
MACHINE LEARNING OF HAPTIC OBJECTS AND

REPRODUCTION FOR VIRTUAL REALITY

Praveena Wimarshani Dewapura

(218009L)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

September 2022

ii

MACHINE LEARNING OF HAPTIC OBJECTS AND

REPRODUCTION FOR VIRTUAL REALITY

Praveena Wimarshani Dewapura

 (218009L)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science (by Research)

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

September 2022

iii

DECLARATION

I declare that this is my own work, and this thesis/dissertation does not incorporate

without acknowledgement any material previously submitted for a Degree or

Diploma in any other University or institute of higher learning and to the best of my

knowledge and belief it does not contain any material previously published or written

by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis/dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

Signature: Date: 26.09.2022

The above candidate has carried out research for the Masters/MPhil/PhD thesis/

dissertation under my supervision.

Name of the supervisor: Dr.A.M.H.S.Abeykoon

Signature of the supervisor: Date:

31/3/2023

iv

ABSTRACT

Humans interact with machines extensively through our auditory and visual

senses, but they frequently ignore their most trusted sense: touch. However, the sense

of touch has tremendous potential in almost all fields, including medicine,

exploration, industrial robots, and gaming. Haptics, or the science of touch, enables

humans to not only remove the barriers to achieve realization in virtual world, but

also to perform a wide range of real-world manipulation tasks.

Unlike visual and auditory senses, sense of touch is bilateral. Thus, realistic

haptic feedback takes utmost importance to achieve realization in the virtual world

and to enhance human performance in the real world. Prior studies have used an

environment model to reproduce the haptics sensation from the environment as if it’s

from the real environment. Most studies have employed conventional spring damper

model to model the environment model and motion parameters were considered as

the factors affecting for force response. However, the traditional spring damper

model doesn’t reflect the actual object. Furthermore, the influence of learned force

on reproduction requires special consideration, but haptics studies mostly consider

motion data. However, there can be several factors affecting the recreation of haptic

feedback. Thus, it is essential to analyze these factors to precisely reproduce an

object in haptic dimension. Most studies have utilized force/torque sensors despite

their shortcomings such as narrow bandwidth, signal noise, complicity, non-

collocation, and instability. However, robust sensorless force/torque control over a

wide bandwidth can be achieved using observer techniques and Disturbance

Observer (DOB) and Reaction Force Observer (RFOB) are primarily used to get

force measurements. AI enables computers to utilize vast quantities of data and

employ their acquired intelligence to arrive at optimal conclusions and uncover

insights in mere fractions of the time it would take for humans to do the same. Thus,

recent technological studies have focused on using AI techniques to analyze larger

and more complex data sets to achieve accurate and faster results. Thus,

incorporating AI with haptics allows seamless integration with virtual reality and

tune this technology to achieve precise responses.

v

Thus, this study focused on introducing machine learning and deep learning

based vivid force sensation reproduction through a virtual model which replicates the

actual environment. The information needed is abstracted through Disturbance

Observer (DOB) and Reaction Force Observer (RFOB) based sensorless approach.

Furthermore, statistical analysis was conducted on data to identify important features

affecting the target value of force response.

Keywords — Haptic interaction, Force response, Disturbance Observer, Virtual

reality, force response, motion parameters, Artificial Intelligence, correlation,

Principal Components Analysis (PCA), Random Forest, Haptic object Reproduction,

RMSE.

vi

ACKNOWLEDGEMENT

This research work would not have been possible without the support of many

people. I’m delighted to express my thanks and gratitude to my supervisor

Dr.A.M.H.S.Abeykoon of the Department of Electrical Engineering, University of

Moratuwa for constant guidance, support and encouragement from the very

beginning to the end. I would like to acknowledge all the academic staff members of

the Department of Electrical Engineering of the University of Moratuwa for their

valuable suggestions, comments, and assistance which were beneficial to drive the

project towards its objective.

I’m grateful for the financial support provided by the Senate Research

Committee (SRC) of University of Moratuwa and administrative support by the

Faculty of Graduate Studies to conduct my research.

I would like to thank the technical officers, including Mr. M.W.D. Wasantha and

other support staff of Robotics for the assistance they have given to perform

laboratory experiments, fabrication, and part designing.

Moreover, I would like to extend my gratitude to my family for their

encouragement, understanding, and patience throughout my academic pursuit.

Finally, I am grateful to my colleagues and friends for showing interest in my work

and giving constructive ideas to lead the success of the research.

vii

TABLE OF CONTENTS

DECLARATION .. iii

ABSTRACT .. iv

ACKNOWLEDGEMENT .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... x

LIST OF TABLES .. xiii

LIST OF APPENDICES ... xvi

NOMENCLATURE ... xvii

1. INTRODUCTION .. 1

1.1. Problem Statement .. 3

1.2. Project Objectives and Scope .. 4

1.2.1. Objectives .. 4

1.2.2. Scope ... 4

1.3. Project overview .. 4

1.4. Thesis outline .. 5

2. LITERATURE REVIEW ... 7

2.1. Model based approach. .. 9

2.2. Sensorless Force/Torque control ... 9

2.3. Playback of haptic information ... 10

2.4. Dominace of vision over haptics ... 10

2.5. AI with haptics .. 11

3. THE PROPORSED AI BASED APPROACH ... 13

3.1. Abstraction phase .. 13

3.2. Reconstruction phase ... 16

viii

3.2.1. Mathematical modelling of features ... 17

3.2.2. Feature extraction ... 18

3.2.3. Model Building ... 22

3.3. Reproduction ... 24

4. SYSTEM IMPLEMENTATION .. 25

4.1. ML model integration with the hardware .. 26

4.1.1. Predictive Model Markup Language | PMML 27

4.1.2. cPMML .. 28

5. HARDWARE DEVELOPMENT FOR THE TEST BENCH 29

5.1. Hardware development .. 30

5.1.1. Linear motor ... 30

5.1.2. Linear encoder .. 31

5.1.3. Motor driver ... 31

5.1.4. Analogue/ Digital I/O module | Sensoray 826 33

6. EXPERIMENTAL RESULTS ... 35

6.1. Conventional model-based approach .. 35

6.2. AI approach is better conventional model-based approach. 38

6.3. Features extraction and important features. .. 42

6.3.1. Correlation Statistics .. 43

6.3.2. Mutual Information Statistics ... 47

6.3.3. Principal Component Analysis (PCA) ... 48

6.4. AI approach ... 50

6.4.1. Compare same algorithm by changing the input features. 51

6.4.2. Comparison of AI algorithms .. 53

6.4.3. Validate AI approach. .. 59

6.4.4. Utilize AI model for haptic object Reproduction. 62

ix

7. AI ALGORTIHMS FOR PREDICTION OF HAPTIC SENSATION 65

7.1. Linear Regression .. 65

7.2. Random Forest .. 66

7.3. Support Vector Regression (SVR) .. 66

7.4. Deep neural network (DNN) ... 67

7.4.1. Recurrent neural network (RNN) ... 68

7.5. Machine learning frameworks. .. 70

7.5.1. TensorFlow .. 71

7.5.2. Keras .. 71

7.5.3. Scikit-learn ... 71

7.6. Analysis of Features .. 71

7.6.1. Variance, Covariance and Correlation ... 71

7.6.2. Mutual Information .. 73

7.6.3. Principal Component Analysis (PCA) ... 73

7.7. Analysis of AI algorithms ... 73

7.7.1. Performance Indices ... 73

8. DISCUSSION ... 76

9. CONCLUSION ... 78

REFERENCES ... 80

APPENDICES ... 85

APPENDIX A Hardware Block diagram of the Motor Driver, MOVO2 85

APPENDIX B Parameter List Values of the Motor Driver, MOVO2.................. 86

APPENDIX C Board Layout of Sensoray’s Model 826....................................... 90

APPENDIX D C & C++ codes ... 91

APPENDIX E AI codes .. 118

APPENDIX F Important R codes ... 130

x

LIST OF FIGURES

Figure 1.1: Representation of the Abstraction phase, Reconstruction phase and

Reproduction phase of the haptic object. ... 5

Figure 2.1: Behavior of human sensory information. .. 8

Figure 3.1: Abstraction of haptic information.. 14

Figure 3.2: Block diagrams (a) Disturbance Observer (b) Reaction Force Observer 15

Figure 3.3: DOB and RFOB based Force controller. ... 16

Figure 3.4: Spring damper model... 17

Figure 3.5: Reconstruction phase ... 17

Figure 3.6: (a) Feature Matrix (b) Instance of the Feature matrix 18

Figure 3.7: a) Force profile on the object over time b) Force profile on the object

over motion parameters c) Force profile on the object over compression depth d)

Compression depth profile on the object over time e) Velocity profile on the object

over time f) Acceleration profile on the object over time. ... 19

Figure 3.8: Deriving features: cycle no., permanent deformation, and the area from

the force response vs compression depth graph. .. 19

Figure 3.9: Train – Test sets ... 22

Figure 3.10: Reproduction phase ... 24

Figure 4.1: System Implementation ... 26

Figure 4.2: (a) Use of TinyML (b) Use of File/ Database (c) Client Server

programming .. 26

Figure 4.3: Model deployment with PMML .. 27

Figure 5.1: Experimental setup .. 29

Figure 5.2: Hardware modifications .. 30

Figure 5.3: Linear shaft motor ... 30

Figure 5.4: Linear encoder ... 31

Figure 5.5: Motor Driver .. 32

Figure 5.6: Sensoray’s Model 826 Multifunction analog/digital I/O 34

Figure 6.1: a) Force on the object over time b) Force on the object over compression

depth c) Force on the object over time and compression depth d) Force on the object

over motion parameters. ... 36

xi

Figure 6.2: Comparison of Regression Metrics of Spring damper models 37

Figure 6.3: Force profile of over motion parameters for the of 2nd order polynomial

approximation of stiffness and viscosity .. 37

Figure 6.4: Force on the object over motion parameters b) Force on the object over

time c) Compression depth on the object over time d) Velocity on the object over

time. .. 38

Figure 6.5: Simulated force response from the spring-damper model. 39

Figure 6.6: Comparison of results for a sponge object a) Force response over time b)

Force response over compression depth c) Force response over motion parameters 41

Figure 6.7: Comparison of Regression Metrics for virtual object models 42

Figure 6.8: Comparison of accuracy for virtual object models. 42

Figure 6.9 : Heat Map of variable correlations .. 44

Figure 6.10: Correlation coefficient of features with force response 44

Figure 6.11: Results from f_regreeion()... 46

Figure 6.12: Spearman’s correlation of features .. 47

Figure 6.13: Estimated mutual information. .. 48

Figure 6.14: Scree plot. .. 49

Figure 6.15: Comparison of results for a sponge object - a), b), c) Force response

over time d), e), f) Force response over compression depth g), h), i) Force response

over motion parameters j), k), l) Force response over compression depth and time for

the Case 1, 2, 3 ... 52

Figure 6.16: Comparison of Regression Metrics for the three cases of random forest

models .. 53

Figure 6.17: Comparison of results for a sponge object - a), b), c) Force response

over time d), e), f) Force response over compression depth g), h), i) Force response

over motion parameters j), k), l) Force response over compression depth and time for

the Case 1, 2, 3 respectively ... 56

Figure 6.18: Comparison of results for a sponge object - a), b) Force response over

time. c), d) Force response over compression depth e), f) Force response over motion

parameters g), h) Force response over compression depth and time for the Case 4,5

respectively .. 57

Figure 6.19: Comparison of Regression Metrics for different AI algorithms 58

xii

Figure 6.20: Comparison of Regression Metrices of AI approach and Spring damper

model .. 59

Figure 6.21: Feature Importance .. 59

Figure 6.22: Position controlling and force response measurement. 60

Figure 6.23: Position control .. 61

Figure 6.24: Comparison of force responses over time for the sponge real object and

virtual object... 61

Figure 6.25: Compression of Regression Metrices .. 62

Figure 6.26: Comparison of force responses over time a) Predicted force response

from AI approach and force response over time c) Calculated force response from

spring damper approach and force response from the sponge over time. 63

Figure 6.27: Comparison of Regression Metrics for AI approach and Spring damper

model .. 64

Figure 6.28: Comparison of Regression Metrics for AI approach 64

Figure 6.29: Experimental setup at 1) Abstraction phase: Squeezing the actual object

b) Reproduction phase: Squeezing the virtual object ... 64

Figure 7.1: Representation of Random Forest ... 66

Figure 7.2: Deep learning architecture based on neural network. 68

Figure 7.3: LSTM Network.. 69

xiii

LIST OF TABLES

Table 3.1: Feature description .. 20

Table 3.2: Item Statistics .. 21

Table 3.3: Train - Test Datasets ... 23

Table 5.1: Experimental Parameters .. 29

Table 5.2: Specifications of the linear motor ... 31

Table 5.3: Specifications of the linear encoder ... 31

Table 5.4: Specifications of the motor driver... 32

Table 5.5: Parameter values configured in the motor driver 33

Table 5.6: Specifications of the Sensoray's model ... 34

Table 6.1: Mathematical representation for the three cases 36

Table 6.2: Comparison of Regression Metrics Spring damper models 37

Table 6.3: Train - Test Datasets ... 38

Table 6.4: Hyperparameters of SVR Model .. 40

Table 6.5: Compression of Regression Metrics ... 41

Table 6.6: Results from f_regreeion() .. 45

Table 6.7: Estimated mutual information... 48

Table 6.8: Principal Components (PCs) ... 49

Table 6.9: Results of PCA .. 50

Table 6.10: Compression of Regression Metrices for the 3 cases 53

Table 6.11: Hyperparameters of the SVR Model... 54

Table 6.12: Hyperparameters of the random forest Model .. 54

Table 6.13: Hyperparameters of the deep neural network Model 54

Table 6.14: Hyperparameters of the LSTM Model .. 55

Table 6.15: Compression of Regression Metrices of different AI models 58

Table 6.16: Compression of Regression Metrices of AI model and Spring damper

model .. 58

Table 6.17: Position control ... 60

Table 6.18: Compression of Regression Metrices ... 62

Table 6.19: Compression of Regression Metrices of AI model and Spring damper

model .. 63

xiv

LIST OF ABBREVIATIONS

Abbreviation Description

AI Artificial Intelligence

ANN Artificial Neural Network

API Application program interface

BP Back Propagation

DNN Deep Neural Network

DOB Disturbance Observer

I/O Input / Output

LSI Large-Scale Integration

LSTM Long short-term memory networks

MAE Mean Absolute Error

MCS Motion copying system.

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

PC Principal component

PCA Principal Component Analysis

PMML Predictive Model Markup Language

RFOB Reaction Force Observer

RMSE Root Mean Squared Error

xv

RNN Recurrent Neural Network

SDK Software Development Kits

SGD Stochastic gradient descent

SVR Support Vector Regression

XML Extensible markup language

xvi

LIST OF APPENDICES

Appendix Description Page

APPENDIX A Hardware Block diagram of the Motor Driver, MOVO2 85

APPENDIX B Parameter List Values of the Motor Driver, MOVO2 86

APPENDIX C Board Layout of Sensoray’s Model 826 90

APPENDIX D C & C++ codes ... 91

APPENDIX E AI codes .. 118

APPENDIX F Important R codes ... 130

xvii

NOMENCLATURE

𝑀 Motor mass

𝑀𝑛 The nominal value of motor mass

𝐾𝑓
 Motor force constant

𝐾𝑓𝑛
 The nominal value of force constant

𝐼𝑎
𝑟𝑒𝑓

 Motor current

𝐵 Viscosity coefficient

𝑔𝑑𝑖𝑠 Cut off frequency of DOB

𝑔𝑟𝑒𝑐 Cut off frequency of RFOB

𝑥 Compression depth

𝑥̇ Velocity

𝐹𝑚 Generated motor force

𝐹𝑑𝑖𝑠 Disturbance force

𝐹𝑒𝑥𝑡 Reaction force

𝐹𝑖𝑛𝑡 Interactive force

𝐹𝑓
 Static friction

𝐾𝑝
 Proportional gain of the controller

𝑔𝑣 Velocity filter constant

𝑔𝑎 Acceleration filter constant

𝐹𝑐𝑚𝑑 Force command

xviii

𝐹𝑟𝑒𝑠 Force response

𝐹̂𝑑𝑖𝑠 Estimated disturbance force

𝐹̂𝑒𝑥𝑡 Estimated reaction force

𝑥̈ Acceleration

𝑐 Cycle No.

𝑑 Permanent Deformation

𝐴𝐹𝑟𝑒𝑠.𝑥 Area 𝐹𝑟𝑒𝑠 vs 𝑥 curve

𝑘 Stiffness coefficient

𝑏 Damping coefficient

𝐹𝑒 Reaction force from environment

𝐶𝑝 Proportional gain of the position controller

𝐶𝑑 Derivative gain of the position controller

𝐶𝑖 Integral gain of the position controller

𝑥𝑟𝑒𝑓 Position reference command by operator

𝑥𝑒𝑟𝑟 Compression depth error

𝑑𝑥𝑒𝑟𝑟 Change in compression depth error

∫𝑥𝑒𝑟𝑟 Sum of compression depth errors

𝑥𝑒𝑟𝑟
𝑝𝑟𝑒

 Previous compression depth error

(∫𝑥𝑒𝑟𝑟)

𝑝𝑟𝑒

 Previous sum of compression depth errors

1

1. INTRODUCTION

In the modern era, almost all people interact with machines through auditory and

visual senses, yet they often neglect the importance of the sense of touch which they

trust most. Besides, only visual and auditory senses are not sufficient for a precise

realization in virtual reality. Thus, scientists have taken a keen interest in recreating

the sense of touch to achieve realization in the virtual world and to enhance the

performance of a vast variety of real-world manipulation tasks [1]. Consequently, the

latest studies on haptics consider AI technology to grant the perceptual capabilities of

the touch sense to the new generation of robots with intelligence.

Haptics information involves action and reaction. Thus, it is bilateral. Feedback

is often perceived as a kinesthetic or tactile response [2]. Kinesthetic feedback is

primarily recognized as the force or torque feedback while tactile feedback involves

the sensation of pressure, shear, vibration when touching an object [3]. Early studies

have described the dimensions of haptics as texture, weight, hardness, volume,

temperature, global shape, and these are tightly bound to the nature of the object [3].

Most studies on haptics are based on motor control and reliant on processing and

representation of kinesthetic feedback. Furthermore, the design and control of the

haptics system could be typically categorized as graspable, wearable, and touchable

as per the studies on haptics [1]. Graspable systems are commonly kinesthetic

devices, which allow the user to feel the force feedback by pushing them on through

the held tool. Wearable devices include exoskeletons that provide kinesthetic

feedback and tactile devices which display sensation regarding vibration and

deformation. Touchable devices often allow the user to actively explore the tactile

properties of the entire surface, but they also can be the hybrid of kinesthetic and

tactile versions. Recently, researchers have also taken heed of studies on virtual

touchable objects created in midair allowing the user to experience the texture of the

surface of the object through the vibration feedback [4].

Various approaches were investigated to interpret the feeling of touch excels at

sensing. Many studies of haptics focus on creating kinesthetic sensations and

feedback. An object's reaction comprises not only the information regarding force

2

and motion but also its impedance. Hence, the actual impact of all effecting factors

should be assessed and understood from the actual environment to accurately identify

and reconstruct objects in virtual reality while providing the user an immersive feel

of a virtual world.

With the passage of time, different approaches were investigated to interpret the

feeling of touch excels at sensing. Most studies of haptics focus on creating haptic

sensations using model-based approaches [5]-[7]. The conventional spring-damper

model or spring model were typically used to define the object in the virtual world

[5]-[7]. Hence, the force response from the virtual object is displayed with the

traditional stiffness rendering algorithm which is based on Hooke’s law [8] while

incorporating the damping effect and the effect of mass appropriately. However,

spring damper behavior doesn’t reflect the real sensation of touch as the real sense of

touch is nonlinear [9]. Thus, model-based identification failed to interpret the real

sense of touch. Furthermore, most haptics studies entirely relied on motion data and

the position and velocity information were primarily considered [5]-[7].

In most instances, force/torque sensors have been used to measure the force [7]

ignoring their issues like signal noise, instability, narrow bandwidth, non-collocation

and complicity [10],[11]. Even the most advanced technological devices use thin

flexible force sensors developed by advanced force sensor technologies, yet they can

still gauge the force where they are mounted [12]-[14]. Besides, the force sensor adds

inertia or mass to the system. However, a robust sensorless force/torque control

mechanism over a broad bandwidth can be achieved using the Disturbance Observer

(DOB) [15],[16] and later the Reaction Force Observer (RFOB) [10], [17] was

introduced with some adjustments to detect the reaction force.

Playback of recorded haptic information is the simplest and direct technique, and

motion coping systems commonly use this concept [18],[19]. Nevertheless, the direct

replay of haptic information frequently fails to adequately grasp the complexity of

the original interaction. As a result, complicated models are needed to generate the

haptic information as if it's from the actual environment.

3

Furthermore, the nonlinear motion made should be exactly matched with the

rendered signal for virtual interaction and to realistically interpret the actual

interaction. Hence, researchers used the dominance of vision over haptics to capture

motion information ignoring the perceptual capabilities that the touch sense alone

composed [20]. However, in the real scenario, the haptic information should change

with the applied parameters on the virtual object. Thus, haptics needs to empower

with intelligence.

In the last decade, researchers have taken many attempts to design and develop

haptic devices for many potential applications and recent studies use AI. However,

these studies have used AI to have vision information to reproduce sense of touch

ignoring the potential of sense of touch [20],[21] and they have relied on force

sensors, strain gauges despite their issues [22].

1.1. Problem Statement

Hence, it seems that identifying the actual behavior of the object is critical for

object reconstruction in the dimension of haptic. However, the majority of studies

relied on traditional spring damper model and spring model to recreate the object

ignoring the real nonlinear behavior of the environment object. Furthermore, most

studies have used force sensors despite their issues to obtain the force measurements.

Recent studies have employed AI with haptics, but they have considered dominance

of vision and have relied on force sensors.

However, usage of the AI approaches has proven to produce better results

through any studies. Thus, in this work AI approaches were considered to recreate

the haptic sensation than relying on the conventional approaches. However, more

reliable prediction can be achieved through AI when there is a clear understanding

about the dataset. Therefore, it is essential to identify the impact of the features

affecting haptic feedback before building the AI model. Furthermore, force

measurements that depend on the sensorless force/control mechanism provide more

accurate measurements than the force sensors. Thus, sensorless force sensing

mechanism was incorporated to obtain haptic information and to achieve better

results through proposed approach.

