 3 9:	Finite element mesh and stress concentration of loading frame (a) before FEA (b) After FEA
Figure 3 10:	Cyclic flexural test apparatus and loading frame
Figure 3.11:	Cyclic flexural load circuit (a) simulation circuit (b) actual
	hydraulic circuit
Figure 3 12:	Schematic diagram of spring return single acting cylinder
Figure 3 13:	ARDUINO UNO, open-source electronics circuit used for
	fatigue test controller (a) development board (b) circuit
Figure 3 14:	Calibration of test apparatus (a)Load measured using load cell
	(b) Magnifying CSH (c) A data logger with digital display91
Figure 3 15:	Complete test setup92
Figure 4 1:	Test specimen
Figure 4 2:	Specimen preparation for testing (a) Bare steel plate (b)
	Grinded steel surface (c) Primer coated steel surface101
Figure 4 3:	Two part epoxy adhesive (a) before mixing (b) after mixing with
	hardner102
Figure 4 4:	Normal module of CFRP material103
Figure 4 5:	CFRP strengthened specimen schematic view106
Figure 4 6:	Typical test specimen
Figure 4 7:	Cyclic flexural test setup for conditioning (a) loading frame (b)
	specimen fixture
Figure 4 8:	Tensile test setup (a) schematic test layout (scale 1:4) (b) typical
	test fixture
Figure 4 9:	Schematic diagram (a) elevation (b) Plane view (c) typical
	specimens of non-strengthened plates without CSH
Figure 4 10:	Variation of retained yield strength with exposure cycles for
	non-strengthened plate specimen110
Figure 4 11:	Failure mode of plane specimens non-strengthened plates
	without CSH111
Figure 4 12:	Schematic diagram (a) elevation (b) plane view (c) typical
	specimens of non-strengthened plates with CSH112

Figure 4 13:	Variation of retained yield strength with exposure cycles for
	non-strengthened plate specimen with CSH113
Figure 4 14:	Failure mode of plane specimens non-strengthened plates with
	CSH
Figure 4 15:	Schematic diagram (a) elevation (b) Plane view (c) typical
	specimens of CFRP strengthened plates without CSH114
Figure 4 16:	Variation of retained average strength with exposure cycles for
	CFRP-strengthened plane specimen115
Figure 4 17:	Failure mode of CFRP strengthened plane specimens without
	CSH
Figure 4 18:	Schematic diagram (a) elevation (b) Plane view (c) typical
	specimens of CFRP strengthened plates with CSH117
Figure 4 19:	Average strength variation with number of cycles for CFRP-
	strengthened steel element with CSH118
Figure 4 20:	Failure mode of CFRP-strengthened steel element with CSH118
Figure 4 21:	Variation of retained average strength with exposure cycles119
Figure 4 22:	Percentage of strength gain by CFRP with respect to loading cycles
	(a) without CSH (b) with CSH120
Figure 4 23:	Schematic view of the non-conditioned and non-strengthened
	specimen (Scale 1:2) (a) elevation (b) plane view (c) typical
	specimen121
Figure 4 24:	Retained average yield stress variation with diameter to width
	ratio
Figure 4 25:	Failure mode of non-conditioned non-strengthened CSH123
Figure 4 26:	Schematic view of the non-conditioned CFRP-strengthened
	specimen (Scale 1:2) (a) elevation (b) plane view (c) typical
	specimen
Figure 4 27:	Retained average strength variation with number of cycles for
	CFRP - strengthened steel element with CSH124
Figure 4 28:	Failure mode of non-conditioned CFRP-strengthened
	specimen(a) bottom surface (b) top surface125

Figure 4 29:	Schematic view of the conditioning steel element with non-
	strengthened CSH specimen (scale 1:2) (a) elevation (b) plane
	view (c) typical test specimen
Figure 4 30:	Retained average strength variations with the diameter to width
	ratio of conditioned non strengthened CSH126
Figure 4 31:	Failure mode of conditioned non strengthened steel element
	with CSH
Figure 4 32:	Schematic diagram of the conditioning steel element with CFRP
	strengthened CSH (a) elevation (b) plane view (c) typical test
	specimen
Figure 4 33:	Retained average strength variation of CFRP strengthened
	conditioned CSH with respect to diameter to width ratio128
Figure 4 34:	Failure mode of conditioned CFRP strengthened CSH129
Figure 4 35:	Comparison of strength gains for non-strengthened and CFRP
	strengthened CSH
Figure 4 36:	Average strength with respect to diameter to width ratio
	(a) losses due to fatigue (b) gain by CFRP131
Figure 4 37:	Schematic view of the non-strengthened strain gauge attached
	CSH specimen (a) elevation (b) plane view (c) typical test
	specimen132
Figure 4 38:	Schematic view of the CFRP strengthened strain gauge attached
	CSH specimen (a) elevation (b) plane view (c) typical specimen
Figure 4 39:	Strain variations with number of flexural cycles when d/b is ;(a)
	0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 (f) 0.6
Figure 4 40:	Schematic view of the non-strengthened offset CSH specimen
	(a) elevation (b) plane view (c) typical test specimen137
Figure 4 41:	Variation of retained average strength with offset distance for
	strengthened samples
Figure 4 42:	Failure mechanisms with offset distance for non-strengthened
	samples

