HOMOGENIZED RESPONSE OF ULTRA-THIN WOVEN FIBRE COMPOSITES UNDER FLEXURAL LOADING

Nishangani Gowrikanthan

(218078U)

Degree of Master of Science

Department of Civil Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

January 2023

HOMOGENIZED RESPONSE OF ULTRA-THIN WOVEN FIBRE COMPOSITES UNDER FLEXURAL LOADING

Nishangani Gowrikanthan

(218078U)

Thesis submitted in partial fulfilment of the requirement for the degree Master of Science in Civil Engineering

Department of Civil Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

January 2023

Declaration of the Candidate and Supervisor

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature

Date: 16/01/2023

The above candidate has carried out research for the Masters thesis under my supervision.

Name of the supervisor: Prof. H. M. Y. C. MallikarachchiSignature of the supervisor: UOM Verified SignatureDate : 16/01/2023

Name of the supervisor: Dr. H. M. S. T. Herath

Signature of the supervisor: UOM Verified Signature Date : 16/01/2023

Acknowledgements

First of all, I would like to express my heartfelt and sincere gratitude to my research supervisors, Prof. Chinthaka Mallikarachchi and Dr. Sumudu Herath, for providing the opportunity to do research under their invaluable guidance throughout. They encouraged and motivated me to do my best. This could not be possible without such good advisors and mentors like them.

I would like to say my special thanks to Prof. Priyan Dias for the valuable comments during the progress reviews which inspired me to think out of the box.

I would love to show my appreciation to Milindu Jayasekara, Nadee Haggalla, Sivananthasarma Lowhikan, and Navaratnarajah Sutharsanan for their support, constructive criticism and helpful discussions.

In addition, I would like to acknowledge all academic staff members of the department of Civil Engineering, for their constant support throughout.

I would like to show my gratitude for the financial assistance provided by the National Research Council, Sri Lanka.

Finally, and most importantly, I am really thankful to my family and friends for their constant source of inspiration and moral support.

Abstract

Design of large space structures is restricted due to the limited storage capacity of launch vehicles. Deployable structures made with ultra-thin woven fibre composites eliminates this bottleneck due to self-deploying nature. These structures can selfdeploy using the strain energy stored during elastic folding. Popularity of selfdeployable structures got increased due to their high strength, lightweight, and good packaging properties. However, thin woven fibre composites undergo large deformation during folding process due to the formation of high curvature, which causes reduction in bending stiffness. Hence, it is crucial to understand the mechanical behaviour of these structures before implementing, in order to avoid unnecessary failures. Numerical modelling techniques have become popular in this research area due to the advancement of computational methods to obtain the mechanical properties of thin woven fibre composites. Homogenised Kirchhoff plate-based representative unit cell modelling technique with solid elements is considered in this research. Corresponding ABD stiffness matrices are obtained with using virtual work principle, where the repetitive nature of woven fibre composites is represented by periodic boundary conditions.

First, a series of micro-mechanical analyses is carried out to observe the influence of the relative positioning of tows on the mechanical properties of thin woven fibre composites. Various phase shifts between the plies have been considered in this research which might be originated from the inter-ply misalignment during the manufacturing stage. The outcomes of this parametric study clearly depict the variation in in-plane and out-of-plane properties extracted from the ABD stiffness matrices and describe the potential causes for the detected deviations between experimental and numerical results.

Next, a resin embedded unit cell model is developed to predict the non-linear bending behaviour with degree of deformation. Initially, a geometrically linear analysis is carried out and then the analysis is extended to non-linear region to observe the moment-curvature response. Linear analysis results of extensional stiffness and Poisson's ratio showed good agreement with the experimental results extracted from the literature. However, the out-of-plane properties and shear stiffness values were overpredicted. Similarly, non-linear analysis overpredicted the bending stiffness throughout the considered curvature range. Hence, the resin embedded unit cell model needs further improvements and modifications to accurately predict the out-of-plane properties, and capture the reduction in bending stiffness.