4

1.2. Project Objectives and Scope

1.2.1. Objectives

The objective of the research is to study haptic objects reproduction in virtual

reality using AI.

• Develop a deep learning based generalized virtual object model for an object.

• Utilize the AI for the reproduction of vivid force sensation in virtual reality as

if it is from the real environment.

1.2.2. Scope

The scope of this research is to utilize AI based approaches for haptic object

reconstruction and reproduction in virtual reality as if it’s from the actual

environment. A DOB and RFOB based sensorless sensing mechanism was employed

to abstract haptic information for the reconstruction and reproduction of haptic

sensation. Furthermore, this study follows a statistical analysis of haptic information

to understand the features affecting reproduction of haptic sensation in virtual reality.

1.3. Project overview

This research focuses on haptic object reproduction in virtual reality. The

procedure of this research follows three stages Abstraction, Reconstruction and

Reproduction as shown in Figure 1.1. A sponge was considered as the experimental

object throughout the research.

The haptic information is abstracted and mainly force response and compression

depth of the object were obtained. However, there can be many other features

affecting the feedback from the object. Thus, the features are extracted to create the

whole haptic dataset. The haptic dataset was analyzed to understand the behaviour of

the features and the impact of them for the response. The features with the highest

impact were taken as selected features to be used in building the machine learning

model. Since there are numerical input features and numerical output, this prediction

is regression. Thus, many regressions algorithms were evaluated to find the best

5

algorithm match with the dataset. Finally, the selected model was utilized in the

reproduction stage to reproduce the haptic object in virtual reality.

Figure 1.1: Representation of the Abstraction phase, Reconstruction phase and Reproduction

phase of the haptic object.

 The mathematical notation used in Figure 1.1 is elaborated in section 3.2.1.

1.4. Thesis outline

The thesis structure is organized as follows. Chapter 2 highlight prior research

work, chapter 3 explains the proposed AI approach, chapter 4 discusses the system

implementation and chapter 5 proves a detailed hardware development for the

research. The results of the research are discussed in chapter 6 and the techniques

including AI algorithms used in the research are explained in chapter 7.

Chapter 2 provides a glance at the prior research work related to this study area.

It’s the literature review, and it consists of five main sub-sections. The first

subsection explains the traditional conventional approaches which are mostly utilized

even in current studies on haptics. The drawbacks of using force sensors are

highlighted in the next sub section and it explains the importance of use of sensorless

techniques for measuring force. Next two sections explain the issues with playback

of haptic information and dominance of vision over haptics. Finally, the chapter

highlights the use of AI with haptic technologies.

6

The proposed approach is discussed in chapter 3, and it provides the detailed

procedure of the research explaining the three phases: Abstraction, Reconstruction,

and Reproduction. The reconstruction phase has two stages feature extraction and

modelling and it is also highlighted in the chapter.

The system implementation of the reproduction phase is explained in chapter 4,

and it explains how the AI model is migrated to another intermediate stage and

utilized for the haptic object reproduction in virtual reality.

The next chapter shows the hardware used and how they are utilized in the

abstraction phase to acquire haptic information and in reproduction phase for haptic

sensation reproduction as if from the real environment.

Chapter 6 provides the overall discussion of the results obtained from the

research and how the objectives were achieved during the research. This chapter

covers the results of the whole procedure of the study including abstraction,

reconstruction, and reproduction phases. Finally, discusses the validity of the

proposed approach and proves that it is better than existing approaches.

Chapter 7 focuses on highlighting the AI algorithms utilized and analytical

techniques considered.

Ultimately, the overall discussion and the conclusion are followed by References

and Appendices.

7

2. LITERATURE REVIEW

Humans interact intensively with machines through auditory and visual senses,

yet they frequently disregard the sense of touch, which they rely on the most. Sense

of touch is another sensory information which could be controlled as the visual and

auditory sense. Therefore, there has been an increasing focus in recent decades on

developing technology to replicate the sense of touch and convey important tactile

information to improve human performance. As a result, researchers have been

exploring ways to give new generations of robots the ability to perceive and interpret

touch, incorporating AI to provide intelligence and adaptability to this capability.

With the development of immersive technologies, the absence of realistic haptic

feedback has been acknowledged as a significant barrier in achieving realization in

virtual reality [1] and carrying out a variety of real-life manipulation tasks [23].

However, its potential is enormous in the various fields including medicine [24]-[28],

agriculture [29], exploration [30], industrial robots [31],[32], and gaming [33]-[36].

Additionally, the sense of touch is crucial in many teleoperation situations, such as

repairs that require avoiding self-presence and procedures that are beyond human

scale. One crucial area of research in touch feedback for teleoperation is the provision

of real-time touch feedback to da Vinci robotic systems utilized in minimally

invasive surgeries, which continues to be of significant interest to researchers [24]-

[27], [37]-[39].

The field of haptics, which focuses on the science of touch, not only allows

humans to break down barriers to achieving a sense of presence in virtual

environments but also enables them to carry out a wide range of real-world

manipulation tasks. Haptic information involves a reaction to an action and is

bilateral. The haptic feedback can be typically identified as kinesthetic or tactile

[1],[2]. Kinesthetic feedback is recognized as force or torque feedback, while tactile

feedback involves the sensation of pressure, shear, or vibration when touching an

object [2],[3]. Early research identified haptic dimensions such as texture, weight,

hardness, volume, temperature, and global shape, which are closely linked to the

properties of the object [2],[3]. Most haptic research focuses on motor control and

8

relies on the processing and representation of kinesthetic feedback. In addition,

haptic systems can be categorized as graspable, wearable, and touchable [1].

Graspable systems are often kinesthetic devices that provide force feedback when the

user pushes or moves the tool. Wearable devices include exoskeletons that provide

kinesthetic and tactile feedback, with tactile devices capable of displaying sensations

such as vibration and deformation. Touchable devices allow the user to actively

explore the tactile properties of an object's surface and can be a combination of

kinesthetic and tactile versions. Recently, researchers have explored the creation of

virtual touchable objects in midair, allowing users to experience the texture of an

object's surface through vibration feedback [4] and it paves the way for more

immersive virtual reality experiences and new opportunities for tactile interaction.

Unlike acoustic and vision information, haptic information depends on the

response from the environment as shown in Figure 2.1. Thus, sense of touch is

bilateral. Hence, the force response plays a vital role in realization of virtual

reconstruction of haptics object. Therefore, to reproduce the sense of touch through

an environment model, the response from the real environment should be considered

incorporating the input motion parameters.

Figure 2.1: Behavior of human sensory information.

9

2.1. Model based approach.

With the passage of time, various approaches have been explored to better

understand how the human sense of touch excels at sensing. The majority of haptic

research has focused on creating kinesthetic sensations, and most studies have

employed model-based approaches when modelling the behavior of the actual object

for reconstruction, and the conventional spring-damper model based on Hooke’s law

[8] was the most utilized while appropriately incorporating the damping effect and

the effect of mass. Hence, they have derived the environmental impedance by

predefining the behavior of stiffness and viscosity as exponential or polynomial or

constant [5]- [7]. The spring-damper behavior has been used to interpret interaction

with virtual objects and to deduce the interaction forces that occur when touching the

virtual object in haptic rendering algorithms [7]. However, considering spring

damper behavior to represent an object contradicts the real behavior of

environmental impedance of that object as the real sense of touch is nonlinear [9].

Therefore, model-based identification has often failed to accurately interpret the real

sense of touch.

2.2. Sensorless Force/Torque control

 The influence of the learned force requires special attention and yet, haptics studies

simply concern considering only motion data. Information with both motion and force

were considered to enhance the quality of reproduction of grasp performed using a

strain gauge based cyberglove, and force sensors were used to obtain force magnitude

in this study [7]. However, force sensors have issues such as,

• Narrow bandwidth

• Signal noise

• Complicity

• Non-collocation

• Instability [10] [11].

 Even the latest haptic devices such as haptic gloves use thin flexible force sensors,

though force sensors can only measure force at the location of the sensors and the

10

sensor itself adds mass or inertia to the system [40]. Thus, a sensorless force control

with a wide bandwidth achieved using the Disturbance Observer (DOB) [15],[16] and

the Reaction Force Observer (RFOB) [10],[17] was introduced by Kouhei Ohnishi et

al.

2.3. Playback of haptic information

The direct playback of haptic information is a simple and straightforward method

used in motion coping systems. A motion-copying system based on DOB and RFOB

was introduced to reproduce position and force information saved based on bilateral

control [18]. This system was used to reproduce position and force information

stored in motion-data memory. A real, simple haptics device constructed using an

LSI module and this device composed of the real haptics basic functions such as,

• Motion transmission from the master to slave

• Motion recording

• Motion playback

• Force and position scaling [19].

 However, playback of haptic information fails in fully interpretation of the real

interaction complexity. Furthermore, the motion made by the person should be

exactly matched with the rendered signal for the virtual interaction to realistically

mimic the actual interaction. Thus, complex models are required to render realistic

haptic information.

2.4. Dominace of vision over haptics

Researchers have used the dominance of vision over haptics to capture motion

information ignoring the perceptual capabilities that the touch sense alone comprised.

A Convolutional Neural Network (CNN) has been used in the motion reproduction

system to estimate path by using grasping motion and depth information [20]. Hence,

they have used visual information to reproduce the grasping force which is estimated

through equations derived using kinematics. So, their focus of using machine

learning is to analyze motion data through vision information by addressing vision as

an alternative for sense of touch and neglecting the real potential sense of touch.

11

Thus, haptics needs to be empowered with intelligence to provide a more realistic

and responsive interaction.

2.5. AI with haptics

Haptic devices often require a high degree of accuracy and precision, which can

result in high costs. Additionally, they may require a specialized design or setup,

which can limit their applicability and reduce their market potential. Despite these

challenges, researchers and companies continue to develop haptic devices for a

variety of applications, and there is growing interest in the field of haptics. Though

haptic devices have seen significant progress in recent years, they still face

challenges when it comes to cost, size, and wearability.

AI has the potential to revolutionize the field of haptics by enabling more

personalized and intuitive haptic interactions. With AI, haptic devices can be

designed and optimized to provide more natural and realistic touch sensations, and to

respond to the needs and preferences. Artificial intelligence paves the way for

aggregating robust data-driven methodologies and other technologies to enable

solutions. Thus, AI can be used to develop more advanced and sophisticated haptic

systems that can be integrated with other technologies, such as virtual reality, to

create more immersive and engaging experiences. Data-driven model building based

on AI has the potential to overcome the limitations of traditional physics-based

models by allowing for more flexible and accurate simulations of haptic feedback. AI

techniques can learn from large datasets of haptic interactions and generate models

that capture the complexity and nonlinearity of the human sense of touch. This

approach can enable more natural and intuitive haptic interactions with virtual

environments, and potentially lead to the development of more affordable and

accessible haptic devices. Thus, the latest studies on haptics consider AI for seamless

integration haptic devices with virtual reality and tune the haptic technology to evoke

affective responses. A neural network has been utilized to predict external forces

from motion parameters in a neural network model-independent force observer [21].

However, force sensors were utilized in the training stage of the neural network to

measure contact forces despite their drawbacks [10], [11]. A non-linear regression

12

model, SVR (Support Vector Regression) was employed to infer the haptic force

positions for stimulation locations which are unseen [22]. However, the force

measurements were thoroughly dependent on strain gauges despite the drawbacks of

the force sensors [10] [11].

The success of object reconstruction in the haptic dimension depends on

accurately identifying the object's behavior. Traditional methods using spring damper

and spring models to recreate the object's behavior have limitations as they don't

account for the non-linear behavior of the environment or object. Additionally, force

sensors used in many studies have their own issues. Recent studies have employed

AI with haptics and have considered vision as a dominant factor. This study focuses

on using an environmental model developed through learning haptic information to

recreate haptic sensations in virtual reality. The study identifies significant features

for building the virtual model and evaluates various algorithms to find the best fit

with the dataset. The study also utilizes a sensorless force control mechanism to

obtain force measurements for better "reproducibility" of haptic sensations.

Ultimately, the study proposes AI-based approach to vividly reproduce force

sensations through a virtual model that replicates the actual environment using

information extracted through a sensorless control mechanism.

13

3. THE PROPORSED AI BASED APPROACH

In the real scenario, the haptic sensation should change with the applied

parameters on the virtual object. Thus, complex models are required to render the

real haptic information. Therefore, when constructing the virtual environmental

model, complex haptic environment modeling techniques should be employed to

interpret the nonlinear behavior of the responses as if from the real environment.

Thus, it is important to empower haptics with intelligence. Many haptic studies

which incorporated AI, have primarily considered motion parameters such as

position, velocity, and acceleration as inputs for the AI model. Furthermore, research

highlighted the fact that the environmental impedance which considers the effect of

stiffness and viscosity coefficient of the object is not a constant. Thus, several factors

can affect the haptic force feedback and these factors could complicate the prediction

process. Therefore, it is essential to identify the impact of the features before

building the AI model. Furthermore, more reliable prediction can be achieved

through AI when there is a clear understanding about the dataset. Therefore, a

comprehensive study of the features along with a principal component analysis

(PCA) was performed to identify the most relevant features that have a higher impact

on the force response.

An environmental model developed through learning of haptics information by

using the extracted features. Various algorithms were used in the research and the

best model fit with the dataset was used for the reproduction of haptic sensation.

Furthermore, use of a sensorless sensing system is essential for better

“reproducibility”. Therefore, this research introduces deep learning-based approach

for vivid force sensation reproduction through a virtual model which replicates the

actual environment, and the proposed approach utilizes sensorless force control

mechanism to obtain force measurements.

3.1. Abstraction phase

The motion information with the corresponding responses from the object were

acquired during this phase. An adequate amount of data is needed to analyze the

factors affecting the recreation of haptic sensations using AI. Thus, the relevant

14

information with the responses from object was abstracted as depicted in Figure 3.1.

Despite these drawbacks, force sensors were utilized in traditional force controlling

to detect force. Furthermore, the sensor itself adds inertia or mass to the system and it

only detects external forces at the location where it is mounted. Thus, a DOB and

RFOB based sensorless technique was used in this study to detect vivid force

sensation with a wide bandwidth. Robust force control was achieved using DOB, and

reaction force from the object was measured using RFOB.

Figure 3.1: Abstraction of haptic information

The disturbance force of the system observed by the disturbance observer without

using force sensors is represented as in (3.1).

𝐹𝑑𝑖𝑠 = 𝐹𝑒𝑥𝑡 + 𝐹𝑖𝑛𝑡 + (𝐹𝑓 + 𝐵𝑥̇) + (𝑀 − 𝑀𝑛)𝑥̈ + (𝐾𝑓𝑛 − 𝐾𝑓)𝐼𝑎
𝑟𝑒𝑓

 ()

 𝐹𝑑𝑖𝑠 = 𝐾𝑓𝑛𝐼𝑎
𝑟𝑒𝑓

− 𝑀𝑛𝑥̈ ()

The generated motor force, 𝐹𝑚 can be represented as shown in (3.3).

 𝐹𝑚 = 𝐾𝑓𝐼𝑎
𝑟𝑒𝑓

 ()

By applying the dynamic equation to the linear motor:

𝐹𝑚 − 𝐹𝑙 = 𝑀𝑥̈ ()

Load force, 𝐹𝑙 can be represented as in (3.5).

 𝐹𝑙 = 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡 + (𝐹𝑓 + 𝐵𝑥̇) ()

Database
Real Object

Linear Motor

(

15

The parameters, 𝐾𝑓 and 𝑀 can be re-written in terms of nominal values and

variations as they are subjected to variations and estimation errors.

𝑀 = 𝑀𝑛 + Δ𝑀 ()

𝐾𝑓 = 𝐾𝑓𝑛 + Δ𝐾𝑓 ()

The estimated disturbance force was obtained by passing disturbance through the

low pass filter and suppressing the noise due to the differentiator as in (3.8).

𝐹̂𝑑𝑖𝑠 =
𝑔𝑑𝑖𝑠

(𝑠+𝑔𝑑𝑖𝑠)
𝐹𝑑𝑖𝑠 ()

The DOB was modified and introduced RFOB to estimate the reaction force

without using force sensors by recognizing the internal disturbance in the system

[6],[11]. Thus, RFOB plays the role as a virtual force sensor in estimating only the

reaction force. The estimated value of the reaction force can be expressed as in (3.9)

and (3.10).

𝐹̂𝑒𝑥𝑡 =
𝑔𝑟𝑒𝑐

(𝑠+𝑔𝑟𝑒𝑐)
(𝐾𝑓𝑛𝐼𝑎

𝑟𝑒𝑓
+ 𝑀𝑛𝑔𝑟𝑒𝑐𝑥̇ −

(𝐹𝑖𝑛𝑡 + 𝐹𝑓 + 𝐵𝑥̇ + (𝑀 − 𝑀𝑛)𝑥̈ + (𝐾𝑓𝑛 − 𝐾𝑓)𝐼𝑎
𝑟𝑒𝑓

) − 𝑀𝑛𝑔𝑟𝑒𝑐𝑥̇
 (3.9)

Figure 3.2: Block diagrams (a) Disturbance Observer (b) Reaction Force Observer

dis

Disturbance

observer

(DOB)

Motor

ext

Reaction

Force observer

(RFOB)

Motor

(a) (b)

16

 𝐹̂𝑒𝑥𝑡 =
𝑔𝑟𝑒𝑐

(𝑠+𝑔𝑟𝑒𝑐)
𝐹𝑒𝑥𝑡 ()

The block diagrams of the disturbance force observation function by the DOB

and the reaction force estimation function by the RFOB are shown in Figure 3.2.

Figure 3.3 shows the overall block diagram with the DOB and RFOB based force

control mechanism.

Figure 3.3: DOB and RFOB based Force controller.

3.2. Reconstruction phase

This phase involves reconstructing the environment to recreate the force

response from the environment. Most studies have utilized spring damper model by

deriving the environmental impedance using stiffness and viscosity. Hence, the

environment impedance was predefined by considering the behavior of stiffness and

viscosity as exponential or polynomial or constant. Consequently, the force response

was defined by assessing the combinational effect of the forces from the spring, and

the damping force as expressed in (3.11).

𝐹𝑟𝑒𝑠 = 𝐹𝑘 + 𝐹𝑏 = 𝑘𝑥 + 𝑏𝑥̇ (3.11)

However, spring damper model doesn’t interpret the real nonlinear behavior

of the environment/ object. Thus, AI was considered to recreate the environment

Motor

Disturbance

Observer

Reaction

Force

Observer

Controller

17

model to generate the force response as if from the real environment. The

reconstruction phase shown in Figure 3.5 includes two stages, feature extraction and

modeling.

Figure 3.4: Spring damper model

Figure 3.5: Reconstruction phase

3.2.1. Mathematical modelling of features

A feature was defined using mathematical notation. The feature, 𝑓 can be defined

as follows,

𝑓𝑡
𝑐

𝑛 ()

where n = feature no.

 c = cycle no.

 t = time elapsed from the cycle start

m

k

b

Spring

damper

model

Virtual Environmental
model

(

Database

(

Feature Extraction &
Feature Selection Model Building

AI model
(training)

Training phase

X

y

Feature Extraction

Feature Selection

=

AI model
(trained)

Testing phase

18

Thus, the feature matrix can be defined with 3 dimensions. The feature no., time

elapsed and the cycle no. change along the dimensions. The feature matrix and the

instance of the matrix is shown in Figure 3.6.

Figure 3.6: (a) Feature Matrix (b) Instance of the Feature matrix

3.2.2. Feature extraction

A labeled structured dataset of 21400000 samples was extracted for a force

command applied to the sponge object. However, a reduced version was considered

for this analysis. The variation of haptic information relative to time and motion

parameters is illustrated in Figure 3.7. Filtered velocity and acceleration were used

after passing through a law pass filter.

𝑥̇ =
𝑔𝑣

𝑠+𝑔𝑣
𝑥̇𝑟𝑎𝑤 (3.13)

𝑥̈ =
𝑔𝑎

𝑠+𝑔𝑎
𝑥̈𝑟𝑎𝑤 (3.14)

where 𝑔𝑣 and 𝑔𝑎 are velocity and acceleration filter constants and their values

used in the research are 30 and 100. 𝑥̇𝑟𝑎𝑤and 𝑥̈𝑟𝑎𝑤 are the raw value of velocity and

acceleration before filtering. The filter constants were selected to obtain a clear

variation of the parameters while maintaining a less than 10 % change within the

100ms time frame window.

...

..

..

..

...

..

..

..

...

...

..

..

..

...

..

..

..

...

...

..

..

..

...

..

..

..

...Cycle no.

Feature no

Time
elapsed

(a) (b)

19

Figure 3.7: a) Force profile on the object over time b) Force profile on the object over

motion parameters c) Force profile on the object over compression depth d) Compression

depth profile on the object over time e) Velocity profile on the object over time f)

Acceleration profile on the object over time.

Figure 3.8: Deriving features: cycle no., permanent deformation, and the area from the force

response vs compression depth graph.

Most studies highlighted the impact of motion parameters namely compression

depth, velocity, and acceleration on the force response. Thus, all motion parameters

were used as features. When examining the 𝐹𝑟𝑒𝑠vs 𝑥 graph it seemed that, the object

has an unrecovered deformation as the paths the object takes in 𝐹𝑟𝑒𝑠 vs 𝑥 when

increasing the force is not equals to when reducing the force. Thus, it clarifies that

the object has not returned to the same state. Furthermore, the area within the path

enclosed by the full force apply-release cycle differs from cycle to cycle with the

(a) (b) (c)

(d) (e) (f)

41 2 3

(a) (b)

Cycle
No.

20

increase of the maximum force command and Figure 3.8 depicts the area of a cycle.

Thus, these observations were considered to derive new features to be used for

further analysis. Therefore, cycle no., permanent deformation and the area from the

force response vs compression depth graph were chosen as the features after

observing the illustrated variations. Since literature highlighted the environmental

impedance is not a constant, the effect of instantaneous stiffness coefficient and

viscosity coefficient was incorporated by considering the (𝐹𝑟𝑒𝑠)𝑡−1 over motion

parameters namely compression depth and velocity. Furthermore, (𝐹𝑟𝑒𝑠)𝑡−1 over

acceleration was also considered. Therefore, previous instantaneous force response

over individual motion parameters were considered as the features that impact the

force response. Thus, in this study 9 features were identified, and the features

considered for this study are listed in Table 3.1.