Schematic view of the CFRP strengthened offset CSH specimen
(a) elevation (b) plane view (c) typical test specimen140
The average strength variation with the location of the CSH141
Failure mode of CFRP strengthened offset CSH141
Variation of retained average strength gain with offset distance
for non-strengthened and CFRP strengthened samples142
Percentage strength gain by CFRP strengthened with respect to CSH position
Schematic view of the non-strengthened strain gauge attached
offset CSH specimen (a) elevation (b) plane view144
Typical specimen of non-strengthened strain gauge attached
offset CSH144
Strain variations with offset distance of non-strengthened CSH
when x is; (a)20 mm (b) 40 mm (c) 60 mm (d) 80 mm (e) 100
mm
Schematic view of CFRP-strengthened strain gauge attached
offset CSH147
Strain variations with offset distance of CFRP-strengthened
CSH when x is; (a) 20 mm (b) 40 mm (c) 60 mm (d) 80 mm (e)
100 mm
Comparison of strain variations with offset distance for non-
strengthened and CFRP strengthened CSH when x is; (a) 20 mm
(b) 40 mm (c) 60 mm (d) 80 mm (e) 100 mm
Schematic view of the CFRP strengthen specimen (a) elevation
(b) Plane view (c) typical specimen
Retained average strength variation in the length of CFRP layer154
Failure mode of CSH due to bond length variation154
Schematic view of the CFRP strengthen specimen (a) elevation
(b) plane view (c) typical specimen
Retained average strength varies with the length of CFRP156
Failure mode of steel member without CSH variation with bond
length157

Figure 4 60: Comparison of strength variation by CFRP bond length	158
Figure 4 61: Bond stress variation with respect to (a) number of cycles (b)	
diameter to width ratio (c) bond length	159
Figure 5 1: A model view of the specimen after introducing contours and	
crack seems	165
Figure 5 2: The assembly module of the test setup (a) front view (b) plane	
view	167
Figure 5 3: The contour path and crack seams	168
Figure 5 4: A loading mode and boundary conditions	169
Figure 5 5: Mesh model (a) Front view of the mesh model (b) Bottom view	
of the mesh model (c) 8 node brick element	170
Figure 5 6: Mesh sensitivity anylysis with the mesh size (a) number of nodes	
(b) wall clock time	172
Figure 5 7: Contours with different mesh size (a) 1 mm (b) 2mm (c) 3 mm	
(d) 4 mm	173
Figure 5 8: The Visualization module of specimen (a) test setup (b) bottom	
view	174
Figure 5 9: Stress distribution near the crack stop hole	176
Figure 5 10: Average strength variation with diameter to width ratio of CSH	
	177
Figure 5 11: Visualization of the bottom view under fatigue load profile with	
diameter to width ratio of CFRP strengthened CSH specimen (a)	
0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 (f) 0.6	179
Figure 5 12: Numerical models comparing the experimental results for	
different diameter to width ratio (d/b) under cyclic flexural load	
(a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 (f) 0.6	181
Figure 5.13: Average strength variation with offset distance of CSH	182
Figure 5 14: Visualization of the bottom view under fatigue load profile with	
offset distance. (a) 0 (b) 20 mm (c) 40 mm (d) 60 mm (e) 80 mm	
	183
Figure 61: Basic modes of crack deformation. (a) opening; (b) In-plane	
shear (c) Out- plane shear	

Eigura 6 2.	Stragg distribution at CSU of sta	al plata 100
Figure 0 \angle .	Suess distribution at CS11 of ste	EI plate

