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Abstract 
Design of large space structures is restricted due to the limited storage capacity of 

launch vehicles. Deployable structures made with ultra-thin woven fibre composites 

eliminates this bottleneck due to self-deploying nature. These structures can self-

deploy using the strain energy stored during elastic folding. Popularity of self-

deployable structures got increased due to their high strength, lightweight, and good 

packaging properties. However, thin woven fibre composites undergo large 

deformation during folding process due to the formation of high curvature, which 

causes reduction in bending stiffness. Hence, it is crucial to understand the mechanical 

behaviour of these structures before implementing, in order to avoid unnecessary 

failures. Numerical modelling techniques have become popular in this research area 

due to the advancement of computational methods to obtain the mechanical properties 

of thin woven fibre composites. Homogenised Kirchhoff plate-based representative 

unit cell modelling technique with solid elements is considered in this research. 

Corresponding ABD stiffness matrices are obtained with using virtual work principle, 

where the repetitive nature of woven fibre composites is represented by periodic 

boundary conditions. 

First, a series of micro-mechanical analyses is carried out to observe the influence of 

the relative positioning of tows on the mechanical properties of thin woven fibre 

composites. Various phase shifts between the plies have been considered in this 

research which might be originated from the inter-ply misalignment during the 

manufacturing stage. The outcomes of this parametric study clearly depict the variation 

in in-plane and out-of-plane properties extracted from the ABD stiffness matrices and 

describe the potential causes for the detected deviations between experimental and 

numerical results.  

Next, a resin embedded unit cell model is developed to predict the non-linear bending 

behaviour with degree of deformation. Initially, a geometrically linear analysis is 

carried out and then the analysis is extended to non-linear region to observe the 

moment-curvature response. Linear analysis results of extensional stiffness and 

Poisson’s ratio showed good agreement with the experimental results extracted from 
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the literature. However, the out-of-plane properties and shear stiffness values were 

overpredicted. Similarly, non-linear analysis overpredicted the bending stiffness 

throughout the considered curvature range. Hence, the resin embedded unit cell model 

needs further improvements and modifications to accurately predict the out-of-plane 

properties, and capture the reduction in bending stiffness.  

Keywords: woven fibre composites, phase shift, representative unit cell, ABD matrix, 

non-linear bending behaviour 
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