Table 3.1: Feature description

Feature Description

𝑥 Compression depth

𝑥̇ Velocity

𝑥̈ Acceleration

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥

Instantaneous stiffness

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥̇

Instantaneous viscosity

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥̈

Previous Force response over

acceleration

𝑐 Cycle No.

𝑑c−1 Permanent Deformation

𝐴c−1
𝐹𝑟𝑒𝑠.𝑥 Area 𝐹𝑟𝑒𝑠 vs 𝑥 curve

AI approach is data driven. Thus, the prediction will be more accurate when there

is more data and the attributes. However, redundancy can cause data inconsistency

and will lead to unreliable and meaningless information, and it will cost more

21

computational power and time. When there are many variables, the relationship

between features cannot be identified manually or visually. Thus, it is essential to use

descriptive statistical analysis to have insights of the dataset while recognizing

significant features and the relationship between features.

Table 3.2: Item Statistics

The dataset only consists of numerical variables to detect force response. Most

common statistical measures that are used to analyze a dataset can be categorized as

the measures for central tendency and variability. Mean, mode and median are the

measures of central tendency which reflects center of the distribution. Dispersion,

and variability of the distribution can be obtained from common measures such as

Feature mean Standard

deviation

min 25%

percentil

e

50%

percentil

e

75%

percentil

e

max media

n

variance

𝒙 0.02 0.01 -

6.50E-

05

0.02 0.03 0.03 0.03 0.03 1.24E-04

𝒙̇ 9.68E-

06

0.0003 -0.01 -2.70E-

05

3.70E-05 6.50E-05 0.01 0.0000

37

9.38E-08

𝒙̈ -

7.69E-

05

0.002 -0.10 -0.0002 -3.50E-

05

2.60E-05 0.19 -

0.0000

35

3.50E-06

(𝑭𝒓𝒆𝒔)𝒕−𝟏

𝒙

305.79 331.35 -19682 9.33 302.17 413.35 41620 302.17 1.10E+05

(𝑭𝒓𝒆𝒔)𝒕−𝟏

𝒙̇

14653

8.6657

341837.09 -

14000

020

0 128206.2

3

195654.4

7

1400002

0

128206

.23

1.17E+11

(𝑭𝒓𝒆𝒔)𝒕−𝟏

𝒙̈

-

27461

3.4836

970149.49 -

14000

182

-

188681.7

5

-

31056.52

3

0 1400014

8

-

31056.

523

9.41E+11

𝒄 5.37 3.54 1 3 4 7 14 4 1.26E+01

𝒅𝐜−𝟏 0.003 0.01 -

3.50E-

05

0 0.0002 0.002 0.02 0.0002 4.27E-05

𝑨𝐜−𝟏
𝑭𝒓𝒆𝒔.𝒙 0.06 0.05 0 0.01 0.03 0.13 0.14 0.03 2.94E-03

𝑭𝒓𝒆𝒔 5.96 4.87 0 0.15 6.00 10.00 14.00 6.00 2.38E+01

22

range, standard deviation, and variance. The summary of all the statistical measures

are given in the Table 3.2.

Many statistical measures were considered to analyze the dataset and find the

features with higher impact in recreating the sense of touch. The measures that were

used in the research are,

• Correlation

o Pearson correlation

o Spearman’s correlation

• Mutual information

• Principal Component Analysis (PCA)

3.2.3. Model Building

A continuous ramp force was applied on the object to identify its object’s

behavior when commanding no. of force apply-release cycles on the object. The

training set was created by using different variations of ramp force and a set with

different ramp rate was considered as the test set. Figure 3.9 illustrates the variation

of recorded force relative to time for both datasets. The training set was a

combination of data with different ramp rates: 0.8, 1.8, 3.9 and 6.2 while the ramp

rate of the test set was 2.1.

Figure 3.9: Train – Test sets

Train set Test set

23

Table 3.3: Train - Test Datasets

Dataset No. of samples

Training dataset 362570

Testing dataset 292680

The training dataset was used to build the AI model by recognizing the

relationship between force response and extracted features. The testing set was used

to test the model built using AI by comparing the actual force response values with

the estimated force response values. Moreover, these two datasets are separate sets

and there are no data common to both datasets. Hence, the test data were not

considered during the training process.

The dataset consists of numerical input variables and numerical output variables.

The proposed AI-based approach uses supervised learning which is based on multi-

label regression. Several AI algorithms were considered in model building using

python. They are,

• Support Vector Regression (SVR)

• Random Forest Regressor

• Linear Regression

• Neural network

Regression Matrices were used to evaluate the performance of these algorithms

to choose the best algorithm fit the haptic dataset. The regression metrics used in this

study for model performance evaluation are,

• 𝑅2 score

• Mean absolute error (MAE)

• Mean squared error (MSE)

• Root mean squared error (RMSE)

The model should have a higher 𝑅2 score and lower regression losses denoted by

MAE, MSE, and RMSE for the model to have a better performance. The selected AI

algorithm was used in model building, and it is converted to the intermediate format

24

and deployed with the hardware to be utilized for haptic object reproduction in the

reproduction phase.

3.3. Reproduction

In the reproduction phase involves utilizing AI model with the hardware to

reproduce force sensation as if from the real environment. Thus, the user could be

able to feel the response from a sponge object even if there is no object present in the

reality. Thus, when user input a force with a position change the force response

prediction follows following steps.

• Important features extracted from these features.

• Execute the AI models by using the important features as the inputs to the

AI models.

• Find the best AI model with the better performance.

• Predict the force response from the selected AI model.

• Predicted force response is feed into the motor to let the user feel the

force feedback as shown in Figure 3.10.

Figure 3.10: Reproduction phase

In this study the AI model was developed in R and converted to PMML format to

utilize the AI model to deploy with the hardware. PMML is a file format based on

XML and it can be used as an intermediate format between different programming

languages.

Virtual EnvironmentOperator Linear Motor

AI model
(trained)

X (

25

4. SYSTEM IMPLEMENTATION

Full system implementation is illustrated in Figure 4.1. The system can be

separated as the hardware and the software. The hardware system consists of the

below components.

• Linear motor

• Linear encoder

• Motor driver

• Analog/digital I/O module

The whole system operates in force control mode. The force is applied as a

current command through the linear motor. The compression depth measurement is

taken by encoder and the value is sent to the motor driver and Sensoary analogue/

digital I/O module.

The main software program executes in C++. The encoder value and the

timestamp values are retrieved to derive forces, current command values and other

parameters and features. In the abstraction phase a force command is applied on the

sponge object. Thus, the main program executes by commanding force according to

the defined ramp force apply and release cycles. However, the predicted value from

the ML model is commanded to move the motor in the reverse direction in the

reproduction phase. Thus, when the user inputs a motion with a particular force and

compression depth / position, the response generation follows the below steps.

• Extracting important features

• Executing the AI model by using important features as the input to the AI

model

• Predicted force response from the AI model.

• Predicted value is fed into the hardware as a current command.

The AI model is created using R and it’s migrated to a model interchange format

which supports the programming language of the main program.

26

Figure 4.1: System Implementation

4.1. ML model integration with the hardware

Several methods were investigated to seamlessly integrate AI model with the

hardware. Hardware is communicated with software using C language while the AI

model is created using python. However, C language doesn’t support machine

learning libraries. But it is essential to have some mechanism to support AI model

integration with the hardware.

Figure 4.2: (a) Use of TinyML (b) Use of File/ Database (c) Client Server programming

Source (a): https://www.allaboutcircuits.com/technical-articles/what-is-tinyml/

S160T Linear
Motor

RGH24 linear
encoder
system

Multifunction
analog/digital I/O |

Sensoray 826

Motor
driver

HARDWARE

SOFTWARE .

. .

. . . .

. . . .

. . . .

. . .

. . . .

. . . .

. . . .

(

AI
model

(trained)

. . .

. . . .

. . . .

. . . .

Client Server

AI model
(trained)

. . .

. . . .

. . . .

. . . .

. . .

. . . .

. . . .

. . . .

(

(a) (b) (c)

https://www.allaboutcircuits.com/technical-articles/what-is-tinyml/

27

TinyML is the most popular library used in embedded devices to perform AI

tasks with real-time responsivity. But it doesn’t support for sensoray module. Thus,

updating and accessing the same database or the same file was the next attempt to

separately execute C and python scripts. However, the whole process of execution

takes longer time. In case of updating the file, it takes around 100ms while the case

of accessing database will take around 5 ms. Thus, client server programming was

considered where main C program was executed as a client while AI python script

was executed as the server. However, the total execution process takes a time about 4

ms which is still long enough to have the controller isolated.

4.1.1. Predictive Model Markup Language | PMML

Predictive Model Markup Language, or PMML in short, is a file format which

based on XML, and it serves as an intermediate form between different programming

languages. A model can be built using R/ Python and saved as an PMML file [41].

Then the PMML file can be utilized in reproduction phase.

Figure 4.3: Model deployment with PMML

In the research the model was created in R and converted to the PMML file and

loaded the AI model form C++ main program. PMML supports,

• Regression models

• Support Vector Machines

• Naive Bayes classifier

• Decision trees (Random Forest)

• Clustering models

• Neural Networks

• Association rules

Model
Building

Data Mining
standard

Real time and
Big data scoring

28

• Gradient Boosting (LightGBM and XGBoost)

• Text models

4.1.2. cPMML

This library was used to execute AI models with C++ main programmed

code. It is a C++ library for scoring PMML-serialized machine learning models. It

has a user-friendly and minimalist API. It can achieve high performance in model

scoring, and it keeps a predictable and minimal memory footprint. PMML supported

elements are,

• PMML General structure (preprocessing, data dictionary, etc.)

• Regression models

• Tree-based models

• Ensembles of the previous

29

5. HARDWARE DEVELOPMENT FOR THE TEST BENCH

The experimental setup employed to obtain information on haptic sensation is

shown in Figure 4.1. This research focused on replicating 1 DOF haptics interaction.

A linear motor was used as the actuator and a linear encoder was employed to obtain

position/ compression depth. The analog/digital I/O, Sensoray 826 was programmed

using C++ language. Table 4.1 lists the values of experimental parameters. The

initial position of the actuator was kept on the surface of the object to obtain relevant

motion data.

Figure 5.1: Experimental setup

Table 5.1: Experimental Parameters

Some modifications were introduced to the experiment system employed in the

acquisition of haptic sensations to utilize in the reproduction phase.

Object

Linear
Motor

Contact
Surface

Encoder

Symbol Value

𝑴𝒏 0.463 kg

𝑲𝒇𝒏 24 N/A

𝒈𝒅𝒊𝒔 300 rad/s

𝒈𝒓𝒆𝒄 300 rad/s

𝑲𝒑 2

𝒈𝒗 30

𝒈𝒂 100

30

Figure 5.2: Hardware modifications

5.1. Hardware development

5.1.1. Linear motor

Liner shaft motor is employed to achieve linear motion. In the research, the

forcer of the linear motor is held stationary while the shaft moves to create a linear

motion. There is no restriction on the angle or orientation at which the system can be

mounted. The motor is a brushless high precision direct drive linear servo motor with

a tubular design. This motor provides user a higher degree of flexibility.

Figure 5.3: Linear shaft motor

The motor has the limit of continuous current of 0.62 A, the current command

is generated from the program and the current input taken from the motor driver unit

are always kept under safe current range. Furthermore, the continuous force

command is always maintained within the acceptable force limits of the motor.

Forcer
Shaft

31

Table 5.2: Specifications of the linear motor

Model S160T

Continuous Force 15 N

Continuous Current 0.62 A

5.1.2. Linear encoder

The encoder is a non-contact optical encoder system with a set-up led indicator.

This is an incremental encoder system which can provide reliable and robust position

feedback. This offers proven reliable performance as this is one of the of the most

applied encoder systems.

Figure 5.4: Linear encoder

Table 5.3: Specifications of the linear encoder

Model RGH24D

Resolution 5 𝜇m

Since the encoder can provide the measurements up to an accuracy of 5 𝜇m, the

haptic virtual environment has 5 𝜇m sensitivity for the compression depth.

5.1.3. Motor driver

The motor driver operates in the current control mode. A two-phase command

through serial communication is received by the motor driver to operate in this mode.

This intelligent MOVO servo driver contains the advanced motion control function.

The motor driver is working with high flexibility, and it suits widely for a linear

32

motor, a rotated type of motor such as stepping motor, etc. In this research the motor

driver was employed with the linear motor.

Figure 5.5: Motor Driver

Table 5.4: Specifications of the motor driver

Model SVFH1-H3-DSP-SRI

Power class 200 V single phase

Rated Power 160 W

Rated Current 0.8 A

The hardware block diagram and the parameter list with the set values are given

in the APPENDIX-A and APPENDIX-B respectively. The parameter values were set

according to the application of use. In this research, a force command is applied from

the motor to the object during the abstraction phase. Thus, the motor driver is set to

operate in the force/torque control mode which controls the force using the current

input. Therefor the mode of the motor driver is set to operate for analog input only.

Furthermore, motor length and rated current values are set according to the research

requirements and the other used hardware devices.

In the study force controlling is considered. Thus, the motor driver operates in the

torque control mode and the operation commands sends through its interface are as

follows,

33

• MASK: Enter the MASK to prioritize MOV/2 to the I/O port.

• SVON: Input the command either from the I/O port or via serial

communication.

• G: To initiate the motor operation.

• S: To stop the motor operation.

• SVOF: Servo OFF

Table 5.5: Parameter values configured in the motor driver

Parameter Value

Encoder resolution 6000 pulses

Linear motor reference length 120 mm

Motor rated current 0.6 A

Maximum output speed 4000 mm/s

Initial mode ANQ - Analog input only

5.1.4. Analogue/ Digital I/O module | Sensoray 826

Sensoray's model 826 is a versatile analog and digital I/O system on a PCI

Express board. It has

• Six 32-bit counters with quadrature decoders and support incremental

encoders, frequency/period/pulse measurement and PWM/pulse

generation.

• Sixteen 16-bit (300 ks/s) analog inputs,

• Eight 16-bit (900 ks/s) analog outputs,

• 48 digital I/Os with edge detection,

• Multistage watchdog timer with final-stage relay

• Fail-safe output controller,

• Board ID switches for easy device identification and

• A flexible signal router.

34

The board ID switch allows multiple boards to easily coexist on a backplane.

The board is in a compact size, and it has abundant resources and high performance

which make perfect for a variety of measurement and control applications such as

robotics, motion platforms, scientific instruments, factory automation, and packing

and conveyor equipment.

Figure 5.6: Sensoray’s Model 826 Multifunction analog/digital I/O

Linux software development kit for Sensoray’s model 826 was used to connect

the board's hardware resources through its high-level application program interface.

Both C/C++ programming languages were used to code the source code. 32-bit

counter used to measure the incremental encoder position. It has with high-resolution

timestamps (1 µs) which ensures precise measurement. Analog output is configured

for 0V – 5V measurement range to output the force as the current command.

Table 5.6: Specifications of the Sensoray's model

Model Sensoray’s Model 826

Counters

Resolution 32 bits

Analog Output

Resolution 16 bits

Output voltage range 0V – 5V

35

6. EXPERIMENTAL RESULTS

6.1. Conventional model-based approach

The spring damper model was the conventional model-based approach

considered in this analysis to model the behavior of the object. Thus, the object

impedance is defined using stiffness and viscosity parameters and the behavior of

these parameters were assumed as constant, exponential, or polynomial.

In this study, different reconstruction methods of object impedance were

compared using the approximations for stiffness and viscosity. The stiffness and

viscosity were approximated constant or polynomial and the values of coefficients

were generated using the Curve fitting tool in Matlab. The approximations considered

for stiffness and viscosity in this analysis are,

Case 1: 𝑘 = 𝑓(𝑥) = 𝛼 (6.1)

𝒃 = 𝒇(𝒙) = 𝜷

(6.2)

Case 2: 𝒌 = 𝒇(𝒙) = 𝜶𝒏𝒙𝒏 + 𝜶𝒏−𝟏𝒙
𝒏−𝟏 + ⋯+ 𝜶𝟏𝒙

 + 𝜶𝟎 (6.3)

 𝒃 = 𝒇(𝒙) = 𝜷𝒏𝒙𝒏 + 𝜷𝒏−𝟏𝒙
𝒏−𝟏 + ⋯+ 𝜷𝒙 + 𝜷𝟎 (6.4)

where 𝛼 and 𝛽 are the real numbers, and 𝑛 𝜖 𝑁,where 𝑁 is a natural number.

Only 1st and 2nd order polynormal approximations were considered with the case of

constant stiffness and viscosity. Figure 6.1 shows how the variation of each feature

with the other when changing the approximations for stiffness and viscosity.

The performance was evaluated using regression matrices and Table 6.1 outlines

the comparison of these regression matrices considered and Figure 6.2 summarizes

the same. When comparing 𝑅2 score values, it seems that it increases when

considering complex mathematical representation. The regression losses, MAE, MSE,

RMSE reduces when increasing the complexity of the mathematical representation as

the 2nd order polynomial approximation provide better results than the constant

36

approximation. Thus, it seems that use of complex mathematical representation for

recreating force response shows better results than using simple mathematical

representation.

Table 6.1: Mathematical representation for the three cases

Case 1: Constant 𝐹𝑒 = 280.3𝑥 + 2690𝑥̇

Case 2:

Polynomial
1

st
 Order 𝐹𝑒 = (19440𝑥 − 281.9)𝑥 + (28400𝑥 + 840.6)𝑥̇

2
nd

 Order 𝐹𝑒 = (1465000𝑥2 − 54140𝑥 + 584.4)𝑥
+ (−4663000𝑥2 + 173700𝑥
− 19.08)𝑥̇

Figure 6.1: a) Force on the object over time b) Force on the object over compression depth c)

Force on the object over time and compression depth d) Force on the object over motion

parameters.

The profile of force response of 2nd order polynomial approximation for the

testing dataset is represented in Figure 6.3. Moreover, the surface of the generated

function from the curve fitting tool is shown in the same graph. When observing the

graph, it seems that all data points do not lie on the same plane generated by the

polynomial relationship and the variation of the distance from the plane the actual

(a)
(b)

(c)
(d)

37

force response was shown using the color range in the same. Thus, the conventional

spring damper model fails in representing the behaviour of the object.

Table 6.2: Comparison of Regression Metrics Spring damper models

Regression

Metric

Case 1:

Constant

Case 2: Polynomial

1st Order 2nd Order

𝑅2 score 0.46 0.82 0.90

MAE 2.96 1.68 1.40

MSE 13.45 4.45 2.44

RMSE 3.67 2.11 1.56

Figure 6.2: Comparison of Regression Metrics of Spring damper models

Figure 6.3: Force profile of over motion parameters for the of 2nd order polynomial

approximation of stiffness and viscosity

38

6.2. AI approach is better conventional model-based approach.

A dataset of 5,200,000 samples, which was collected for a ramped force

command applied on the sponge was used in this analysis. However, a reduced

version of it was used. The train and test data set used for this analysis are

summarized in the Table 6.2. The variation of recorded haptic information relative to

time and motion parameters are shown in Figure 6.1.

Figure 6.4: Force on the object over motion parameters b) Force on the object over time c)

Compression depth on the object over time d) Velocity on the object over time.

Table 6.3: Train - Test Datasets

Dataset No. of samples

Training dataset 24000

Testing dataset 28000

The spring-damper model was considered as the model-based approach in the

analysis. The stiffness and viscosity values were generated using the curve fitting tool

(a) (b)

(c) (d)

39

in Matlab by assuming behavior of stiffness and viscosity as constant. The

relationship between the force response and motion parameters, compression depth

and velocity was derived as represented in (6.5). The force response simulated

through the curve fitting tool for the training dataset is shown in Figure 6.5. The

surface of the function generated from the tool can be recognized in the same

illustration.

𝑭𝒓𝒆𝒔 = 𝟏𝟔𝟐𝟒𝒙 + 𝟐𝟑𝟑𝟏𝒙̇ (6.5)

The calculated values of force responses of the test set were derived from the

relationship shown in (6.5). Thus, all calculated values will lie on the same plane

which is created by the function. The graphs in Figure 6.5 shows deviation of the

calculated values of force responses, 𝐹𝑟𝑒𝑠
𝑐𝑎𝑙 using the spring-damper model from the

actual values of force responses.

Figure 6.5: Simulated force response from the spring-damper model.

The SVR algorithm was selected to build the virtual environmental model in the

AI based approach. However, the relationship between force response and motion

parameters cannot be simply defined in the AI approach as spring damper modeling.

Hence, the kernel function was utilized to transform the nonlinear feature input space

into another space to recognize nonlinear behavior. The hyperparameters of SVR

algorithm were tuned to adjustments in its kernel function to have better performance

on the training dataset. Table 6.4 shows the specific values of hyperparameters

selected to define SVR model to achieve better performance on the training set.

(ms-1)

40

Table 6.4: Hyperparameters of SVR Model

Hyperparameter Value

Kernel Type ‘rbf’

Regularization parameter (C) 0.1

Kernel coefficient for ‘rbf’ (𝛾) 0.002

Precision (𝜀) 0.0001

The trained model was utilized to get the predictions for the test samples in the

AI approach. The graphs in Figure 6.6 explain how the predicted values of force

responses, 𝐹𝑟𝑒𝑠
𝑝𝑟𝑒

 using SVR model deviate from the actual values of force responses.

The performance of approaches was evaluated using regression matrices. Table

6.4 shows the comparison of these matrices of both approaches and Figure 6.7

summarizes the comparison. The virtual environmental model should have lower

regression losses indicated by MSE, RMSE, MAE, and a higher 𝑅2 score for the

model to perform well. When comparing 𝑅2 score values of approaches, it seems that

the conventional model-based approach has better performance than the AI-based

approach. Since, 𝑅2 score reflects the correlation that indicates linearity, it cannot be

considered as a reliable metric in the nonlinear analysis. Hence, RMSE was

considered, and it seems that the AI algorithm has a better performance than the

conventional spring-damper model to replicate the object’s behavior. Furthermore,

SVR algorithm is identifying the object up to an accuracy of 82.7% in basis of RMSE

as shown in Figure 6.8. Thus, the AI approach is better than the conventional model-

based approach when evaluating the nonlinear behavior of responses from the object

which cannot be mathematically interpreted with simple relationship. Therefore, it is

visible that virtual object modeling using AI is the best approach for object

reconstruction.