Keywords: woven fibre composites, phase shift, representative unit cell, ABD matrix, non-linear bending behaviour

Table of Contents

Dec	larat	tion o	of the Candidate and Supervisor	11
Ack	now	ledg	ements	. iii
Abs	stract			.iv
Tab	le of	Con	itents	. vi
List	of F	ligur	es	viii
List	of T	able	s	X
List	of A	Abbre	eviations	xi
List	of S	symb	ols	xii
1.	IN	ΓRO	DUCTION	1
1	.1.	Ove	erview	1
1	.2.	Wo	ven Fibre Composites	1
1	.3.	Rec	ent Developments and Challenges	4
1	.4.	Res	earch Objective and Scope	8
1	.5.	Cha	pter Organisation	9
2.	LIT	TER/	ATURE REVIEW	. 11
2	.1.	Self	f-deployable Booms	. 11
	2.1	.1.	Experimental Observations	. 13
2	.2.	Mu	Itiscale Modelling Approach	. 16
2	.3.	Pree	dicting Mechanical Properties	. 17
	2.3	.1.	Analytical Methods – Classical Lamination Theory	. 17
	2.3	.2.	Numerical Modelling of Woven Fibre Composites	. 20
3.	NU 28	MEI	RICAL MODELLING OF A REPRESENTATIVE UNIT CELL (RU	C)
3	.1.	Dev	velopment of the Geometric Model of RUC	. 28
	3.1	.1.	Geometric Properties	. 29
	3.1	.2.	RUC Geometry Using TexGen	. 30
3	.2.	Mat	terial Properties of Tow	. 33
3	.3.	Dev	velopment of the RUC Numerical Model for Multiscale Simulations	. 35
	3.3	.1.	Formulate Reference Points and Assign Multi Point Constraints	. 35
	3.3	.2.	Enforcement of Periodic Boundary Conditions (PBC)	. 36
	3.3	.3.	Apply Surface Based Cohesive Interactions	. 38
	3.3	.4.	Formulation of Boundary Value Problem	. 39

4	. ANAL	YSIS OF RESULTS	44
	4.1. Re	esults of Dry Fibre RUC Models with Varying Phase Differences	44
	4.1.1.	ABD matrices	44
	4.1.2.	Comparison with Experimental Results and CLT Results	45
	4.2. Re	esults of Resin Embedded RUC Model	50
	4.2.1.	Linear Analysis Results	50
	4.2.2.	Non-linear Bending Response	51
5	. CONC	LUSION AND RECOMMENDATION	53
	5.1. Im	portant Findings and Discussion	53
	5.2. Re	commended Future Works	55
6	. REFE	RENCE LIST	56
7	. APPE	NDICES	59
	Appendix	x A: Python code used in TexGen textile modelling software	59
	Appendiz nodes, du	x B: Python code used in ABAQUS FEM software to formulate references and constraints for the resin embedded model	erence 60
	Appendiz embedde	x C: MATLAB code used to calculate the ABD matrix of Resin d model	66
	Appendiz phase RU	x D: ABD matrices of fibre in-phase, 90° phase shift, and fibre out- JC models.	of- 69

List of Figures

Figure 1.1 Schematic diagram of woven fibre composite2	
Figure 1.2 Stowage of satellite	
Figure 1.3 Satellite Galileo with mechanical hinges	
Figure 1.4 Self-deployable structures: a) solar sail b) solar array c) antenna d) solid	
reflectors	
Figure 1.5 High curvature applications	
Figure 1.6 MARSIS antenna	
Figure 1.7 Schematic cross section (a) fibre in-phase (b) fibre out-of-phase7	
Figure 1.8 Micrograph of two-ply plain weave laminate7	
Figure 2.1 Space structures with self-deployable booms11	
Figure 2.2 Deployable masts: (a) telescopic tube mast (b) coilable mast	
Figure 2.3 Thin-walled tubular boom with slotted holes (a) carbon fibre boom with	
epoxy matrix (b) glass fibre boom with dual matrix12	
Figure 2.4 Dual matrix composite boom	
Figure 2.5 Tensile response of two-ply T300-1k/Hexcel 913 plain weave laminate 14	
Figure 2.6 (a) Four-point bending test (b) Platen folding test15	
Figure 2.7 Results obtained from four-point bending test and platen folding test 15	
Figure 2.8 Stages of multiscale modelling technique	
Figure 2.9 Multiscale modelling approach17	
Figure 2.10 In-plane forces and moments on a laminate	
Figure 2.11 ABD stiffness matrix and mechanical deformation for in-plane and	
flexural loading	1
Figure 2.12 Stages of meso-mechanical modelling techniques	
Figure 2.13 RUCs in different types of woven textiles	
Figure 2.14 Binary model of a 3D composite	
Figure 2.15 Schematic diagram of a single ply woven lamina	
Figure 2.17 Micromechanical model of a single ply	
Figure 2.18 RUC of plain weave composite laminate	
Figure 2.19 Triaxial weave RUC with 1D beam elements	