Figure 6 3:	Paris law related curve	193
Figure 6 4:	Log value of rate of fatigue crack growth with cyclic J-integral	197
Figure 6 5:	Comparison of Power law with laboratory test results	199
Figure 6 6:	Number of cycles for crack initiation with the CSH diameter	200
Figure 6 7:	Number of cycles for crack initiation varies with the thickness	
	to diameter ratio of the specimen	201
Figure 6 8:	Number of cycles for crack initiation vary with the crack length	
	of the specimen	202
Figure 6 9:	Number of cycles for crack initiation varies with diameter to	
	offset distance ratio	203
Figure 6 10:	Number of cycles for crack initiation with respect to diameter to	
	load ratio	204
Figure 6 11:	Required number of cycle for crack initiation variations with	
	respect to diameter to loading frequency ratio	205
Figure 6 12:	Number of cycles for crack initiation with respect to ratio of	
	diameter to stress ratio	206
Figure 6 13:	Fiber direction with respect to the Crack direction	207
Figure 6 14:	Number of cycles for crack initiation with respect to diameter to	
	bond length ratio	208
Figure 7 1:	Strength variation with diameter to width ratio of CSH	212
Figure 7 2:	Visualization of the bottom view under fatigue load profile with	
	diameter to width ratio of CSH specimen (a) 0.1 (b) 0.2 (c) 0.3	
	(d) 0.4 (e) 0.5 (f) 0.6	213
Figure 7 3:	Strength variation with thickness to diameter ratio of	
	member	215
Figure 7 4:	Visualization of the bottom view under fatigue load profile with	
	thick specimen. (a) 5 mm (b) 6 mm (c) 7 mm (d) 8 mm (e) 9 mm	
	(f) 10 mm	216
Figure 7 5:	Strength variation with diameter to crack length ratio	217

Figure 7 6:	Visualization of the bottom view under fatigue load profile with	
	crack length from the mid- point (a) 0 (b)20 mm (c) 40 mm (d)	
	60 mm (e) 80 mm (f) 100 mm	218
Figure 7 7:	Strength variation with diameter to offset distance ratio	219
Figure 7 8:	Visualization of the bottom view under fatigue load profile with	
	offset from the mid point. (a) 20 mm (b) 40 mm (c) 60 mm (d)	
	80 mm (e) 100 mm	221
Figure 7 9:	Strength variation of CSH with load	222
Figure 7 10:	Visualization of the bottom view under fatigue load profile with	
	loaded specimen.(a) 2 kN (b) 4 kN (c) 6 kN (d) 8 kN(e) 10 kN	223
Figure 7 11:	Strength variation with frequency	225
Figure 7 12:	Visualization of the bottom view under fatigue load profile with	
	loading frequency at the mid point (a) 1 Hz (b) 2 Hz (c) 4 Hz (d)	
	5 Hz (e) 8 Hz (f) 10 Hz	226

LIST OF TABLES

	Page
Table 2.1:	Summary of results of different crack stop hole treatment methods 34
Table 2.2:	Properties of CFRP material
Table 2.3:	Characteristics of steel & CFRP
Table 2.4:	Factors affecting the CFRP/ steel bond performance
Table 2.5:	Summary of bond performance characteristics related studies
Table 2.6:	Summary of surface preparation technology related key studies 255
Table 2.7:	Key research studies related to adhesives and adhesive properties 256
Table 2.8:	Summary of bonding mechanisms related to key research
	investigations
Table 2.9:	Key research studies related to humidity effects on CFRP/ steel bond
	performance
Table 2.10:	Summary of key research investigations related temperature and
	humidity combination effects on CFRP/steel bond performance 260
Table 2.11:	Summary of reported bridge retrofitted with CFRP (Nisal Abeetha,
	2011)
Table 3.1:	Comparison of the hydraulic ramp and the cam mechanism
Table 3.2:	List of accessories of hydraulic system
Table 3.3:	Expenditure for the fabricate cyclic flexural load test apparatus
Table 4.1:	Measured and manufactures provided material properties105
Table 4.2:	Summary of test program
Table 4.3:	Retained average strength of non-strengthened steel element with the
	number of cycles
Table 4.4:	Retained average strength of non-strengthened steel element with CSH
Table 4.5:	Retained average strength of CFRP-strengthened steel element without
	CSH
Table 4.6:	Retained average strength of CFRP-strengthened plane specimen with
	CSH
Table 4.7:	Comparison of strength gain by CFRP 119