41

Figure 6.6: Comparison of results for a sponge object a) Force response over time b) Force

response over compression depth c) Force response over motion parameters

Table 6.5: Compression of Regression Metrics

Regression

Metric

Spring Damper

model

SVR algorithm

𝑅2 score 0.81 0.75

MAE 0.71 0.15

MSE 0.81 0.03

RMSE 0.90 0.17

(a)

(b)

(c)

(a)

(b)

(c)

Spring Damper model SVR algorithm

42

Figure 6.7: Comparison of Regression Metrics for virtual object models

Figure 6.8: Comparison of accuracy for virtual object models.

A Support Vector Regression (SVR) model to identify object to be reconstructed

was introduced to predict force response from position and velocity information and

it has shown that AI approach provides higher performance than the traditional

model-based approach [42].

6.3. Features extraction and important features.

The dataset comprised of a numerical target variable and numerical input data.

The popular feature selection techniques that can be used are,

score

S
c
o

re

43

• Correlation Statistics

• Mutual Information Statistics [43]-[45]

Item statistics only convey a simple understanding about the dataset.

However, it is essential to preprocess and reformate data to analysis dataset before

initiating AI approach. First, the dataset is needed to normalize, and the Standard

scaler was used in this study to analyze data with higher degree of transparency. The

features are standardized to scale to unit variance by removing the mean. The

normalization formula is shown in (6.6)

𝒚′ =
𝒚−𝒚̅

𝝈𝒚
 (6.6)

where 𝑦′ represents the normalized value and 𝑦̅ is the mean of the feature, 𝑦.

and 𝜎𝑦 is the standard deviation of the feature.

6.3.1. Correlation Statistics

Correlation measures how two variables change together. Pearson’s correlation is

the most common measure of correlation which assumes a Gaussian distribution to

each variable and reflects on their linear relationship.

6.3.1.1. Pearson’s Correlation Coefficient

 This is a measure of linear relationship, and the score varies between -1 to 1

and 0 represents no relationship performance of approaches was evaluated using

regression matrices. The heatmap shown in Figure 6.9 illustrates how strong the

relationship between the features is while the graph in Figure 6.10 summarizes the

relationship between features and the target variable. It seems that the compression

depth has the highest correlation with the response. Compression depth is the only

feature with the correlation > 0.4, which considered as the normal benchmark to

define moderate correlation. Thus, compression depth should be included in the

feature list to be used as the input to the model.

44

Figure 6.9 : Heat Map of variable correlations

Figure 6.10: Correlation coefficient of features with force response

6.3.1.2. f regression

In most cases the positive score with the bigger the value shows the strength of

the relationship between variables and features with larger positive value are more

likely selected for modeling.

The linear correlation can be transformed into a correlation statistic that only

contains positive values. The f_regression() function provides correlation statistic

45

implementation. This uses feature selection strategies, such as the SelectKBest class

to select the topmost relevant features. First, the r_regression function is used to

compute the cross correlation between each regressor and the target. Pearson’s r for

each feature variable and the target variable from r-regression is also known as the

Pearson correlation coefficient. Then the value is converted to an f score and then to

a p value. The f value is considered in analysis of variance (ANOVA). It decides the

ratio of explained variance to unexplained variance. Explained variance is the

variance in the response variable in the model which can be explained by the

predictor variables in the model while unexplained variance, error variance refers to

the variance of errors. A higher explained variance shows that the model is explained

more by the variation in data. The f value determines the p value. The p value

decides the significance of the results in relation to the null hypothesis. It is the

probability of getting the observed results given that the null hypothesis is true. The

features with larger score are considered important and Figure 6.11, the bar graph

illustrates the scores for each variable. It seems that the compression depth is the

most important feature from the feature variables, and it should not be neglected

when building the model.

Table 6.6: Results from f_regreeion()

Feature p value

𝑥 364296.26

𝑥̇ 11540.47

𝑥̈ 447.21

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥
 12546.32

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥̇
 1964.22

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥̈
 4220.49

𝑐 21398.45

𝑑c−1 9843.58

𝐴c−1
𝐹𝑟𝑒𝑠.𝑥 37866.24

46

Figure 6.11: Results from f_regreeion()

6.3.1.3. Spearman’s Correlation

The Pearson correlation is primarily used to understand the linear relationship

between two features. When the variables are related by nonlinear relationship,

Spearman’s correlation is used, and it consider the dataset as a non-Gaussian

distribution. It measures the strength of a monotonic relationship which varying in a

way that it either never decreases or never increases. The data is considered

monotonic when the one variable increase or decreases the other variable will

entirely nonincreasing or nondecreasing.

When examining the spearman’s Correlation, through the Figure 6.9, it concludes

the 𝒙 and 𝒙̇ have a highest correlation with the target variable. Furthermore, the

parameters, 𝒙̈ ,
(𝑭𝒓𝒆𝒔)𝑡−1

𝒙
,

(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̇
 , and

(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̈
 have a considerable correlation

value. Thus, these six features have a considerable impact on target variable than

other features. Therefore, the features,

• 𝒙,

• 𝒙̇,

• 𝒙̈ ,

•
(𝑭𝒓𝒆𝒔)𝑡−1

𝒙
,

47

•
(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̇
 , and

•
(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̈

are the most important features and these features should be chosen as the input

features for the AI model.

Figure 6.12: Spearman’s correlation of features

6.3.2. Mutual Information Statistics

This focuses on estimating mutual information for a continuous target variable.

Mutual information is a measure of the dependency between the two variables, and it

is a non-negative value. It is the measure of the reduction in uncertainty for one

variable given the known value of the other variable. If two random variables are

independent, this value becomes zero. The higher value reflects higher dependency.

Thus, 𝑥 the (𝑭𝒓𝒆𝒔)𝑡−1over motion parameters namely compression depth, velocity

and acceleration show higher mutual information. Therefore, these features cannot be

neglected when creating the feature matrix.

48

Table 6.7: Estimated mutual information.

Feature Mutual information

𝑥 2.73

𝑥̇ 1.88

𝑥̈ 1.01

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥
 3.46

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥̇
 3.43

(𝐹𝑟𝑒𝑠)𝑡−1

𝑥̈
 2.66

𝑐 1.46

𝑑c−1 1.63

𝐴c−1
𝐹𝑟𝑒𝑠.𝑥 2.01

Figure 6.13: Estimated mutual information.

6.3.3. Principal Component Analysis (PCA)

Dimensionality reduction is the main purpose for conducting principal

component analysis (PCA). PCA was performed on the datasets to identify the most

important data features to be considered and the variance distribution of the principal

components (PCs) is shown in Table 6.8. The eigenvalues of covariance matrices and

49

eigenvectors are used to obtain the principal components and the eigenvalues

mentioned in the same table.

Table 6.8: Principal Components (PCs)

Figure 6.14: Scree plot.

According to the cumulative variance it seemed that seven PC are needed to

absorb at least 90% knowledge from the dataset. Moreover, the scree plot which is a

line plot of the variance of PCs is shown in Figure 6.14 illustrates the same.

PC Eigenvalues Variance (%) Cumulative Variance (%)

1 2.20 24.45 24.45

2 0.21 15.99 40.44

3 1.44 12.75 53.19

4 0.51 11.78 64.98

5 1.15 10.09 75.07

6 0.70 9.17 84.24

7 1.06 7.77 92.01

8 0.83 5.69 97.70

9 0.91 2.30 100.00

50

However, when examining the PCA results it seemed that the dataset cannot be

represented with fewer number of PCs and almost all the PCs are needed to fully

represent the dataset. Thus, use of principal component analysis will not make a

considerable impact on reducing computational power.

The results of PCA are summarized in Table 6.9 and significant features with a

correlation value greater than 0.60 are highlighted. Thus, it is seemed that 𝑥 is the

most significant feature which has the highest impact on PCs while 𝑨𝐜−𝟏
𝑭𝒓𝒆𝒔.𝒙 is the

lowest significant feature which has lowest impact on the PCs. Thus, it seems that 𝑥

is the feature most important haptic information.

Table 6.9: Results of PCA

6.4.AI approach

Several supervised learning regression algorithms were considered to build the

AI model. The training dataset was used to train the AI model and the testing set was

considered when evaluating the performance of each model to find the best model.

The algorithms considered in this study are,

• Support Vector Regression (SVR)

• Random Forest Regressor

Features PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

𝒙 -0.80 0.00 -0.09 0.50 0.34 -0.10 -0.42 -0.61 -0.80

𝒙̇ 0.03 0.29 -0.13 0.46 0.44 -0.49 -0.52 0.50 0.41

𝒙̈ 0.42 0.51 -0.11 0.23 0.31 -0.26 0.60 -0.32 -0.17

(𝑭𝒓𝒆𝒔)𝒕−𝟏

𝒙

0.06 -0.48 0.74 0.03 0.27 -0.42 0.16 -0.02 -0.03

(𝑭𝒓𝒆𝒔)𝒕−𝟏

𝒙̇

-0.06 0.57 0.64 0.15 -0.17 0.33 -0.13 0.03 0.01

(𝑭𝒓𝒆𝒔)𝒕−𝟏

𝒙̈

-0.10 0.19 0.01 -0.12 -0.60 -0.62 -0.05 -0.07 -0.07

𝒄 0.15 -0.26 -0.04 0.67 -0.37 0.10 0.11 0.03 0.02

𝒅𝐜−𝟏 0.27 -0.05 0.02 -0.02 -0.01 0.00 -0.32 -0.51 0.27

𝑨𝐜−𝟏
𝑭𝒓𝒆𝒔.𝒙 -0.27 0.02 -0.01 0.04 0.01 -0.01 0.18 -0.11 0.29

51

• Linear Regression

• Neural network: Deep Neural network, Recurrent Neural Network

Regression Matrices used to evaluate the performance of these algorithms to

choose the best algorithm fit the haptic dataset are,

• 𝑅2 score

• Mean absolute error (MAE)

• Mean squared error (MSE)

• Root mean squared error (RMSE)

6.4.1. Compare same algorithm by changing the input features.

The same algorithm was trained by changing the no. of features in the feature

matrix to observe the performance of the model when changing the no.of feature

inputs. Random forest algorithm was considered as the algorithm, and the feature

matrix was considered as shown below.

Case 1: Feature matrix with only compression depth

[𝒙] (6.7)

Case 2: Feature matrix with compression depth and velocity

[
𝒙
𝒙̇
] (6.8)

Case 3: Feature matrix with selected features

[

𝒙
𝒙̇
𝒙

(𝑭𝒓𝒆𝒔)𝒕−𝟏
𝒙⁄

(𝑭𝒓𝒆𝒔)𝒕−𝟏
𝒙̇

⁄

(𝑭𝒓𝒆𝒔)𝒕−𝟏
𝒙̈

⁄

̈

]

 (6.9)

52

The random forest algorithm was used to model the AI model by using the

feature matrixes defined in above the cases. The variation of the predicted force

response and the actual force response are illustrated in Figure 6.15.

Figure 6.15: Comparison of results for a sponge object - a), b), c) Force response over time

d), e), f) Force response over compression depth g), h), i) Force response over motion

parameters j), k), l) Force response over compression depth and time for the Case 1, 2, 3

The results obtained are shown in Table 6.8 and it is summarized in Figure 6.16.

The model performing well should has a higher 𝑅2 score and lower regression losses

denoted by MAE, MSE, RMSE. When comparing these regression matrices, it seems

that regression losses namely MAE, MSE, RMSE values reduces while the 𝑅2 score

value increases with the increase of the no. of features inputs to the AI model. In this

experiment the same AI algorithm, random forest was considered. It seems that even

(a) (b) (c)

(d) (e)
(f)

(g) (h) (i)

(j) (k) (l)

53

though the same AI algorithm was used, a higher performance of the AI model can

be obtained when increasing the no. of features affecting the target output.

Table 6.10: Compression of Regression Metrices for the 3 cases

Regression

Metric
Case 1 Case 2 Case 3

𝑅2 score 0.97 0.98 0.99

MAE 0.55 0.43 0.16

MSE 0.74 0.59 0.12

RMSE 0.86 0.77 0.34

Figure 6.16: Comparison of Regression Metrics for the three cases of random forest models

6.4.2. Comparison of AI algorithms

Different AI algorithms were considered to build the AI model. However, the

same feature matrix with the six extracted features was considered as the input for

the AI model. The graphs illustrated in Figure 6.17 and Figure 6.18 show how the

predicted force response from different AI algorithms varies with the actual force

response.

Case 1: LR

 Algorithm: Linear regression

Case 2: SVR

54

Algorithm: SVR algorithm

Table 6.11: Hyperparameters of the SVR Model

Hyperparameter Value

Kernel Type ‘rbf’

Regularization parameter (C) 0.1

Kernel coefficient for ‘rbf’ (𝛾) 0.002

Precision (𝜀) 0.0001

Case 3: RF

 Algorithm: Random Forest regression

Table 6.12: Hyperparameters of the random forest Model

Hyperparameter Value

n_estimators (no.of trees) 1000

max_depth 6

Case 4: NN

Algorithm: Neural network

optimizer = SGD (learning rate = 0.000001)

loss function = MSE

Table 6.13: Hyperparameters of the deep neural network Model

Layer (type) Output Shape Hyperparameters

1st dense layer (None, 150)
units =150

activation = “sigmoid”

1st dropout layer (None, 150) rate = 0.2

2nd dense layer (None, 25)
units =25

activation = “tanh”

55

2nd dropout layer (None, 25) rate = 0.2

3rd dense layer (None, 1)
units =1

activation = “sigmoid”

Case 3: LSTM

 Algorithm: Recurrent neural network – LSTM network

optimizer = Adam (learning rate = 0.000001)

loss function = MAE

Table 6.14: Hyperparameters of the LSTM Model

Layer (type) Output Shape Hyperparameters

LSTM layer (None, 100) units =100

Dense Layer (None, 1) units = 1

The obtained results were evaluated using the regression metrices and Table

6.9 shows the variation of these matrices with the change of the AI algorithm. Figure

6.19 depicts the same evolution of the performance visually. When observing the

graph, it seems that the random forest algorithm shows lower regression losses:

MAE, MSE, RMSE than the other algorithms and it has the highest 𝑅2 score too.

Thus, random forest algorithm can be chosen as the best matching algorithm for

haptic object reconstruction. Hence, this algorithm can be utilized in haptic object

reproduction phase.

56

Figure 6.17: Comparison of results for a sponge object - a), b), c) Force response over time

d), e), f) Force response over compression depth g), h), i) Force response over motion

parameters j), k), l) Force response over compression depth and time for the Case 1, 2, 3

respectively

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

57

Figure 6.18: Comparison of results for a sponge object - a), b) Force response over time. c),

d) Force response over compression depth e), f) Force response over motion parameters g),

h) Force response over compression depth and time for the Case 4,5 respectively

(a) (b)

(c) (d)

(e) (f)

(g) (h)

58

Table 6.15: Compression of Regression Metrices of different AI models

Regression Metric Case 1 Case 2 Case 3 Case 4 Case 5

𝑅2 score 0.74 0.66 0.99 -0.53 0.09

MAE 2.15 1.89 0.16 4.51 2.98

MSE 6.45 8.59 0.12 38.17 22.64

RMSE 2.54 2.93 0.34 6.18 4.76

Figure 6.19: Comparison of Regression Metrics for different AI algorithms

The selected algorithm was compared with the conventional spring damper

model using regression metrices. Figure 6.20 show this comparison, and it seemed

that the random forest algorithm has the best results with a little higher 𝑅2 score and

lower MAE, RMSE values. The RMSE value from the random forest model is 0.34

and it is lesser than the RMSE value from the Spring damper model.

Table 6.16: Compression of Regression Metrices of AI model and Spring damper model

Regression Metric Spring Damper approach Random Forest

Algorithm

𝑅2 score 0.90 0.99

MAE 1.40 0.16

MSE 2.44 0.12

RMSE 1.56 0.34

59

The feature importance was found out for the AI model and the comparison of

them is shown in Figure 6.21. In case of use of random forest model, the

𝑥,
(𝑭𝒓𝒆𝒔)𝑡−1

𝒙
 and 𝑥̇ show a significant importance and these can be considered as the

most important features for building the AI model.

Figure 6.20: Comparison of Regression Metrices of AI approach and Spring damper

model

Figure 6.21: Feature Importance

6.4.3. Validate AI approach.

The force was compared for the same position reference command to validate the

proposed approach. Position controlling was used in this scenario. The position

controlling is illustrated in Fig. (6.22).

F
e

a
tu

re

Feature Importance

60

Table 6.17: Position control

Figure 6.22: Position controlling and force response measurement.

𝑥𝑒𝑟𝑟 = 𝑥𝑟𝑒𝑓 − 𝑥
 ()

𝑑𝑥𝑒𝑟𝑟 = (𝑥𝑒𝑟𝑟 − 𝑥𝑒𝑟𝑟
𝑝𝑟𝑒)𝑑𝑡

()

∫𝑥𝑒𝑟𝑟
= (∫ 𝑥𝑒𝑟𝑟)

𝑝𝑟𝑒 + (𝑥𝑒𝑟𝑟
)𝑑𝑡

 ()

𝐼𝑎
𝑟𝑒𝑓

= (𝐶𝑝𝑥𝑒𝑟𝑟 + 𝐶𝑑𝑑𝑥𝑒𝑟𝑟 + 𝐶𝑖 ∫ 𝑥𝑒𝑟𝑟)
𝑀𝑛

𝐾𝑓𝑛

 ()

Motor

Disturbance

Observer

Reaction

Force

Observer

Controller

Parameter Value

𝑪𝒑 700.0

𝑪𝒅 12.0

𝑪𝒊 1000.0

61

Figure 6.23: Position control

The variation of the force response for the same position variation is illustrated in

Fig. (6.24) and comparison of regression metrics is shown in Fig. (6.25). When

observing the values, it seems that regression losses are at lower values which leads

to these regression metrics prove the validity of using AI for the object reproduction

in virtual reality.

Figure 6.24: Comparison of force responses over time for the sponge real object

and virtual object

62

Table 6.18: Compression of Regression Metrices

Regression Metric Score

𝑅2 score 0.95

MAE 0.42

MSE 0.33

RMSE 0.57

Figure 6.25: Compression of Regression Metrices

6.4.4. Utilize AI model for haptic object Reproduction.

The model was utilized in the real haptic object reproduction. The model was

created and converted to PMML, the intermediate model format and integrated the

model with hardware using cPMML, C library. The obtained data for a real force

application on sponge was recorded and the obtained the response values by the AI

model and the calculated force responses for the spring damper relationship to

compare the performance of both approach for the real interaction.

Figure 6.26 shows the comparison of actual force response with the predicted

force response from the AI approach and the calculated force response from the

spring damper model. In this case, spring damper behaviour was assumed by

predefining the stiffness and the viscosity as a 2nd order polynomial while the

Sc
o

re

63

selected AI algorithm, random forest algorithm was considered in AI approach. It

seems that the calculated force response values drastically change while the predicted

force values have a closer variation as the actual force response variation. This is

also proven when analyzing the regression metrices as outlined in Table 6.19 and the

bar graph shown in Figure 6.27. It seemed that regression losses are at a minimum

level for AI approach than the conventional approach.

Figure 6.26: Comparison of force responses over time a) Predicted force response from AI

approach and force response over time c) Calculated force response from spring damper

approach and force response from the sponge over time.

Figure 6.23 illustrates the regression metrices only for the selected AI-based

approach. Experimental setup at abstraction and reproduction phase is shown in

Figure 6.24.

Table 6.19: Compression of Regression Metrices of AI model and Spring damper

model

Regression Metric Spring Damper AI approach: Random Forest

𝑅2 score -71.58 0.76

MAE 8.71 0.84

MSE 438.83 1.46

RMSE 20.95 1.21

64

Figure 6.27: Comparison of Regression Metrics for AI approach and Spring

damper model

Figure 6.28: Comparison of Regression Metrics for AI approach

Figure 6.29: Experimental setup at 1) Abstraction phase: Squeezing the actual object b)

Reproduction phase: Squeezing the virtual object

(a) (b)

65

7. AI ALGORTIHMS FOR PREDICTION OF HAPTIC

SENSATION

The proposed AI approach is based on multi-label regression and uses supervised

learning. Furthermore, the feature matrix and the output target variable contain only

numerical data. Thus, supervised learning regression algorithms are considered in

building AI model to replicate the actual environment. The AI algorithms considered

in this study are,

• Linear regression

• Random Forest

• Support vector regression (SVR)

• Neural Networks

In this study, python sklearn [46] implementation of the SVR algorithm was

utilized.

7.1. Linear Regression

Linear regression is the most common regression algorithm used in building ML

models using AI. This uses the linear representation of input values, 𝑋 the predicted

output values for set of input values 𝑦. The hypothesis function for linear regression

model can be represented using the matrix notation as,

𝒚 = 𝜸𝑿 + 𝜺 (7.1)

where 𝑋 is the matrix comprised of input independent variables while 𝑦 is the

vector of the target variable. 𝛾 is the coefficient vector of 𝑋 and 𝜀 is the error

variable and it is a random non observable variable which is expected to keep zero

when fitting the model [47].

The cost function for a linear regression can be root mean squared error or mean

squared error. Thus, to achieve the best fit model the cost function value which the

error between predictor value,𝑦 ̂and the target actual value, 𝑦 should be minimized.

66

7.2. Random Forest

Random Forest Regression is an ensemble learning method for regression.

Ensemble learning method combines predictions from multiple machine learning

algorithms to make a prediction more accurate than a single model. Random Forest

constructs several decision trees during training phase and provides the output as the

means of the prediction of all the trees [48]. Random forests can rank the importance

of variables in regression problems via measures of significance.

Figure 7.1: Representation of Random Forest

 This study shown Random forests was the best performing algorithm to build

the AI model.

7.3. Support Vector Regression (SVR)

Support Vector Regression (SVR) [49], [50] is a nonlinear regression model

which convex and it guarantees to produce a global solution. It is a kernel-based

learning algorithm and a very effective method for learning nonlinear complex

functions. For the given training dataset {(𝑎1, 𝑏1), …, (𝑎𝑛, 𝑏𝑛)} ∁ 𝒜 x ℝ and where 𝒜 ∈

ℝ2 indicates the input feature space, the SVM algorithm can be defined as is (7.2).