Figure 2.20 (a) Rectangular (b) Sine curve (c) 4 th root of sine curve (d) RUC with
additional resin
Figure 2.21 1 D beam element RUC model
Figure 2.22 RUC with cubic Bezier spline curve as tow path
Figure 2.23 RUC used by (Jayasekara, 2020) (a) Dry fibre model (b) Resin
embedded model
Figure 3.1 Flow diagram of the methodology followed in the numerical modelling of
RUC
Figure 3.2 Selection of RUC in a two-ply plain weave laminate; $\Delta l = weave \ length$
Eigung 2.2 DUC models considered in this study.
Figure 3.5 KOC models considered in this study
Figure 3.4 Abaquis Finite element unit cell models of (a) 30° (b) 45° (c) 60° degrees
Eigung 2.5 Degin amhaddad madal
Figure 3.5 Kesin embedded model
Figure 3.6 Geometrically infallsed resin embedded RUC model \dots 32
Figure 3.7 All the boundary nodes of a tow are connected to one reference node \dots 36
Figure 3.8 Small set of boundary nodes connected to a distinct reference node
Figure 3.9 *EQUATION constraints application on resin embedded model
Figure 3.10 Surface based cohesive interaction applied surfaces
Figure 3.11 (a) Cross-section of asymmetric weave, (b) Shift in neutral plane from
the mid plane
Figure 3.12 True neutral planes in both xz and yz planes for a RUC with 90° phase
difference
Figure 3.13 True and apparent neutral planes in xz plane for a RUC with 90° phase
difference
Figure 4.1 Variation of in-plane properties over tow phase difference
Figure 4.2 Variation of out-of-plane properties over tow phase difference49
Figure 4.3 Variation of Poisson's ratio over tow phase difference
Figure 4.4 Moment-curvature response of resin embedded RUC in comparison with
experiment results

List of Tables

Table 3.1 Geometric properties of 1K/T300/913 two-ply plain-woven composite	
laminate	30
Table 3.2 Material properties of 1K/T300 fibre and HexPly 913 epoxy resin	33
Table 3.3 Tow properties for fibre volume fractions 0.62, and 0.88	35
Table 3.4 Traction stiffness coefficients of HexPly 913 epoxy resin	39
Table 4.1 Classical lamination theory predictions	45
Table 4.2 Comparison of the results from the analysis of resin embedded RUC mo	odel
with experimental results	50

List of Abbreviations

Abbreviation Description

NASA	National Aeronautics and Space Administration
ESA	European Space Agency
MARSIS	Mars Advanced Radar for Subsurface and Ionospheric Sounding
DLR	German centre of aviation and space flight
PBC	Periodic Boundary Conditions
RUC	Representative Unit Cell
FEM	Finite Element Modelling
CLT	Classical Lamination Theory
MPC	Multi Point Constraint
C3D6	Three-dimensional continuum six-node triangular prism elements
C3D8R	Three-dimensional continuum eight-node linear brick elements, reduce integration hourglass control elements
CAD	Computer Aided Drawing
BVP	Boundary Value Problem

List of Symbols

Roman Letters

Symbol	Description
1K	Thousand filament tow
А	Cross-sectional area of tow
А	Tow thickness
E_1	Longitudinal stiffness
E ₂	Transverse stiffness
Em	Stiffness of matrix
E _{1f}	Longitudinal stiffness of the fibre
E _{2f}	Transverse stiffness of the fibre
G ₁₂	Shear stiffness
G ₂₃	In-plane shear stiffness
G _{12f}	Shear modulus of the fibre
Gm	Shear modulus of the matrix
М	Out-of-plane moment resultant
Ν	In-plane force resultants
t	Thickness of the laminate
u	Displacement in the X direction
V	Displacement in the Y direction
V_{f}	Fibre volume fraction
W	Aerial weight of fabric/film
W	Displacement in the Z direction
Subscripts x,y	In-plane directions of loading
Subscripts 1,2	In-plane directions of material

Greek Letters

Symbol	Description
ΔL	Weave length of RUC
γ	Shear stress
κ	Out-of-plane curvature
κ_{χ}	Curvature along the X axis
κ_y	Curvature along the Y axis
κ_{xy}	Twisting curvature
v_{12}	Poisson's ratio
ν_m	Poisson's ratio of resin
ε	Mid-plane strain
\mathcal{E}_{χ}	Strain in the X direction
ε_y	Strain in the Y direction
σ	Equivalent normal
θ	Rotation