Table 4.8:	Retained average strength of non-strengthened steel element with the number of cycles
Table 4.9:	Retained average strength of bare steel varies with the number of cycles
Table 4.10:	Retained average strength of non- strengthened steel varies with the number of cycles
Table 4.11:	Retained average strength of CFRP strengthened conditioned CSH varies with the diameter to width ratio
Table 4.12:	Average strength gained by CFRP material under cyclic flexural loads
Table 4.13:	Retained average strength variation with the location of the non- strengthened CSH
Table 4.14:	Retained average strength variation with the location of the CFRP strengthened CSH
Table 4.15:	Retained average strength, gain with CFRP strengthened offset CSH
Table 4.16:	Retained average strength varies with the length of CFRP 153
Table 4.17:	Retained average strength varies with the length of CFRP 156
Table 4.18:	Comparison of retained average strength, variation with bond
	length
Table 5.1:	FEM results compared with test results for CSH177
Table 5.2:	FEM result and test results compared with position of CSH182
Table 6.1:	Summary of the fracture mechanics theory
Table 6.2:	Number of cycles for crack initiation by the Paris law with respect to
	diameter to width ratio
Table 6.3:	Log values of the crack growth rate variations with diameter to width
	ratio of the CSH
Table 6.4:	Test results comparison with the Power law approximation199
Table 6.5:	Number of cycles for crack initiation with respect to the diameter to
	width ratio
Table 6.6:	Number of cycles for crack initiation with respect to the thickness to
	diameter ratio

Table 6.7:	Number of cycles for crack initiation with respect to the diameter to
	crack length ratio
Table 6.8:	Number of cycles for crack initiation with respect to the diameter to
	offset distance ratio
Table 6.9:	Number of cycles for crack initiation with respect to the diameter to
	load ratio
Table 6.10:	Number of cycles for crack initiation with respect to the diameter to
	loading frequency
Table 6.11:	Number of cycles for crack initiation with respect to the ratio of
	diameter to stress ratio
Table 6.12:	Number of cycles for crack initiation with respect to the angle of fiber
	direction
Table 6.13:	Number of cycles for crack initiation with respect to the diameter to
	bond length ratio
Table 7.1:	Strength variation with respect to the diameter to width ratio
Table 7.2:	Strength variation with respect to the diameter to crack length ratio 214
Table 7.3:	Strength variation with respect to the diameter to loading amplitude
	ratio
Table 7.4:	Strength variation with respect to the diameter to loading frequency
	ratio
Table 7.5:	Strength variation with respect to the ratio of diameter to stress ratio 221
Table 7.6:	Strength variation with respect to the fiber direction
Table 7.7:	Fatigue related design guidelines for CSH

LIST OF ABBREVIATIONS

Abbreviation	Description
CCF	Combined Cycle Fatigue
CFRP	Carbon Fiber Reinforced Polymer
CMOD	Crack Mouth Opening Displacement
CSH	Crack Stop Hole
CTOD	Crack Tip Opening Displacement
DB	De-bonding
DBTT	Ductile Brittle Transition Temperature
DCV	Directional Control Valve
DL	De-lamination
EPFM	Elastic Plastic Fracture Mechanics
FCGR	Fatigue Crack Growth Rate
FEM	Finite Element Model
GFRP	Glass Fiber Reinforced Polymer
HCF	High Cycle Fatigue
HLF	Hydraulic Loading Frame
HM	High Module
LCF	Low Cycle Fatigue
LEFM	Linear Elastic Fracture Mechanics
LVDT	Linear Variable Differential Transformer
MCB	Magnetic Circuit Braker
MSC	Microstructural Short Crack
NM	Normal Module
SIF	Stress Intensity Factor
UHM	Ultra High Module
UTM	Universal Tensile Machine

LIST OF SYMBOLS AND NOTATIONS

Symbol	Description		
da/dN	Rate of crack growth (mm/cycle)	mm/cycle	
a	Crack length	mm	
ΔK	Range of stress intensity factor	[MPa√m]	
С	Paris law coefficient		
m	Paris law exponent		
ΔJ	Cyclic J-integral value		
Е	Elastic modulus of the material	GNm ⁻²	
\mathbf{J}_{max}	Maximum value of J-integral		
\mathbf{J}_{\min}	Minimum value of J –integral		
А	Ramberg-Osgood coefficient		
n	Strain hardening index		
N_{f}	Total number of cycle of fatigue		
\mathbf{N}_{i}	Number of cycles for crack initiation		
N_p	Number of cycles for crack propagation		
R	Stress ratio		
f	Loading frequency	Hz	
T_{g}	Glass transition temperature	^{0}C	

LIST OF APPENDICES

Appendix

Description

Appendix – A	Key finding from literature review
Appendix – B	Results of theoretical model
Appendix – C	Mechanical drawing for fatigue test apparatus
Appendix – D	Copy of publications