𝒇(𝒂,𝒘) =< 𝒂,𝒘 > +𝒅 (7.2)

Data input

Tree 1 Tree 2 (…)

(…)

Tree
1000

Prediction 1 Prediction 2 Prediction 3

Average all prediction

Random Forest prediction

67

where scaler 𝑑 ∈ ℝ, vector 𝑤 ∈ 𝒜and <. , . > indicates the dot product in A. This

algorithm has convex optimization. Its minimization function can be represented as

in (7.3).

𝑳 = 𝑴𝑰𝑵
𝟏

𝟐
||𝒘||𝟐 + 𝑪∑ (𝝃𝒊 + 𝝃𝒊

∗)𝒏
𝒊=𝟏 (7.3)

subjected to,

 𝑏𝑖−< 𝑎𝑖, w > − 𝑑 ≤ 𝜀 + 𝜉𝑖

< 𝑎𝑖, w > +𝑑 − 𝑏𝑖 ≤ 𝜀 + 𝜉𝑖
∗

where the precision is denoted by ε, slack variables, 𝜉𝑖 , 𝜉𝑖
∗≥0 and the constant

which determines the trade-off between the regression model’s complexity, 𝐶>0. The

kernel functions are used to transform the feature vectors to another space to

overcome nonlinearity. Radial basis function (RBF) is the popular kernel function,

and it was used in this study as shown in (7.4).

 𝑲(𝒂𝒊, 𝒂𝒋) = 𝐞𝐱𝐩(−𝜸||𝒂𝒊 − 𝒂𝒋||
𝟐) (7.4)

where the kernel coefficient for RBF, γ>0. The hyperparameters were tuned to

define the model which is performing better on the training set. Then, the defined

model was utilized to train the SVR model for the object using the training set.

Finally, the trained model was employed to predict the force responses, 𝐹𝑟𝑒𝑠
𝑝𝑟𝑒𝑑

for the

testing set.

7.4. Deep neural network (DNN)

Deep learning architectures can be used to accurately predict the haptic sensation.

These are mainly based on neural networks and different types of architectures are

available to train any datasets.

 The backpropagation (BP) algorithm is the most used algorithm for training the

feedforward neural network as shown in Figure 7.2 [51]. It is an iterative process

which fine-tunes the weights of a neural network based on the error rate or loss

68

obtained from the previous iteration which means the epoch [52]. Lower error rates

can be achieved through proper tuning of the weights, and it leads to making the

model reliable by increasing the degree of generalization. Stochastic gradient descent

(SGD) is the commonly used optimization method to adjust the weights by

minimizing the error at the output layer [52].

Figure 7.2: Deep learning architecture based on neural network.

The weights of the NN using the following relationship.

∆𝒘𝒊𝒋
𝒌 (𝒕) = −∝

𝝏(𝑬(𝑿,𝛉))

𝝏𝒘𝒊𝒋
𝒌 (𝒕) (7.5)

 where, 𝑤𝑖𝑗
𝑘 is the weight between node 𝑖 & 𝑗 in the layer (𝑘 − 1) and 𝑘

respectively and 𝐸(𝑋, θ) is the error term which can be derived by using the desired

output and the calculated output and ∝ is the iteration rate of the NN.

7.4.1. Recurrent neural network (RNN)

RNN is the time-series version of ANN as it analyzes data in a sequence [53]. It

has feedback connections which allow flow activations to happen in a loop [53]. The

network can perform temporal processing which allows sequence learning. RNN

architectures come in a variety of shapes and sizes, and the typical multi-layer

Input Layer

Output Layer

Hidden Layers

69

perceptron is the most frequently used. These networks use memory and

sophisticated non-linear mapping capabilities.

7.4.1.1. Long short-term memory networks (LSTM)

LSTM networks consist of memory capacity that can preserve the state over long

periods. Thus, the major drawbacks of RNN, which is the vanishing gradient

problem can be solved by using the LSTM networks [54]. A typical LSTM network

consists of various memory blocks called cells. The cell state, 𝐶𝑡 and the hidden

state ℎ𝑡 are two states that pass to the next cell. The information is stored in memory

blocks and the three types of gates are responsible for memory manipulation [54].

Figure 7.3: LSTM Network

where 𝑥𝑡, 𝑓𝑡,and 𝑜𝑡 are the input gate, forget gate, output gate respectively and 𝐶̃𝑡

is the cell update.

The data which is less important or no longer required are removed from the cell

state. This is done by the forget gate layer, a sigmoid layer. It observes the values of

ℎ𝑡−1 and 𝑥𝑡 to generate a value between the range of 0 and 1, corresponding to each

cell state 𝐶𝑡−1. The value ‘1’ indicates to keep completely while the value ‘0’

indicates to completely forget. Then, the cell state is multiplied by this output vector

generated from the sigmoid function. Then ft can be calculated using (7.6).

𝒇𝒕 = 𝝈(𝑾𝒇[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇) (7.6)

x +

x
x

tanh

70

where ℎ𝑡−1 is the hidden state of the previous cell. The input gate layer is used to

select the new data which is to be stored in the cell. The values which should be

updated are determined by sigmoid layer, and a vector 𝐶̃𝑡
 which is formed by the

tanh layer contains every possible value that can be included. Then the product of the

output value of the sigmoid gate with the created vector is taken and added to the cell

state by the operation. 𝑖𝑡 , and 𝐶̃𝑡
 of the input gate is calculated by using.

𝒊𝒕 = 𝝈(𝑾𝒊[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊) (7.7)

𝑪̃𝒕
 = 𝒕𝒂𝒏𝒉(𝑾𝒄[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒄) (7.8)

Then the data is added to the cell state. Then the new cell state, 𝐶𝑡 can be derived

using 𝐶𝑡−1 , the old cell state as shown in (7.9). Finally, the output is decided, and it

depends on the cell state and it’s also a filtered version. The output can be identified

by executing using the data through the sigmoid layer. Then, as illustrated in

equations (7.10) and (7.11), cell state is inserted via the tanh layer and multiplied the

output by the sigmoid layer to determine the final output.

𝑪𝒕 = 𝑪𝒕−𝟏 × 𝒇𝒕 + 𝒊𝒕 × 𝑪̃𝒕
 (7.9)

𝑶𝒕 = 𝝈(𝑾𝒐[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐) (7.10)

𝒉𝒕 = 𝑶𝒕 × 𝒕𝒂𝒏𝒉(𝑪𝒕) (7.11)

The data discarded from the network and dependency control on individual input

are controlled by the values of 𝑖𝑡 , 𝑓𝑡 ,and 𝐶̃𝑡
 . Also, it is helpful in minimizing the

effect of vanishing gradient. Memory allocation to each cell and modification of

inputs with new inputs help to maintain the dependencies from the previous input

and for the conservation of state during long training session [54].

7.5.Machine learning frameworks.

 Various kinds of frameworks and libraries can be used to simplify the training

algorithms, depending on the task [55]. Some popular frameworks used in this study

are discussed below.

71

7.5.1. TensorFlow

This is the most popular open-source platform which is JavaScript-based and is a

collection of many tools and resources to support the learning process. TensorFlow’s

Core tool is used to create and execute AI models in browsers, whereas TensorFlow

Lite is used with mobile and embedded devices, and TensorFlow Extended is used to

train ML or deep learning models in large production systems. TensorFlow can be

employed with a variety of programming languages, including JavaScript, Java, C++,

and C# but Python is the most popular language [56]. TensorFlow is mainly used to

train various kinds of DNN models.

7.5.2. Keras

 This is an open-source python deep learning library [57]. It is a high-level, user-

friendly API which makes learning and model building process of deep learning

algorithms easy. Moreover, it supports multiple GPUs and distributed training. Keras

can be used for various applications by integrating with other frameworks and

TensorFlow is most used with Keras [57].

7.5.3. Scikit-learn

 This is an advanced and efficient yet simple framework that can be used with

supervised and unsupervised tasks [46]. It is based on NumPy, SciPy and matplotlib

libraries for Python language and often used with lower level, lesser complex data

science tasks than deep learning [58].

7.6.Analysis of Features

7.6.1. Variance, Covariance and Correlation

These are the common statistical measures that are considered to understand the

relationship within the features of the feature matrix. The dispersion of a data set

variable around its mean value is defined as the variance.

𝝈𝒀
𝟐 = 𝑬[𝒀 − 𝑬[𝒀]]𝟐 (7.12)

72

where 𝜎
2 represents the variance of the variable, 𝑦 while 𝐸[𝑌] is the expected value

similar to the mean.

 Covariance and Correlation are the basic techniques that is used in data analysis

to understand the relationship between variables. These statistical measures explain

how two variables change together. The covariance of two variables reveals how

they differ, and it is a measure of directional relationship between two variables [43].

The correlation shows how two variables are related. The Pearson correlation

coefficient is the most used and it assumes a Gaussian distribution to each variable

and measures the strength of the linear relationship between two features. Correlation

coefficient is typically a value between -1 and 1 with 0 representing no relationship.

• Positive Correlation: both variables change in the same direction,

proportionally.

• Neutral Correlation: No identifiable relationship between the

variables.

• Negative Correlation: Inversely correlated which means the variables

change in opposite directions.

The covariance and the correlation can be expressed as in (7.13) and (7.14).

𝒄𝒐𝒗 (𝑿, 𝒀) = 𝑬[(𝑿 − 𝑬(𝑿))(𝒀 − 𝑬(𝒀))] (7.13)

𝒄𝒐𝒓𝒓 (𝑿, 𝒀) =
𝒄𝒐𝒗 (𝑿,𝒀)

𝝈𝑿𝝈𝒀
 (7.14)

where 𝑐𝑜𝑣 (𝑋, 𝑌) and 𝑐𝑜𝑟𝑟 (𝑋, 𝑌) represents the covariance and correlation for the

pair of variables, 𝑋 and 𝑌.

However, the Pearson correlation coefficient is primarily used to understand how

strong the linear relationship between two features is. Thus, when variables are

related by nonlinear relationship, and considered as a non-Gaussian distribution,

Spearman’s correlation is used [43]. This measures the strength of a monotonic

relationship. The data is considered monotonic when the one variable increase or

decreases the variable will increase or decreases.

73

7.6.2. Mutual Information

This relies on nonparametric methods that are based on entropy estimation from

k-nearest neighbors’ distances [59],[60] and the idea base for these methods were

originally proposed in 1980’s [61]. This is a measure of the reduction in uncertainty

of a variable when given a known value of the other variable and is calculated

between two variables. Feature selection can be done using this information and the

larger the value is better.

7.6.3. Principal Component Analysis (PCA)

Introducing PCA is considered as the beginning of AI. PCA is a dimensionality

reduction method which allows discarding the redundant variables and representing

the knowledge in a compact way [62]. Thus, it allows to help to lower the

dimensional space without losing information. Hence, it paves way for resource

management while reducing computational power and infrastructure. PCA is

commonly used to reduce the dimension by defining a few orthogonal linear

combinations (principal components) of original features with a higher variance.

Furthermore, PCA helps to identify the most important data features. There are

principal components as many as the number of original features. The first principal

component takes most of the variance in the data. The second principal component is

orthogonal to the first principal component and comprehends the remaining variance.

7.7.Analysis of AI algorithms

7.7.1. Performance Indices

 The performance of the approaches used in the analysis was evaluated using

performance indices. Since regression algorithms are considered regression metrics

are used as performance indices. They are used to decide the best algorithm for

haptic sensation prediction. Thus, regression metrics were considered for evaluation

of model performance are,

• 𝑅2 score

• Mean squared error (MSE)

74

• Root mean squared error (RMSE)

• Mean absolute error (MAE)

The model should have a higher 𝑅2 score and lower regression losses indicated by

MSE, RMSE, and MAE for a model to perform well.

7.7.1.1. Mean Squared Error (MSE), Root Mean Squared Error (RMSE)

and Accuracy

These metrices are the most used performance indices to compare the AI models.

The MSE is the square means of all errors which are derived from the predicted and

the actual value. The RMSE is the square root of the mean squared error. MSE and

RMSE estimated over the 𝑛 samples can be represented as in (7.15) and (7.16)

respectively.

𝑴𝑺𝑬 (𝒚𝒊, 𝒚̂𝒊) =
𝟏

𝒏
 ∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐 𝒏
𝒊=𝟏 (7.15)

𝑹𝑴𝑺𝑬 (𝒚𝒊, 𝒚̂𝒊) = √𝑴𝑺𝑬 (𝒚𝒊, 𝒚̂𝒊) = √
𝟏

𝒏
 ∑ (𝒚𝒊 − 𝒚̂𝒊)𝟐 𝒏

𝒊=𝟏 (7.16)

where,

𝑛= total no. of samples

𝑦𝑖= actual value

 𝑦̂𝑖= corresponding predicted value of the ith sample

Thus, the accuracy can be defined from MSE and RMSE as,

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟏 − 𝑹𝑴𝑺𝑬 = 𝟏 − √𝑴𝑺𝑬 (7.17)

7.7.1.2. 𝑹𝟐 score

The estimated 𝑅2is expressed as,

𝑹𝟐(𝒚𝒊, 𝒚̂𝒊) = 𝟏 −
∑ (𝒚𝒊−𝒚̂𝒊)

𝟐𝒏
𝒊=𝟏

∑ (𝒚𝒊−𝒚̅𝒊)𝟐
𝒏
𝒊=𝟏

 (7.18)

where,

75

𝑛= total no. of samples

𝑦𝑖= actual value

 𝑦̂𝑖= corresponding predicted value of the ith sample

 𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1

7.7.1.3. Mean Absolute Error (MAE)

MAE is the mean of absolute values of individual error values. It estimated over

the 𝑛 samples can be expressed as (7.19).

𝑴𝑨𝑬(𝒚𝒊, 𝒚̂𝒊) =
𝟏

𝒏
 ∑ |𝒚𝒊 − 𝒚̂𝒊|

𝒏
𝒊=𝟏 (7.19)

where,

𝑛= total no. of samples

𝑦𝑖= actual value

 𝑦̂𝑖= corresponding predicted value of the ith sample

76

8. DISCUSSION

Conventional approaches for modelling haptic objects have been used since the

beginning of haptic studies and force sensors were often employed to get force

response. Furthermore, only motion parameters: compression depth and velocity

were often considered while stiffness and viscosity were predefined by considering

their behaviour as simple and using mathematical representations and often higher

order polynomial representations were considered. Even though recent studies on

haptics incorporated AI, these studies primarily utilized force sensors despite their

issues. Thus, this study focused on introducing AI approach for the recreation of

haptic objects.

This proposed approach followed three phases: Abstraction, Reconstruction and

Reproduction. An adequate amount of data was abstracted by squeezing a sponge

object by applying force on it with different ramp rates and the obtained dataset was

preprocessedx by removing abnormal data points. The whole dataset was divided in

to two independent sets for training and testing. Then the training set was utilized in

further analysis and building the AI model while testing set was considered in the

evaluation process of AI algorithms. The factors affecting for response were found

out through a statistical analysis and correlation statistic, mutual information

statistics and Principal component analysis were considered to analyze this data set

with nine features, however, six features were identified as important features

affecting for the feedback from the object. They are 𝒙 , 𝒙̇, 𝒙̈ ,
(𝑭𝒓𝒆𝒔)𝑡−1

𝒙
,

(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̇
 , and

(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̈
, however, 𝒙 showed a highest important than any other features. These

extracted features were considered as the feature matrix for the input of AI model.

According to the PCA it seemed that seven PC are essential to absorb at least 90%

knowledge from the dataset as the variance change is smaller from one PC to

another. Thus, when considering the PCA results, it seemed that considerable no.of

PC are needed to represent the whole dataset. Therefore, PCA doesn’t generate

important outcomes as it will not impact greatly on reduction of computational

power.

77

Different AI models were trained including linear regression, random forest

regression, support vector regression and neural networks and their performance

were analyzed by evaluating the performance matrices on testing dataset. Through

this analysis, random forest was identified as the AI model, best fit for haptic

sensation recreation with the lowest MSE. The AI algorithm was deployed with the

hardware using a model intermediate format, PMML and the whole hardware set up

was modified to be utilized in the reproduction phase. Though out this study force

sensors were not employed, and force measurements were relied on a sensorless

force control mechanism based on DOB and RFOB.

In this study, different spring damper model approaches were also analyzed with

the AI approach and different AI algorithms were evaluated for exploring the best AI

model. Furthermore, the validity of the introduced method is proven by comparing

the force response deviation from the actual force response for the same compression

depth variation. Ultimately, this study has proven the fact that using AI based

approaches along with a sensorless force control mechanism produces haptic

sensation with a far higher performance than the conventional approaches that are

already been utilized.

78

9. CONCLUSION

This research proposed an AI based for replicating the actual behavior of the

object by taking its nonlinear behavior of responses into account. A typical spring

damper model only consider compression depth and velocity as the features affecting

for haptic object recreation, however, even with these both features alone AI based

approach proved to have a higher performance that conventional approach.

Furthermore, it seemed that nonlinear features like hysteresis can be observed, and

they cannot be interpreted using simple mathematical relationship and the traditional

spring damper model fails in abstracting these features. Thus, a complete statistical

analysis was conducted and 𝒙 , 𝒙̇ , 𝒙̈ ,
(𝑭𝒓𝒆𝒔)𝑡−1

𝒙
,

(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̇
 , and

(𝑭𝒓𝒆𝒔)𝑡−1

𝒙̈
, are

identified as the most important features. These extracted features were considered as

the feature matrix to input the AI model to predict force response. Although a PCA

was conducted on the dataset, it doesn’t generate important outcomes as almost all

the PCs are needed to represent the most knowledge of dataset. Thus, use of PCA

instead of raw features will not make a considerable impact to reduce computational

power and management of resources. The random forest algorithm was trained by

using different feature matrixes to identify the impact of feature matrix. Thus, it

seemed that even with the same AI algorithm, a higher performance of the AI model

can be obtained when increasing the no. of features affecting the target output.

Several AI algorithms were evaluated to find the best algorithm for haptic object

reproduction and random forest regression is discovered to be the algorithm with the

highest performance. This algorithm was compared with the conventional spring

damper model, however, the AI based approach has shown the highest performance

with the lowest regression losses, including a RMSE value of 0.34. The model with

the higher no.of features in the feature matrix is proven to have a better performance.

Thus, it proved that the AI-based approach outperforms the traditional model-

based approaches in replicating the object behavior and as well as in haptic object

reproduction. Furthermore, the introduced AI approach is verified by the results

obtained under same compression depth variation. Therefore, more promising results

can be achieved when reproducing realistic haptic feedback using haptic objects

79

identified and reproduced through AI-based approaches than conventional model-

based approaches.

80

REFERENCES

[1] Culbertson, H., Schorr, S., & Okamura, A. (2018). Haptics: The Present and

Future of Artificial Touch Sensation. Annual Review Of Control, Robotics, And

Autonomous Systems, 1(1), 385-409. doi: 10.1146/annurev-control-060117-

105043.

[2] Lederman, S., & Klatzky, R. (2009). Haptic perception: A tutorial. Attention,

Perception &Amp; Psychophysics, 71(7), 1439-1459. doi:

10.3758/app.71.7.1439.

[3] Lederman, S., & Klatzky, R. (1987). Hand movements: A window into haptic

object recognition. Cognitive Psychology, 19(3), 342-368. doi: 10.1016/0010-

0285(87)90008-9.

[4] Marti, P., Parlangeli, O., Recupero, A., Guidi, S., & Sirizzotti, M. (2021). Mid-air

haptics for shape recognition of virtual objects. Ergonomics, 65(5), 775-793. doi:

10.1080/00140139.2021.1992019.

[5] Shimono, T., Katsura, S., & Ohnishi, K. (2007). Abstraction and Reproduction of

Force Sensation From Real Environment by Bilateral Control. IEEE Transactions

On Industrial Electronics, 54(2), 907-918. doi: 10.1109/tie.2007.892744.

[6] Abeykoon, A. H. S., & Ohnishi, K. (2006, December). Bilateral control

interacting with a virtual model and environment. In 2006 IEEE International

Conference on Industrial Technology (pp. 1320-1325). IEEE.

[7] Schmidts, A. M., Lee, D., & Peer, A. (2011, September). Imitation learning of

human grasping skills from motion and force data. In 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems (pp. 1002-1007).

IEEE.

[8] Rychlewski, J.: On hooke’s law. Journal of Applied Mathematics and Mechanics

48(3), 303–314 (1984)

[9] Ruwanthika, R. M. M., & Abeykoon, A. H. S. (2015, April). 3d environmental

force: Position impedance variation for different motion parameters. In 2015

Moratuwa Engineering Research Conference (MERCon) (pp. 112-117). IEEE.

[10] Katsura, S., Matsumoto, Y., & Ohnishi, K. (2007). Modeling of Force Sensing

and Validation of Disturbance Observer for Force Control. IEEE Transactions On

Industrial Electronics, 54(1), 530-538. doi: 10.1109/tie.2006.885459.

[11] Khalil, I. S., & Sabanovic, A. (2011). Sensorless torque/force control. Advances

in Motor Torque Control, 49-69.

[12] Benko, H., Holz, C., Sinclair, M., Ofek, E.: Normaltouch and texturetouch: High-

fidelity 3d haptic shape rendering on handheld virtual reality controllers. In:

Proceedings of the 29th Annual Symposium on User Interface Software and

Technology, pp. 717–728 (2016)

81

[13] Munoz, J., Gutierrez, G., Sanchis, A.: A human-like torcs controller for

thesimulated car racing championship. In: Proceedings of the 2010 IEEE Con-

ference on Computational Intelligence and Games, pp. 473–480 (2010). IEEE.

[14] Lee, J., Sinclair, M., Gonzalez-Franco, M., Ofek, E., Holz, C.: Torc: A virtual

reality controller for in-hand high-dexterity finger interaction. In: Proceedings of

the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13

(2019)

[15] Ohnishi, K., Shibata, M., & Murakami, T. (1996). Motion control for advanced

mechatronics. IEEE/ASME Transactions On Mechatronics, 1(1), 56-67. doi:

10.1109/3516.491410.

[16] Shimono, T., Katsura, S., & Ohnishi, K. (2005, November). Improvement of

operationality for bilateral control based on nominal mass design in disturbance

observer. In 31st Annual Conference of IEEE Industrial Electronics Society,

2005. IECON 2005. (pp. 6-pp). IEEE.

[17] Murakami, T., Yu, F., & Ohnishi, K. (1993). Torque sensorless control in

multidegree-of-freedom manipulator. IEEE Transactions On Industrial

Electronics, 40(2), 259-265. doi: 10.1109/41.222648.

[18] Katsura, S., Yamanouchi, W., & Yokokura, Y. (2012). Real-World Haptics:

Reproduction of Human Motion. IEEE Industrial Electronics Magazine, 6(1), 25-

31. doi: 10.1109/mie.2012.2182854.

[19] Ohnishi, K., & Mizoguchi, T. (2017). Real haptics and its applications. IEEJ

Transactions On Electrical And Electronic Engineering, 12(6), 803-808. doi:

10.1002/tee.22562.

[20] Sun, X., Nozaki, T., Murakami, T., & Ohnishi, K. (2019, March). Grasping point

estimation based on stored motion and depth data in motion reproduction system.

In 2019 IEEE International Conference on Mechatronics (ICM) (Vol. 1, pp. 471-

476). IEEE..

[21] Smith, A., Mobasser, F., & Hashtrudi-Zaad, K. (2006). Neural-Network-Based

Contact Force Observers for Haptic Applications. IEEE Transactions On

Robotics, 22(6), 1163-1175. doi: 10.1109/tro.2006.882923.

[22] Sun, H., & Martius, G. (2018, November). Robust affordable 3D haptic sensation

via learning deformation patterns. In 2018 IEEE-RAS 18th International

Conference on Humanoid Robots (Humanoids) (pp. 846-853). IEEE.

[23] T. Bhattacharjee, G. Lee, H. Song, and S. S. Srinivasa, “Towards robotic feeding:

Role of haptics in fork-based food manipulation,” IEEE Robotics and

Automation Letters, vol. 4, no. 2, pp. 1485–1492, 2019.

[24] T. Matsunaga, K. Ohnishi, N. Wada, and Y. Kitagawa, “Development of

small‐diameter haptic flexible gripping forceps robot,” Electrical Engineering in

Japan, vol. 211, no. 1-4, pp. 47–54, 2020.

82

[25] E. M. Overtoom, T. Horeman, F.-W. Jansen, J. Dankelman, and H. W.

Schreuder, “Haptic feedback, force feedback, and force-sensing in simulation

training for Laparoscopy: A systematic overview,” Journal of Surgical Education,

vol. 76, no. 1, pp. 242–261, 2019.

[26] D. Panariello, T. Caporaso, S. Grazioso, G. Di Gironimo, A. Lanzotti, S. Knopp,

L. Pelliccia, M. Lorenz, and P. Klimant, “Using the KUKA LBR iiwa robot as

haptic device for virtual reality training of hip replacement surgery,” 2019 Third

IEEE International Conference on Robotic Computing (IRC), 2019.

[27] A. M. Okamura, “Haptic feedback in robot-assisted minimally invasive surgery,”

Current Opinion in Urology, vol. 19, no. 1, pp. 102–107, 2009.

[28] A. Turolla, O. A. Daud Albasini, R. Oboe, M. Agostini, P. Tonin, S. Paolucci, G.

Sandrini, A. Venneri, and L. Piron, “Haptic-based neurorehabilitation in

poststroke patients: A feasibility prospective multicentre trial for Robotics Hand

Rehabilitation,” Computational and Mathematical Methods in Medicine, vol.

2013, pp. 1–12, 2013.

[29] P. Y. Chua, T. Ilschner, and D. G. Caldwell, “Robotic manipulation of Food

Products – A Review,” Industrial Robot: An International Journal, vol. 30, no. 4,

pp. 345–354, 2003.

[30] G. LIU, X. GENG, L. LIU, and Y. WANG, “Haptic based teleoperation with

master-slave motion mapping and haptic rendering for space exploration,”

Chinese Journal of Aeronautics, vol. 32, no. 3, pp. 723–736, 2019.

[31] Knopp, S., Lorenz, M., Pelliccia, L., & Klimant, P. (2018, March). Using

industrial robots as haptic devices for VR-training. In 2018 IEEE conference on

virtual reality and 3D user interfaces (VR) (pp. 607-608). IEEE.

[32] González, C., Solanes, J. E., Munoz, A., Gracia, L., Girbés-Juan, V., & Tornero,

J. (2021). Advanced teleoperation and control system for industrial robots based

on augmented virtuality and haptic feedback. Journal of Manufacturing Systems,

59, 283-298.

[33] Walia, A., Goel, P., Kairon, V., & Jain, M. (2020, April). HapTech: Exploring

Haptics in Gaming for the Visually Impaired. In Extended Abstracts of the 2020

CHI Conference on Human Factors in Computing Systems (pp. 1-6).

[34] Chen, Y. S., Han, P. H., Hsiao, J. C., Lee, K. C., Hsieh, C. E., Lu, K. Y., ... &

Hung, Y. P. (2016, October). Soes: Attachable augmented haptic on gaming

controller for immersive interaction. In Adjunct Proceedings of the 29th Annual

ACM Symposium on User Interface Software and Technology (pp. 71-72).

[35] A. Turolla, O. A. Daud Albasini, R. Oboe, M. Agostini, P. Tonin, S. Paolucci, G.

Sandrini, A. Venneri, and L. Piron, “Haptic-based neurorehabilitation in

poststroke patients: A feasibility prospective multicentre trial for Robotics Hand

83

Rehabilitation,” Computational and Mathematical Methods in Medicine, vol.

2013, pp. 1–12, 2013.

[36] Morris, D., Joshi, N., & Salisbury, K. (2004, March). Haptic battle pong: High-

degree-of-freedom haptics in a multiplayer gaming environment. In Experimental

gameplay workshop, GDC (Vol. 192).

[37] Sung, G. T., & Gill, I. S. (2001). Robotic laparoscopic surgery: a comparison of

the da Vinci and Zeus systems. Urology, 58(6), 893-898.

[38] Bethea, B. T., Okamura, A. M., Kitagawa, M., Fitton, T. P., Cattaneo, S. M.,

Gott, V. L., ... & Yuh, D. D. (2004). Application of haptic feedback to robotic

surgery. Journal of Laparoendoscopic & Advanced Surgical Techniques, 14(3),

191-195.

[39] Freschi, C., Ferrari, V., Melfi, F., Ferrari, M., Mosca, F., & Cuschieri, A. (2013).

Technical review of the da Vinci surgical telemanipulator. The International

Journal of Medical Robotics and Computer Assisted Surgery, 9(4), 396-406.

[40] Perret, J., Vander Poorten, E.: Touching virtual reality: a review of haptic gloves.

In: ACTUATOR 2018; 16th International Conference on New Actuators, pp. 1–5

(2018). VDE

[41] Guazzelli, A., Zeller, M., Lin, W., & Williams, G. (2009). PMML: An Open

Standard for Sharing Models. The R Journal, 1(1), 60. doi: 10.32614/rj-2009-

010.

[42] Dewapura, P. W., Jayawardhana, K. M., & Abeykoon, A. H. S. (2021,

September). Object Identification using Support Vector Regression for Haptic

Object Reconstruction. In 2021 3rd International Conference on Electrical

Engineering (EECon) (pp. 144-150). IEEE

[43] Brownlee, J. (2018). Statistical methods for machine learning: Discover how to

transform data into knowledge with Python. Machine Learning Mastery.

[44] Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical

approach for predictive models. CRC Press.

[45] Zheng, A., & Casari, A. (2018). Feature engineering for machine learning:

principles and techniques for data scientists. " O'Reilly Media, Inc.".

[46] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal

of machine Learning research 12.

[47] Gross, J., & Groß, J. (2003). Linear regression (Vol. 175). Springer Science &

Business Media.

[48] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

[49] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3), 273-297.

84

[50] Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression.

Statistics and computing, 14(3), 199-222.

[51] Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In

Neural networks for perception (pp. 65-93). Academic Press.

[52] Kamada, S., & Ichimura, T. (2018). Fast training of adaptive structural learning

method of deep learning for multi modal data. International Journal Of

Computational Intelligence Studies, 7(3/4), 169. doi:

10.1504/ijcistudies.2018.10017446.

[53] Bhardwaj, A., Di, W., & Wei, J. (2018). Deep Learning Essentials: Your hands-

on guide to the fundamentals of deep learning and neural network modeling.

Packt Publishing Ltd.

[54] Waheeb, W., & Ghazali, R. (2016). Chaotic Time Series Forecasting Using

Higher Order Neural Networks. International Journal On Advanced Science,

Engineering And Information Technology, 6(5), 624. doi:

10.18517/ijaseit.6.5.958.

[55] Bahrampour, S., Ramakrishnan, N., Schott, L., & Shah, M. (2015). Comparative

study of deep learning software frameworks. arXiv preprint arXiv:1511.06435.

[56] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng,

X. (2016). Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467.

[57] Tantawi, I., Abushariah, M., & Hammo, B. (2021). A deep learning approach for

automatic speech recognition of The Holy Qur’ān recitations. International

Journal Of Speech Technology, 24(4), 1017-1032. doi: 10.1007/s10772-021-

09853-9.

[58] Polyzotis, N., Roy, S., Whang, S., & Zinkevich, M. (2018). Data Lifecycle

Challenges in Production Machine Learning. ACM SIGMOD Record, 47(2), 17-

28. doi: 10.1145/3299887.3299891.

[59] Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual

information. Physical Review E, 69(6). doi: 10.1103/physreve.69.066138.

[60] Ross, B. (2014). Mutual Information between Discrete and Continuous Data Sets.

Plos ONE, 9(2), e87357. doi: 10.1371/journal.pone.0087357.

[61] Kozachenko, L. F., & Leonenko, N. N. (1987). Sample estimate of the entropy of

a random vector. Problemy Peredachi Informatsii, 23(2), 9-16.

[62] Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning (adaptive

computation and machine learning series). Cambridge Massachusetts, 321-359.

[63] “What is tinyml? - technical articles,” All About Circuits. [Online]. Available:

https://www.allaboutcircuits.com/technical-articles/what-is-tinyml/. [Accessed:

12-Mar-2023].

85

APPENDICES

APPENDIX A Hardware Block diagram of the Motor Driver, MOVO2

86

APPENDIX B Parameter List Values of the Motor Driver, MOVO2

Parameter

No.
Parameter Value

#000 Encoder basic resolution 6000

#001 Linear Motor reference length 120

#002 Number of poles 4

#003 Motor rated current 6

#004 Current limit value 100

#007 Maximum output speed 4000

#008 Detection mode 40

#009 Command mode 1110

#010 Pole sensor position 0

#011 I/O type 101

#012 Initial mode 37

#013 Electronic gear denominator 100

#014 Electronic gear numerator 100

#015 Electronic volume 20800

#016 Electronic trimmer 60

#017 Position loop time constant 14

#018 Velocity loop time constant 5

#019 Acceleration loop gain 20

#020 Low gain 100

#021 MOV/2 mode 12

#022 Set velocity 100

#023 Jog velocity 100

#024 Creep velocity 10

#025 Acceleration / Deceleration time 60

#026 Jerk time 20

#027 Overrun limit 1000

#028 In position width 1

87

#029 Origin position 0

#030 Origin mode 0

#031 Thermal time constant 16

#032 Switch 110

#033 Motor axis name 88

#034 Maintenance code 0

#035 Friction 0

#036 Thermal value 149

#037 Optional encoder type 0

#038 Motor type 102

#039 Acceleration filter 8

#040 Driver type 120012

#041 Driver maximum current 21

#042 Phase U offset -2395

#043 Phase U gain 7360

#044 Phase V offset -2401

#045 Phase V gain 7311

#046 Gain of power factor detection 64

#047 Parameter check sum 9096

#048 Electronic volume 2 15000

#049 Electronic trimmer 2 0

#050 CH1 offset (Analog Monitor) -1902

#051 CH1 gain (Analog Monitor) 7049

#052 CH2 offset (Analog Monitor) -1871

#053 CH2 gain (Analog Monitor) 7018

#054 Deceleration time 0

#055 Deceleration jerk time 0

#064 Proportional gain (current loop) 1063

#065 Integral gain (current loop) 1024

#066 Differential gain (current loop) 0

#067 PWM frequency 15

88

#068 Encoder jitter filter 0

#069 Excessive error setting 10

#070 Axes synchronization option 0

#072 Adaptive control time constant 0

#074 Standard DI port logic inversion 0

#075 Standard DO port logic inversion 0

#076 Velocity magnification 1

#077 Alarm record trigger select 0

#078 Servo cycle 16

#079 Filter mode 0

#080 Proportional gain (Velocity PID) 500

#081 Integral gain (Velocity PID) 10

#082 Differential gain (Velocity PID) 1

#083 Velocity filter 2

#084 Pulse filter 3

#085 DI port filter 0

#086 Tachometer on rate 3

#087 Encoder branch division ratio 0

#089 Electronic gear 2 0

#090 Bus voltage curve 357

#091 Bus voltage gain 539

#092 Driver power class 12616

#093 Switch 2 0

#096 Current mode 36

#104 ITC Driver resistance 0

#105 ITC/ITU time constant 0

#106 ITC DC bus voltage 0

#107 ITC motor resistance 0

#108 ITC motor inductance 0

#109 ITC motor EMF constant 0

#110 Notch switch 0

89

#111 Notch mode 0

#112 Notch frequency (First channel) 0

#113 Notch band width (First channel) 0

#114 Notch frequency (Second channel) 0

#115 Notch band width (Second channel) 0

#116 Notch frequency (Third channel) 0

#117 Notch band width (Third channel) 0

#120 Regeneration type 0

#121 Regeneration rated power 0

#122 Regeneration resistance 0

#123 Regeneration thermal time constant 0

#124 Correction start select 0

#130 BSC communication speed 0

#131 ANI master 0

#132 Analog input dead zone 0

#133 Reserved 0

#134 BSC communication mode 0

#137 Torque monitor select 0

#138 Torque monitor gain 0

#139 Torque monitor offset 0

90

APPENDIX C Board Layout of Sensoray’s Model 826

91

APPENDIX D C & C++ codes

• Abstraction

//
// SENSORAY MODEL 826 PROGRAMMING EXAMPLES

// This file contains simple functions that show how to program the 826.

// Copyright (C) 2012 Sensoray
//

// MSc setup - Abstraction

// Praveena Dewapura
// 2022.03.30

//

// Header functions declarations

#ifndef _LINUX

#include <windows.h>
#include <conio.h>

#endif

#include <stdio.h>
#include <stdlib.h>

#include <math.h>

#include <time.h>
#ifndef _LINUX

#include "..\826api.h"

#else
#include "826api.h"

#endif

// Helpful macros for DIOs

#define DIO(C) ((uint64)1 << (C)) // convert dio channel number to uint64 bit mask

#define DIOMASK(N) {(uint)(N) & 0xFFFFFF, (uint)((N) >> 24)} // convert uint64 bit mask to uint[2] array
#define DIOSTATE(STATES,CHAN) ((STATES[CHAN / 24] >> (CHAN % 24)) & 1) // extract dio channel's

boolean state from uint[2] array

//

// ERROR HANDLING

// These examples employ very simple error handling: if an error is detected, the example functions will immediately return an
error code. This behavior may not be suitable for some

// real-world applications but it makes the code easier to read and understand. In a real application, it's likely that additional
actions would need to be performed. The examples use

// the following X826 macro to handle API function errors; it calls an API function and stores the returned value in errcode,

then returns immediately if an error was detected.
#define X826(FUNC) if ((errcode = FUNC) != S826_ERR_OK) { printf("\nERROR: %d\n", errcode); return errcode;}

// end of hearder fuction declarations

//

// Global variables declaration

// Encoder read

uint counts = 0; // encoder counts when the snapshot was captured
uint counts_pre =0;

uint timestamp; // time the snapshot was captured in us. converted to s by /10^6

uint timestamp_start;
uint timestamp_previous; // time the previous snapshot was captured

uint aout = 0; // aout= analogue output channel no.0 , output duplicate waveform on this dac channel

uint chan = 4; // +++ Check the connection 41 - current- analog o/p chan 4

uint setpoint;

uint range;

int errcode = S826_ERR_OK;
int steps = 0;

//for loop oparation
long long int i ;

long long int j ;

char file_name[1000];
int k = 0;

float function_exicution_time = 0.0;

92

float dt = 0.0;

float F_ref = 0.0;

float F_ref_max = 0.0;
float F_ref_min = 0.0;

float ramp_rate = 0.0;

// motor drive oparation

unsigned int analog_out_motor;

float I_a_ref = 0.0;
float I_motor = 0.0;

// motor parameters
float K_fn = 24.0; // motor force constent

float M_n = 0.643; // Mass : (Motor shaft, 2 x linera bearings, 1 x Long green bearing and shft connector 1 x

short green //bearing and shft connector)=600g and (whight hammer head)=55g . Mass : (Motor
shaft, 2 x linera bearings, 1 x Long green bearing and shft connector 1 x short green bearing and shft connector)=600g and

(whight hammer head)=55g . Changed the hammer head mass to 43 from 57 from elctronic balance, thus the new mass = 0.655

- 55 + 43 =0.643g
float friction = 0.0; // +++ Eventhough friction is assumed as 0 there is a 1N, the motor shaft doesn't move tll

there is 1N value shown in the //spring balance

// position, velocity and acceleration mesurment

float velocity_sum = 0.0;

float velocity = 0.0; // motor velocity
float g_velocity = 30.0; // velocity filter constant

float position_x = 0.0; // motor physical position

float position_x_prevous = 0.0;
float position_dx = 0.0;

float acc_sum =0.0;

float acceleration = 0.0;
float g_acc =100.0;

// DOb
float dob_input = 0.0;

float dob_filter_input = 0.0;

float dob_filter_output = 0.0;
int const g_dis = 300.0; //Consider g_rec = g_dis

float dob_force = 0.0;

// RTOB

float rtob_filter_input = 0.0;

float rtob_filter_output = 0.0;
float rtob_force = 0.0;

// PID
float K_p = 2.0;

//Generate force response
// float K_s = 2000.0

// end of veriable declarations

//
// Function declaration

static float VelocityCalculation();
static int ControlLoop(uint board);

static int DemoWatchdog(uint board);

static int MotorOutDAC(uint board);

static float DoB();

static float RToB();

static float dtCalculation();
static float AccelerationCalculation();

static float MainCalculation(uint board);

// end of function declaration

//
// Main function.

int main(int argc, char **argv)

{

93

 uint board = 0; // 1 board, named as 0, change this if want to use other than board number 0

 int errcode = S826_ERR_OK;

 int boardflags = S826_SystemOpen(); // open 826 driver and find all 826 boards

 if (argc > 1)

 board = atoi(argv[1]);

 if (boardflags < 0)

 errcode = boardflags; // problem during open
 else if ((boardflags & (1 << board)) == 0)

 {

 int i;
 printf("TARGET BOARD of index %d NOT FOUND\n",board); // driver didn't find board you want to use

 for (i = 0; i < 8; i++)

 {
 if (boardflags & (1 << i))

 {

 printf("board %d detected. try \"./s826demo %d\"\n", i, i);
 }

 }

 } else
 {

 // running functions

 X826(ControlLoop(board)); // read the endocer value, output anlog value and file write
 X826(DemoWatchdog(board)); // watchdog timer

 }

 switch (errcode)

 {

 case S826_ERR_OK: break;
 case S826_ERR_BOARD: printf("Illegal board number"); break;

 case S826_ERR_VALUE: printf("Illegal argument"); break;

 case S826_ERR_NOTREADY: printf("Device not ready or timeout"); break;
 case S826_ERR_CANCELLED: printf("Wait cancelled"); break;

 case S826_ERR_DRIVER: printf("Driver call failed"); break;

 case S826_ERR_MISSEDTRIG: printf("Missed adc trigger"); break;
 case S826_ERR_DUPADDR: printf("Two boards have same number");break;S826_SafeWrenWrite(board, 0x02);

 case S826_ERR_BOARDCLOSED: printf("Board not open"); break;

 case S826_ERR_CREATEMUTEX: printf("Can't create mutex"); break;
 case S826_ERR_MEMORYMAP: printf("Can't map board"); break;

 default: printf("Unknown error"); break;

 }

#ifndef _LINUX

 printf("\nKeypress to exit ...\n\n");
 while (!_kbhit());

 _getch();

#endif

 S826_SystemClose();

 return 0;
}

// end of main function

//

// ENCODER READ ANLOG OUT AND FILE WRITE FUCNTION
// JKD - 10.08.2020

static int ControlLoop(uint board)

{

 // ***Configure interfaces and start them running.

 X826(S826_DacRangeWrite(board, aout, S826_DAC_SPAN_0_5, 0)); // program dac output range: -5V to +5V , motor
0 value is 0V / for motor drive operation , IF SO SHOULD CHANGE FROM THE MOTOR DRIVER'S SIDE

 //X826(S826_DacRangeWrite(board, chan, S826_DAC_SPAN_0_5, 0)); // program dac output range: -0V to +5V , motor

0 value is 2.5V / for motor drive operation ,
 X826(S826_CounterModeWrite(board, 0, S826_CM_K_QUADX4)); // Configure counter0 as incremental encoder

interface. quadrature

 X826(S826_CounterStateWrite(board, 0, 1)); // Start tracking encoder position.

 I_motor = 0.0;

 position_x = 0.0;

94

 // Injecting nevagive current, stopping cycle

 F_ref = 0.0;

 I_motor = 0.0;
 I_a_ref = 0.0; //stop the mortor input current

 MotorOutDAC(board);
 // X826(S826_CounterStateWrite(board, 0, 0)); // Stop tracking encoder position.

 dtCalculation();

 VelocityCalculation();
 AccelerationCalculation();

 X826(S826_CounterSnapshot(board, 0)); // Trigger snapshot on counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp_start, NULL, 0)); // Read the snapshot: from the
counter0

 // force loop
 F_ref_min = 0.0;

 F_ref = 0.0;

 I_a_ref = 0.0;
 //K_s=0.002;

 timestamp_previous = timestamp_start;
 X826(S826_CounterSnapshot(board, 0)); // Trigger snapshot on counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp, NULL, 0)); // Read the snapshot:receive the

snapshot info here;no need to wait for snapshot;it's already been captured
 // Important to calculate dt, velocity before dob, rtob calculations

 dtCalculation();

 VelocityCalculation();
 AccelerationCalculation();

///

 ramp_rate =6.2; // 2.1 , 2.4 , 2.7 , 3.0 // to change the force ramping

 F_ref_max = 14.0; // 6 , 9 , 12 , 15

 // ****file write operation

 k=1;
 if(abs(position_x)<0.05){

 for(j=0;j<14;j++){

 FILE *fp;
 snprintf(file_name, sizeof(char) * 32, "test_04/testV04_6.2_%i.csv", k);

 fp = fopen(file_name, "a+"); // file pointer file file operation

 // fp= fopen("testdata_V02_.txt", "a+");

fprintf(fp,"timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,steps,

position_x,velocity,I_motor,I_a_ref,analog_out_motor,acceleration\n");

 // force min =0

 for(i=0;i<200000;i++)
 {

 F_ref = 0.0;

 MainCalculation(board);
 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,steps,position_x,
velocity,I_motor,I_a_ref,analog_out_motor,acceleration);

 }

 // force increment

 for(i=0;i<2000000;i++)

 {

 if (F_ref < F_ref_max)

 {
 //F_ref = -K_s*position_x;

 F_ref = F_ref + (dt * ramp_rate);

 printf("position :%f",position_x);
 printf(" F_ref :%f",F_ref);

 }else
 {

 F_ref = F_ref;

95

 }

 MainCalculation(board);

 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,steps,position_x,

velocity,I_motor,I_a_ref,analog_out_motor,acceleration);

 }

 // force max

 for(i=0;i<200000;i++)

 {
 F_ref = F_ref;

 MainCalculation(board);

 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,steps,position_x,

velocity,I_motor,I_a_ref,analog_out_motor,acceleration);
 }

 // force reduction
 for(i=0;i<2000000;i++)

 {

 if (F_ref > 0.0)
 {

 F_ref = F_ref - (dt * ramp_rate);

 }else
 {

 F_ref = 0.0;

 }
 MainCalculation(board);

 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,steps,position_x,

velocity,I_motor,I_a_ref,analog_out_motor,acceleration);

 }

 // force min =0

 for(i=0;i<200000;i++)
 {

 F_ref = 0.0;

 MainCalculation(board);
 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,steps,position_x,
velocity,I_motor,I_a_ref,analog_out_motor,acceleration);

 }

 F_ref_max = F_ref_max+1.0 ;

 k=k+1;

 fclose(fp);
 }

 }else{

 // Injecting nevagive current, stopping cycle

 F_ref = 0.0;
 I_motor = 0.0;

 I_a_ref = 0.0; //stop the mortor input current

 MotorOutDAC(board);

 X826(S826_CounterStateWrite(board, 0, 0)); // Stop tracking encoder position.

 return errcode;

 }

///

 // Injecting nevagive current, stopping cycle

 F_ref = 0.0;

 I_motor = 0.0;
 I_a_ref = 0.0; //stop the mortor input current

 MotorOutDAC(board);

 X826(S826_CounterStateWrite(board, 0, 0)); // Stop tracking encoder position.

96

 return errcode;

}
// end of main function

//

// dt calculation
static float dtCalculation()

{

 function_exicution_time = (float)(timestamp - timestamp_start)/1000000; //Timestamp in us , /10^6 to convert to s
 dt =(float)(timestamp - timestamp_previous)/1000000;

 timestamp_previous = timestamp;

 return 0;
}

// velocity calculation

static float VelocityCalculation()
{

 steps = 1 * counts; // Correcting the encorder read , + to the direction of squeezing

 position_x = steps*0.000005;
 velocity_sum = velocity_sum + velocity*dt;

 velocity = g_velocity * (position_x - velocity_sum);

 counts_pre = counts;
 return 0;

}

//Acceleration Calculation
static float AccelerationCalculation()

{

 // steps = 1 * counts; // Correcting the encorder read , + to the direction of squeezing
 // position_x = steps*0.000005;

 acc_sum = acc_sum + acceleration*dt;

 acceleration = g_acc * (velocity - acc_sum);
 // counts_pre = counts;

 return 0;

}
// DOB

static float DoB()

{
 dob_input = velocity * g_dis * M_n;

 dob_filter_input = K_fn * I_motor + dob_input;

 dob_filter_output = dob_filter_output + g_dis*(dob_filter_input - dob_filter_output)*dt;
 dob_force = dob_filter_output - dob_input;

 return 0;

}
// RTOB

static float RToB()

{
 rtob_filter_input = dob_filter_input - friction;

 rtob_filter_output = rtob_filter_output + g_dis*(rtob_filter_input - rtob_filter_output)*dt;

 rtob_force = rtob_filter_output - dob_input;
 return 0;

}

// Motor drive input voltage genaration function, using dac
static int MotorOutDAC(uint board)

{
 if (I_motor < -0.59)

 {

 I_motor = -0.59;
 }else if(I_motor > 0.59)

 {

 I_motor = 0.59;

 }

 analog_out_motor = (unsigned int)((65535*0.5) + ((I_motor*65535)/(0.6*2))); // DAC senstivity 16 bit (2**16)movo zero

vlaue 0 --> 2.5V out in dac
 //analog_out_motor = (unsigned int)(32768 + (I_motor/0.6)*32768); // DAC senstivity 16 bit (2**16)movo zero vlaue

0 --> 0V out in dac (-5 - 5V)

 X826(S826_DacDataWrite(board, aout, analog_out_motor, 0)); // Analog value out from dac
 //X826(S826_DacDataWrite(board, chan, analog_out_motor, 0)); // Analog value out from dac

 return 0; // negative current - negative cont, Positive current positive counter

incriment
}

static float MainCalculation(uint board)

97

{

 I_a_ref = K_p*(F_ref - rtob_force)*(M_n/K_fn); // Calculate from the previous response/rtob_tyorque and dob_torque

to get the I_motor adjusted with the error
 I_motor = I_a_ref + (dob_force/K_fn); // the mortor input current

 //printf(" counts :%d",counts);

 MotorOutDAC(board); // DAC o/p motor current --> motor v

 X826(S826_CounterSnapshot(board, 0)); // Trigger snapshot on counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp, NULL, 0)); // Read the snapshot:receive the snapshot
info here; no need to wait for snapshot; it's already been captured

 //values for current state

 dtCalculation(); // calculate dt, velocity, rotob_force, dob_force according to the existing force
command

 VelocityCalculation();

 AccelerationCalculation();
 DoB();

 RToB();

 return 0;
}

//
// The demo.

static int DemoWatchdog(uint board)

{
 int rc;

 uint timing[5];

 // set timer 1 time-out to around 1 second
 timing[0] = 55000000;

 printf("\nDemoWatchdog\n");

 // enable writing to watchdog
 rc = S826_SafeWrenWrite(board, 0x02);

 if (rc != 0)

 {
 printf("failed to enable wren for watchdog\n");

 return rc;

 }
 rc = S826_WatchdogConfigWrite(board, 0x00, timing);

 if (rc != 0)
 {

 printf("failed to configure WD\n");

 return rc;
 }

 rc = S826_WatchdogEnableWrite(board, 1);
 if (rc != 0)

 {

 printf("failed to enable WD\n");
 return rc;

 }

 // commented out. for testing watchdog cancel

 // CreateThread(NULL, 4096, testThread, board, 0, NULL);
 // watch indefinitely for watchdog

 rc = S826_WatchdogEventWait(board, S826_WAIT_INFINITE);

 switch (rc)

 {

 case 0:

 printf("watchdog successfully expired\n");

 break;

 case S826_ERR_NOTREADY:
 printf("WD wait timed out\n");

 break;

 case S826_ERR_CANCELLED:
 printf("WD wait cancelled\n");

 break;

 default:
 printf("error %d\n", rc);

 }

98

 // disable watchdog

 rc = S826_WatchdogEnableWrite(board, 0);

 if (rc != 0)
 {

 printf("failed to disable WD\n");

 return rc;
 }

 return 0;

}

• Reconstruction

///

/////////////////

// SENSORAY MODEL 826 PROGRAMMING EXAMPLES

// This file contains simple functions that show how to program the 826.

// Copyright (C) 2012 Sensoray

///

/////////////////

// MSc setup - Force Reproduction

// Praveena Dewapura

// 2022.05.30

///

/////////////////

// Header functions declarations

#ifndef _LINUX

#include <windows.h>

#include <conio.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#ifndef _LINUX

#include "..\826api.h"

#else

#include "826api.h"

#endif

// Helpful macros for DIOs

#define DIO(C) ((uint64)1 << (C)) // convert dio

channel number to uint64 bit mask

#define DIOMASK(N) {(uint)(N) & 0xFFFFFF, (uint)((N) >> 24)}

// convert uint64 bit mask to uint[2] array

#define DIOSTATE(STATES,CHAN) ((STATES[CHAN / 24] >> (CHAN % 24))

& 1) // extract dio channel's boolean state from uint[2] array

//

99

// ERROR HANDLING

// These examples employ very simple error handling: if an error is detected, the

example functions will immediately return an error code. This behavior may not be

suitable for some

// real-world applications but it makes the code easier to read and understand. In a

real application, it's likely that additional actions would need to be performed. The

examples use

// the following X826 macro to handle API function errors; it calls an API function

and stores the returned value in errcode, then returns immediately if an error was

detected.

#define X826(FUNC) if ((errcode = FUNC) != S826_ERR_OK) {

printf("\nERROR: %d\n", errcode); return errcode;}

// end of hearder fuction declarations

//

// Global variables declaration

// Encoder read

uint counts = 0; // encoder counts when the snapshot was captured

uint counts_pre =0;

uint timestamp; // time the snapshot was captured in us. converted

to s by /10^6

uint timestamp_start;

uint timestamp_previous; // time the previous snapshot was captured

uint aout = 0; // aout= analogue output channel no.0 , output

duplicate waveform on this dac channel

uint chan = 4; // +++ Check the connection 41 - current- analog o/p

chan 4

uint setpoint;

uint range;

int errcode = S826_ERR_OK;

int steps = 0;

float function_exicution_time = 0.0;

float dt = 0.0;

float F_ref = 0.0;

float F_pred = 0.0;

float F_ref_max = 0.0;

float F_ref_min = 0.0;

float ramp_rate = 0.0;

// motor drive oparation

unsigned int analog_out_motor;

float I_a_ref = 0.0;

float I_motor = 0.0;

// motor parameters

100

float K_fn = 24.0; // motor force constent

float M_n = 0.643; // Mass : (Motor shaft, 2 x linera bearings, 1 x

Long green bearing and shft connector 1 x short green

//bearing and shft connector)=600g and (whight hammer head)=55g . Mass : (Motor

shaft, 2 x linera bearings, 1 x Long green bearing and shft connector 1 x short green

bearing and shft connector)=600g and (whight hammer head)=55g . Changed the

hammer head mass to 43 from 57 from elctronic balance, thus the new mass = 0.655

- 55 + 43 =0.643g

float friction = 0.0; // +++ Eventhough friction is assumed as 0 there is

a 1N, the motor shaft doesn't move tll there is 1N value shown in the

//spring balance

// Velocity mesurment

float velocity_sum = 0.0;

float velocity = 0.0; // motor velocity

float g_velocity = 30.0; // velocity filter constent

float position_x = 0.0; // motor physical position

float position_x_prevous = 0.0;

float position_dx = 0.0;

float position_nom =0.0;

float force_predmodel=0.0;

// Acceleration mesurement

float acc_sum = 0.0;

float acceleration= 0.0; // motor velocity

float g_acc = 100.0;

// DOb

float dob_input = 0.0;

float dob_filter_input = 0.0;

float dob_filter_output = 0.0;

int const g_dis = 300.0; //Consider g_rec = g_dis

float dob_force = 0.0;

// RTOB

float rtob_filter_input = 0.0;

float rtob_filter_output = 0.0;

float rtob_force = 0.0;

float F_res =0.0;

float F_x =0.0;

float F_v=0.0;

float F_a=0.0;

// PID

float K_p = 2.0;

//Generate force response

101

// float K_s = 2.0;

// end of veriable declarations

//

// Function declaration

static int dtCalculation();

static float VelocityCalculation();

static float AccelerationCalculation();

static int ControlLoop(uint board);

static int DemoWatchdog(uint board);

static int MotorOutDAC(uint board);

static int DoB();

static int RToB();

static float MainCalculation(uint board);

// end of function declaration

//

// Main function.

int main(int argc, char **argv)

{

 uint board = 0; // 1 board, named as 0, change this if want

to use other than board number 0

 int errcode = S826_ERR_OK;

 int boardflags = S826_SystemOpen(); // open 826 driver and find all

826 boards

 if (argc > 1)

 board = atoi(argv[1]);

 if (boardflags < 0)

 errcode = boardflags; // problem during open

 else if ((boardflags & (1 << board)) == 0)

 {

 int i;

 printf("TARGET BOARD of index %d NOT FOUND\n",board); //

driver didn't find board you want to use

 for (i = 0; i < 8; i++)

 {

 if (boardflags & (1 << i))

 {

 printf("board %d detected. try \"./s826demo %d\"\n", i, i);

 }

 }

 } else

 {

102

 // running functions

 X826(ControlLoop(board)); // read the endocer value,

output anlog value and file write

 X826(DemoWatchdog(board)); // watchdog timer

 }

 switch (errcode)

 {

 case S826_ERR_OK: break;

 case S826_ERR_BOARD: printf("Illegal board number"); break;

 case S826_ERR_VALUE: printf("Illegal argument"); break;

 case S826_ERR_NOTREADY: printf("Device not ready or timeout"); break;

 case S826_ERR_CANCELLED: printf("Wait cancelled"); break;

 case S826_ERR_DRIVER: printf("Driver call failed"); break;

 case S826_ERR_MISSEDTRIG: printf("Missed adc trigger"); break;

 case S826_ERR_DUPADDR: printf("Two boards have same

number");break;S826_SafeWrenWrite(board, 0x02);

 case S826_ERR_BOARDCLOSED: printf("Board not open"); break;

 case S826_ERR_CREATEMUTEX: printf("Can't create mutex"); break;

 case S826_ERR_MEMORYMAP: printf("Can't map board"); break;

 default: printf("Unknown error"); break;

 }

#ifndef _LINUX

 printf("\nKeypress to exit ...\n\n");

 while (!_kbhit());

 _getch();

#endif

 S826_SystemClose();

 return 0;

}

// end of main function

//

// ENCODER READ ANLOG OUT AND FILE WRITE FUCNTION

// JKD - 10.08.2020

static int ControlLoop(uint board)

{

 // ***Configure interfaces and start them running.

 X826(S826_DacRangeWrite(board, aout, S826_DAC_SPAN_0_5, 0)); //

program dac output range: -5V to +5V , motor 0 value is 0V / for motor drive

operation , IF SO SHOULD CHANGE FROM THE MOTOR DRIVER'S SIDE

 //X826(S826_DacRangeWrite(board, chan, S826_DAC_SPAN_0_5, 0)); //

program dac output range: -0V to +5V , motor 0 value is 2.5V / for motor drive

operation ,

103

 X826(S826_CounterModeWrite(board, 0, S826_CM_K_QUADX4)); //

Configure counter0 as incremental encoder interface. quadrature

 X826(S826_CounterStateWrite(board, 0, 1)); // Start tracking

encoder position.

 I_motor = 0.0; //stop the mortor input current

 position_x = 0.0;

 MotorOutDAC(board); //- remove

 X826(S826_CounterSnapshot(board, 0)); // Trigger

snapshot on counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp_start, NULL,

0)); // Read the snapshot: from the counter0

 // Force loop

 F_ref_min = 0.0;

 ramp_rate = 2.1; // 2.1 , 2.4 , 2.7 , 3.0 // to change the force ramping

 F_ref = 0.0;

 // K_s=2000.0;

 timestamp_previous = timestamp_start;

 I_a_ref = 0.0; //stop the mortor input current

 MotorOutDAC(board);

 // X826(S826_CounterStateWrite(board, 0, 0)); // Stop tracking

encoder position.

 dtCalculation();

 VelocityCalculation();

 AccelerationCalculation();

 X826(S826_CounterSnapshot(board, 0)); // Trigger

snapshot on counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp, NULL, 0));

// Read the snapshot:receive the snapshot info here;no need to wait for snapshot;it's

already been captured

 // Important to calculate dt, velocity before dob, rtob calculations

 dtCalculation();

 VelocityCalculation();

 AccelerationCalculation();

///

 cpmml::Model model("Force_Response_adj_pmml.pmml");

 F_ref_max = 14.0 ; // 6 , 9 , 12 , 15

 // ****file write operation

 FILE *fp; // file pointer file file operation

 fp = fopen("test_pmml/testdata_ml_pmml_new_6_2022.csv", "a+");

 // fp = fopen("test_pmml/testdata_ml_new_30_pva_V_0.3.csv", "a+");

fprintf(fp,"timestamp_start,timestamp,timestamp_previous,function_exicution_time,

104

dt,F_ref,rtob_force,dob_force,counts,steps,position_x,velocity,I_motor,I_a_ref,analo

g_out_motor,F_pred,acceleration,F_x,F_v,F_a\n");

 if(abs(position_x)<0.05){

 for(i=0;i<5;i++)

 {

 F_pred=0.0;

 F_ref = F_pred;

 MainCalculation(board);

 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,

%f,%f,%f,%f,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rto

b_force,dob_force,counts,steps,position_x,velocity,I_motor,I_a_ref,analog_out_mot

or,F_pred,acceleration,F_x,F_v,F_a);

 }

 // force increment

 for(i=0;i<200000;i++)

 {

 if (abs(F_pred) < F_ref_max)

 {

 if (position_x!=0.0){

 F_x = (float)(F_res/position_x);

 }else{

 F_x=F_x;

 }

 if (velocity!=0.0){

 F_v = (float)(F_res/velocity);

 }else{

 F_v=F_v;

 }

 if (acceleration!=0.0){

 F_a = (float)(F_res/acceleration);

 }else{

 F_a=F_a;

 }

 unordered_map<string, string> sample;

 sample["position_x"]= to_string(position_x);

 sample["velocity"]= to_string(velocity);

 sample["acceleration"]= to_string(acceleration);

105

 sample["f_previous_x"]= to_string(F_x);

 sample["f_previous_v"]= to_string(F_v);

 sample["f_previous_a"]= to_string(F_a);

 force_predmodel= stof(model.predict(sample));

 F_pred =(float) (force_predmodel);

 // printf("F_pred:%f", F_pred);

 // F_pred = -10.0;

 F_ref = -F_pred;

 }else

 {

 F_pred = F_pred;

 F_ref = -F_pred;

 }

 F_res= F_pred;

 MainCalculation(board);

 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,

%f,%f,%f,%f,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rto

b_force,dob_force,counts,steps,position_x,velocity,I_motor,I_a_ref,analog_out_mot

or,F_pred,acceleration,F_x,F_v,F_a);

 }

 for(i=0;i<5;i++)

 {

 F_pred=0.0;

 F_ref = F_pred;

 MainCalculation(board);

 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,

%f,%f,%f,%f,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rto

b_force,dob_force,counts,steps,position_x,velocity,I_motor,I_a_ref,analog_out_mot

or,F_pred,acceleration,F_x,F_v,F_a);

 }

 fclose(fp);

 }else{

 // Injecting nevagive current, stopping cycle

 F_ref = 0.0;

 I_motor = 0.0;

 I_a_ref = 0.0; //stop the mortor input current

106

 MotorOutDAC(board);

 X826(S826_CounterStateWrite(board, 0, 0)); // Stop tracking encoder

position.

 return errcode;

 }

///

 // Injecting nevagive current, stopping cycle

 F_ref = 0.0;

 I_motor = 0.0;

 I_a_ref = 0.0; //stop the mortor input current

 MotorOutDAC(board);

 X826(S826_CounterStateWrite(board, 0, 0)); // Stop tracking encoder

position.

 return errcode;

}

// end of main function

//

// dt calculation

static float dtCalculation()

{

 function_exicution_time = (float)(timestamp - timestamp_start)/1000000;

//Timestamp in us , /10^6 to convert to s

 dt =(float)(timestamp - timestamp_previous)/1000000;

 timestamp_previous = timestamp;

 return 0;

}

// velocity calculation

static float VelocityCalculation()

{

 steps = 1 * counts; // Correcting the encorder

read , + to the direction of squeezing

 position_x = steps*0.000005;

 velocity_sum = velocity_sum + velocity*dt;

 velocity = g_velocity * (position_x - velocity_sum);

 counts_pre = counts;

 return 0;

}

//Acceleration Calculation

static float AccelerationCalculation()

{

 // steps = 1 * counts; // Correcting the encorder read , + to the

direction of squeezing

 // position_x = steps*0.000005;

 acc_sum = acc_sum + acceleration*dt;

 acceleration = g_acc * (velocity - acc_sum);

107

 // counts_pre = counts;

 return 0;

}

// DOB

static float DoB()

{

 dob_input = velocity * g_dis * M_n;

 dob_filter_input = K_fn * I_motor + dob_input;

 dob_filter_output = dob_filter_output + g_dis*(dob_filter_input -

dob_filter_output)*dt;

 dob_force = dob_filter_output - dob_input;

 return 0;

}

// RTOB

static float RToB()

{

 rtob_filter_input = dob_filter_input - friction;

 rtob_filter_output = rtob_filter_output + g_dis*(rtob_filter_input -

rtob_filter_output)*dt;

 rtob_force = rtob_filter_output - dob_input;

 return 0;

}

// Motor drive input voltage genaration function, using dac

static int MotorOutDAC(uint board)

{

 if (I_motor < -0.59)

 {

 I_motor = -0.59;

 }else if(I_motor > 0.59)

 {

 I_motor = 0.59;

 }

 analog_out_motor = (unsigned int)((65535*0.5) + ((I_motor*65535)/(0.6*2))); //

DAC senstivity 16 bit (2**16)movo zero vlaue 0 --> 2.5V out in dac

 //analog_out_motor = (unsigned int)(32768 + (I_motor/0.6)*32768); // DAC

senstivity 16 bit (2**16)movo zero vlaue 0 --> 0V out in dac (-5 - 5V)

 X826(S826_DacDataWrite(board, aout, analog_out_motor, 0)); //

Analog value out from dac

 //X826(S826_DacDataWrite(board, chan, analog_out_motor, 0)); //

Analog value out from dac

 return 0; // negative current - negative

cont, Positive current positive counter incriment

}

static float MainCalculation(uint board)

{

108

 I_a_ref = K_p*(F_ref - rtob_force)*(M_n/K_fn); // Calculate from the

previous response/rtob_tyorque and dob_torque to get the I_motor adjusted with the

error

 I_motor = I_a_ref + (dob_force/K_fn); // the mortor input current

 //printf(" counts :%d",counts);

 //values for previous state

 dtCalculation(); // calculate dt, velocity, rotob_force,

dob_force according to the existing force command

 VelocityCalculation();

 AccelerationCalculation();

 DoB();

 RToB();

 MotorOutDAC(board); // DAC o/p motor current --> motor

v

 X826(S826_CounterSnapshot(board, 0)); // Trigger snapshot on

counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp, NULL, 0));

// Read the snapshot:receive the snapshot info here; no need to wait for snapshot; it's

already been captured

 return 0;

}

//

// The demo.

static int DemoWatchdog(uint board)

{

 int rc;

 uint timing[5];

 // set timer 1 time-out to around 1 second

 timing[0] = 55000000;

 printf("\nDemoWatchdog\n");

 // enable writing to watchdog

 rc = S826_SafeWrenWrite(board, 0x02);

 if (rc != 0)

 {

 printf("failed to enable wren for watchdog\n");

 return rc;

 }

 rc = S826_WatchdogConfigWrite(board, 0x00, timing);

 if (rc != 0)

 {

 printf("failed to configure WD\n");

 return rc;

 }

109

 rc = S826_WatchdogEnableWrite(board, 1);

 if (rc != 0)

 {

 printf("failed to enable WD\n");

 return rc;

 }

 // commented out. for testing watchdog cancel

 // CreateThread(NULL, 4096, testThread, board, 0, NULL);

 // watch indefinitely for watchdog

 rc = S826_WatchdogEventWait(board, S826_WAIT_INFINITE);

 switch (rc)

 {

 case 0:

 printf("watchdog successfully expired\n");

 break;

 case S826_ERR_NOTREADY:

 printf("WD wait timed out\n");

 break;

 case S826_ERR_CANCELLED:

 printf("WD wait cancelled\n");

 break;

 default:

 printf("error %d\n", rc);

 }

 // disable watchdog

 rc = S826_WatchdogEnableWrite(board, 0);

 if (rc != 0)

 {

 printf("failed to disable WD\n");

 return rc;

 }

 return 0;

}

• Position control

///

// SENSORAY MODEL 826 PROGRAMMING EXAMPLES
// This file contains simple functions that show how to program the 826.

// Copyright (C) 2012 Sensoray

//
// MSc setup - Position control

// Praveena Dewapura

// 2022.03.30
//

110

// Header functions declarations

#ifndef _LINUX
#include <windows.h>

#include <conio.h>

#endif

#include <stdio.h>

#include <stdlib.h>
#include <math.h>

#include <time.h>

#ifndef _LINUX

#include "..\826api.h"

#else
#include "826api.h"

#endif

#include <iostream>

#include <unordered_map>

#include "cPMML.h"

using namespace std;

#include <sstream>
#include <string.h>

#include <vector>

// Helpful macros for DIOs

#define DIO(C) ((uint64)1 << (C)) // convert dio channel number to uint64 bit mask
#define DIOMASK(N) {(uint)(N) & 0xFFFFFF, (uint)((N) >> 24)} // convert uint64 bit mask to uint[2] array

#define DIOSTATE(STATES,CHAN) ((STATES[CHAN / 24] >> (CHAN % 24)) & 1) // extract dio channel's

boolean state from uint[2] array

//

// ERROR HANDLING
// These examples employ very simple error handling: if an error is detected, the example functions will immediately return an

error code. This behavior may not be suitable for some

// real-world applications but it makes the code easier to read and understand. In a real application, it's likely that additional
actions would need to be performed. The examples use

// the following X826 macro to handle API function errors; it calls an API function and stores the returned value in errcode,

then returns immediately if an error was detected.
#define X826(FUNC) if ((errcode = FUNC) != S826_ERR_OK) { printf("\nERROR: %d\n", errcode); return errcode;}

// end of hearder fuction declarations

//

// Global variables declaration

// Encoder read

uint counts = 0; // encoder counts when the snapshot was captured
uint counts_pre =0;

uint timestamp; // time the snapshot was captured in us. converted to s by /10^6
uint timestamp_start;

uint timestamp_previous; // time the previous snapshot was captured

uint aout = 0; // aout= analogue output channel no.0 , output duplicate waveform on this dac channel
uint chan = 4; // +++ Check the connection 41 - current- analog o/p chan 4

uint setpoint;

uint range;

int errcode = S826_ERR_OK;

int steps = 0;

//for loop oparation

long long int i ;

long long int j ;
char file_name[1000];

// char num[50];

int k = 0;
float position_err=0.0;

float position_err_pre=0.0;

float position_err_sum=0.0;

111

float function_exicution_time = 0.0;

float dt = 0.0;

float F_ref = 0.0;
float F_ref_max = 0.0;

float F_ref_min = 0.0;

float ramp_rate = 0.0;
float F_pred = 0.0;

float time_execution=0.0;
// motor drive oparation

unsigned int analog_out_motor;

float I_a_ref = 0.0;
float I_motor = 0.0;

// motor parameters
float K_fn = 24.0; // motor force constent

float M_n = 0.643; // Mass : (Motor shaft, 2 x linera bearings, 1 x Long green bearing and shft connector 1 x

short green //bearing and shft connector)=600g and (whight hammer head)=55g . Mass : (Motor
shaft, 2 x linera bearings, 1 x Long green bearing and shft connector 1 x short green bearing and shft connector)=600g and

(whight hammer head)=55g . Changed the hammer head mass to 43 from 57 from elctronic balance, thus the new mass = 0.655

- 55 + 43 =0.643g
float friction = 0.0; // +++ Eventhough friction is assumed as 0 there is a 1N, the motor shaft doesn't move tll there

is 1N value shown in the //spring balance

// Velocity mesurment

float velocity_sum = 0.0;

float velocity = 0.0; // motor velocity
float g_velocity = 30.0; // velocity filter constent

float position_x = 0.0; // motor physical position

float position_x_prevous = 0.0;
float position_dx = 0.0;

float acc_sum =0.0;
float acceleration = 0.0;

float g_acc =100.0;

// DOb
float dob_input = 0.0;

float dob_filter_input = 0.0;

float dob_filter_output = 0.0;
int const g_dis = 300.0; //Consider g_rec = g_dis

float dob_force = 0.0;

// RTOB

float rtob_filter_input = 0.0;

float rtob_filter_output = 0.0;
float rtob_force = 0.0;

// PID
float K_p = 2.0;

//Generate force response
float K_s = 2000.0;

float C_p=0.0;
float C_d=0.0;

float C_i=0.0;

float position_ex =0.0;

float position_ref =0.0;

// end of veriable declarations

std::vector< float > force_arr;

// std::vector< float > force_arr;
std::vector< float > position_arr;

std::vector< float > time_arr;

std::vector< float > dt_arr;

//

// Function declaration

static float VelocityCalculation();

static int ControlLoop(uint board);

112

static int DemoWatchdog(uint board);

static int MotorOutDAC(uint board);

static float DoB();
static float RToB();

static float dtCalculation();

static float AccelerationCalculation();
static float timeCalculation();

// end of function declaration

//
// Main function.

int main(int argc, char **argv)

{
 uint board = 0; // 1 board, named as 0, change this if want to use other than board number 0

 int errcode = S826_ERR_OK;

 int boardflags = S826_SystemOpen(); // open 826 driver and find all 826 boards

 if (argc > 1)

 board = atoi(argv[1]);

 if (boardflags < 0)

 errcode = boardflags; // problem during open
 else if ((boardflags & (1 << board)) == 0)

 {

 int i;
 printf("TARGET BOARD of index %d NOT FOUND\n",board); // driver didn't find board you want to use

 for (i = 0; i < 8; i++)

 {
 if (boardflags & (1 << i))

 {

 printf("board %d detected. try \"./s826demo %d\"\n", i, i);
 }

 }

 } else
 {

 // running functions

 X826(ControlLoop(board)); // read the endocer value, output anlog value and file write
 X826(DemoWatchdog(board)); // watchdog timer

 }

 switch (errcode)

 {

 case S826_ERR_OK: break;
 case S826_ERR_BOARD: printf("Illegal board number"); break;

 case S826_ERR_VALUE: printf("Illegal argument"); break;

 case S826_ERR_NOTREADY: printf("Device not ready or timeout"); break;
 case S826_ERR_CANCELLED: printf("Wait cancelled"); break;

 case S826_ERR_DRIVER: printf("Driver call failed"); break;

 case S826_ERR_MISSEDTRIG: printf("Missed adc trigger"); break;
 case S826_ERR_DUPADDR: printf("Two boards have same number");break;S826_SafeWrenWrite(board, 0x02);

 case S826_ERR_BOARDCLOSED: printf("Board not open"); break;
 case S826_ERR_CREATEMUTEX: printf("Can't create mutex"); break;

 case S826_ERR_MEMORYMAP: printf("Can't map board"); break;

 default: printf("Unknown error"); break;
 }

#ifndef _LINUX

 printf("\nKeypress to exit ...\n\n");

 while (!_kbhit());

 _getch();
#endif

 S826_SystemClose();
 return 0;

}

// end of main function

//

// ENCODER READ ANLOG OUT AND FILE WRITE FUCNTION

113

// JKD - 10.08.2020

static int ControlLoop(uint board)
{

 // ***Configure interfaces and start them running.

 X826(S826_DacRangeWrite(board, aout, S826_DAC_SPAN_0_5, 0)); // program dac output range: -5V to +5V , motor
0 value is 0V / for motor drive operation , IF SO SHOULD CHANGE FROM THE MOTOR DRIVER'S SIDE

 //X826(S826_DacRangeWrite(board, chan, S826_DAC_SPAN_0_5, 0)); // program dac output range: -0V to +5V , motor

0 value is 2.5V / for motor drive operation ,
 X826(S826_CounterModeWrite(board, 0, S826_CM_K_QUADX4)); // Configure counter0 as incremental encoder

interface. quadrature

 X826(S826_CounterStateWrite(board, 0, 1)); // Start tracking encoder position.

 I_motor = 0.0;

 position_x = 0.0;
 //stop the mortor input current

 MotorOutDAC(board); //- remove

 X826(S826_CounterSnapshot(board, 0)); // Trigger snapshot on counter 0.
 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp_start, NULL, 0)); // Read the snapshot: from the

counter0

 F_ref_min = 0.0;

 F_ref = 0.0;
 I_a_ref = 0.0;

 timestamp_previous = timestamp_start;

 X826(S826_CounterSnapshot(board, 0)); // Trigger snapshot on counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp, NULL, 0)); // Read the snapshot:receive the

snapshot info here;no need to wait for snapshot;it's already been captured
 // Important to calculate dt, velocity before dob, rtob calculations

 dtCalculation();

 VelocityCalculation();
 AccelerationCalculation();

 //
 ramp_rate =4.2; // 2.1 , 2.4 , 2.7 , 3.0 // to change the force ramping

 //zero

 F_ref_max = 1.0; // 6 , 9 , 12 , 15

 // ****file write operation

 k=1;
 // for(j=0;j<15;j++){

 FILE *fp;

 fp= fopen("test_pmml/testdata_ml_pmml_new_2022_working_2.csv", "r"); // file pointer file file
operation

 if (!fp)
 printf("Can't open file\n");

 else {
 char buffer[1024];

 int row = 0;

 int column = 0;

 while (fgets(buffer,

 1024, fp)) {

 column = 0;

 row++;

 // To avoid printing of column // names in file can be changed // according to need
 if (row == 1)

 continue;

 // Splitting the data

 char* value = strtok(buffer, ", ");

 while (value) {

 k=0;

114

 // Column 4

 if (column == 3) {

 time_arr.push_back(stof(value));
 }

 // Column 5

 if (column == 4) {
 dt_arr.push_back(stof(value));

 }

 // Column 7
 if (column == 6) {

 force_arr.push_back(stof(value));

 }
 // Column 11

 if (column == 10) {

 position_arr.push_back(stof(value));
 // printf("%s", value);

 }

 value = strtok(NULL, ", ");

 column++;

 // k++;
 }

 // printf("\n");

 }
 fclose(fp); // Close the file

 }

 FILE *fp1;

 fp1 = fopen("test_position/testdata_ml_sponge_position_new.csv", "a+");

fprintf(fp1,"timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,step

s,position_x,velocity,I_motor,I_a_ref,analog_out_motor,F_pred,acceleration,time_execution,position_ref\n");

 C_p=700.0;

 C_i = 1000.0;
 C_d =12.0;

 for (i = 0; i < 200010; i++){

 if(position_arr[i]>0){

 position_ex=position_arr[i];
 }else{

 position_ex=position_ex;

 }
 position_ref=position_ex;

 //position_ref =0.01;

 position_err = position_ref - position_x;
 position_dx = ((position_err-position_err_pre)/dt);

 position_err_sum =position_err_sum+(position_err*dt);

 I_a_ref = ((C_p*(position_err))+(C_d*position_dx)+(C_i*position_err_sum))*(M_n/K_fn);
 //I_motor = I_a_ref + (dob_force/K_fn);

 I_motor = I_a_ref ;

 time_execution = time_arr[i];
 while(function_exicution_time<time_execution){

 MotorOutDAC(board); // the mortor input current to run

 X826(S826_CounterSnapshot(board, 0)); // Trigger snapshot on counter 0.

 X826(S826_CounterSnapshotRead(board, 0, &counts, ×tamp, NULL, 0)); // Read the snapshot:receive the

snapshot info here; no need to wait for snapshot; it's already been captured

 timeCalculation();
 }

 dtCalculation(); // calculate dt, velocity, rotob_force, dob_force according to the

existing force command
 VelocityCalculation();

 AccelerationCalculation();

 DoB();
 RToB();

115

 fprintf(fp,"%d,%d,%d,%f,%f,%f,%f,%f,%d,%d,%f,%f,%f,%f,%u,%f,%f,%f,%f\n",

timestamp_start,timestamp,timestamp_previous,function_exicution_time,dt,F_ref,rtob_force,dob_force,counts,steps,position_x,

velocity,I_motor,I_a_ref,analog_out_motor,F_pred, acceleration,time_execution,position_ref);
 position_err_pre =position_err;

 }

 fclose(fp1);

 // /////////////////////

 // Injecting nevagive current, stopping cycle

 F_ref = 0.0;

 I_motor = 0.0;
 I_a_ref = 0.0; //stop the mortor input current

 MotorOutDAC(board);

 X826(S826_CounterStateWrite(board, 0, 0)); // Stop tracking encoder position.

 return errcode;

}
// end of main function

//

// time calculation
static float timeCalculation()

{

 function_exicution_time = (float)(timestamp - timestamp_start)/1000000; //Timestamp in us , /10^6 to convert to s
 // dt =(float)(timestamp - timestamp_previous)/1000000;

 // timestamp_previous = timestamp;

 return 0;
}

// dt calculation

static float dtCalculation()
{

 // function_exicution_time = (float)(timestamp - timestamp_start)/1000000; //Timestamp in us , /10^6 to convert to s

 dt =(float)(timestamp - timestamp_previous)/1000000;
 timestamp_previous = timestamp;

 return 0;

}
// velocitycalculation fucntions with function

static float VelocityCalculation()

{
 steps = -1 * counts; // Correcting the encorder read , + to the direction of squeezing

 position_x = steps*0.000005;

 velocity_sum = velocity_sum + velocity*dt;
 velocity = g_velocity * (position_x - velocity_sum);

 counts_pre = counts;

 return 0;
}

static float AccelerationCalculation()

{
 // steps = 1 * counts; // Correcting the encorder read , + to the direction of squeezing

 // position_x = steps*0.000005;

 acc_sum = acc_sum + acceleration*dt;
 acceleration = g_acc * (velocity - acc_sum);

 // counts_pre = counts;
 return 0;

}

// DOB
static float DoB()

{

 dob_input = velocity * g_dis * M_n;

 dob_filter_input = K_fn * I_motor + dob_input;

 dob_filter_output = dob_filter_output + g_dis*(dob_filter_input - dob_filter_output)*dt;

 dob_force = dob_filter_output - dob_input;
 return 0;

}

// RTOB
static float RToB()

{

 rtob_filter_input = dob_filter_input - friction;
 rtob_filter_output = rtob_filter_output + g_dis*(rtob_filter_input - rtob_filter_output)*dt;

 rtob_force = rtob_filter_output - dob_input;

 return 0;

116

}

// Motor drive input volate genarating function, using dac

static int MotorOutDAC(uint board)
{

 if (I_motor < -0.59)

 {
 I_motor = -0.59;

 }else if(I_motor > 0.59)

 {
 I_motor = 0.59;

 }

 analog_out_motor = (unsigned int)((65535*0.5) + ((I_motor*65535)/(0.6*2))); // DAC senstivity 16 bit (2**16)movo zero
vlaue 0 --> 0V out in dac (-5 - 5V)

 //analog_out_motor = (unsigned int)(32768 + (I_motor/0.6)*32768); // DAC senstivity 16 bit (2**16)movo zero vlaue

0 --> 2.5V out in dac
 X826(S826_DacDataWrite(board, aout, analog_out_motor, 0)); // Analog value out from dac

 //X826(S826_DacDataWrite(board, chan, analog_out_motor, 0)); // Analog value out from dac

 return 0; // negativa current - negative cont, Positive current positive counter
incrimet

}

//
// The demo.

static int DemoWatchdog(uint board)

{
 int rc;

 uint timing[5];

 // set timer 1 time-out to around 1 second
 timing[0] = 55000000;

 printf("\nDemoWatchdog\n");

 // enable writing to watchdog
 rc = S826_SafeWrenWrite(board, 0x02);

 if (rc != 0)

 {
 printf("failed to enable wren for watchdog\n");

 return rc;

 }
 rc = S826_WatchdogConfigWrite(board, 0x00, timing);

 if (rc != 0)
 {

 printf("failed to configure WD\n");

 return rc;
 }

 rc = S826_WatchdogEnableWrite(board, 1);
 if (rc != 0)

 {

 printf("failed to enable WD\n");
 return rc;

 }

 // commented out. for testing watchdog cancel

 // CreateThread(NULL, 4096, testThread, board, 0, NULL);
 // watch indefinitely for watchdog

 rc = S826_WatchdogEventWait(board, S826_WAIT_INFINITE);

 switch (rc)

 {

 case 0:

 printf("watchdog successfully expired\n");

 break;

 case S826_ERR_NOTREADY:
 printf("WD wait timed out\n");

 break;

 case S826_ERR_CANCELLED:
 printf("WD wait cancelled\n");

 break;

 default:
 printf("error %d\n", rc);

 }

117

 // disable watchdog

 rc = S826_WatchdogEnableWrite(board, 0);

 if (rc != 0)
 {

 printf("failed to disable WD\n");

 return rc;
 }

 return 0;

}

118

APPENDIX E AI codes

#!pip install tf-nightly-gpu-2.0-preview

import tensorflow as tf

%tensorflow_version 2.x

#import tensorflow as tf

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

 raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

from google.colab import drive

drive.mount('/content/drive')

from __future__ import print_function

from __future__ import division

#Import all required libraries

import pandas as pd #loading data in table form # data processing, CSV file I/O (e.g. pd.read_csv)

import seaborn as sns #visualisation

import matplotlib

from matplotlib import cm

import matplotlib.pyplot as plt #visualisation

#from matplotlib import pyplot as plt

import numpy as np # linear algebra

from sklearn.preprocessing import normalize #machine learning algorithm library

import keras #library for neural network

import keras.backend as kb

#Neural network module

from keras.models import Sequential

from keras.layers import Dense,Activation,Dropout

from keras.layers.normalization import BatchNormalization

from keras.utils import np_utils

from keras.models import model_from_json

import os

importing the csv module

import csv

%matplotlib inline

import statsmodels.api as sm

import xgboost as xgb

119

from sklearn import tree

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier

#from sklearn.metrics import mean_squared_error

import sklearn

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import PolynomialFeatures

from sklearn.preprocessing import scale

from sklearn.feature_selection import RFE

from sklearn.linear_model import LinearRegression

from sklearn.ensemble import RandomForestRegressor

from sklearn.linear_model import Ridge

from sklearn.svm import SVR

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

from sklearn.model_selection import GridSearchCV

from sklearn.pipeline import make_pipeline

import json

from google.colab import files

import gspread

from gspread_dataframe import get_as_dataframe,set_with_dataframe

import warnings # supress warnings

warnings.filterwarnings('ignore')

df = pd.read_csv('/content/drive/MyDrive/Msc/ML Models/dataset/spongedataset.csv')

df.describe()

df.info()

df.isna().sum()

df =df.dropna()

df

r = df.index[np.isinf(df).any(1)]

print(r)

array_remove1 = [x for x in range(df.shape[0]) if x in r] # Only Time_difference ==0, Position_difference ==1/-1

df = df.drop(labels=array_remove1, axis=0)

df

fig, ax = plt.subplots(figsize=(20, 12)) # Create the figure and axes object

Create another figure

120

plt.figure(figsize=(20, 12))

plt.rcParams.update({'font.size': 30})

Plot the first x and y axes:

df.plot(x = 'function_exicution_time', y = 'rtob_force',label='F_{res} : Sponge', ax = ax, color ='darkgoldenrod')

df.plot(x = 'function_exicution_time', y = 'predictions_random_forest', label='F_{res} : AI',ax = ax, color ='tomato')

ax.set_ylabel('Force (N)',fontsize=30)

ax.set_xlabel('Time (s)',fontsize=30)

Show the major grid lines with dark grey lines

plt.grid(b=True, which='major', color='#666666', linestyle='-')

Show the minor grid lines with very faint and almost transparent grey lines

plt.minorticks_on()

plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2)

fig, ax = plt.subplots(figsize=(20, 12)) # Create the figure and axes object

plt.rcParams.update({'font.size': 30})

df.plot(x = 'function_exicution_time', y = 'position_ref',label='Position_ref', ax = ax, color ='blue')

df.plot(x = 'function_exicution_time', y = 'position_x', label='Position',ax = ax, color ='red')

ax.set_ylabel('Compression depth (m)',fontsize=30)

ax.set_xlabel('Time (s)',fontsize=30)

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2)

fig, ax = plt.subplots(figsize=(20, 12)) # Create the figure and axes object

plt.rcParams.update({'font.size': 30})

df.plot(x = 'function_exicution_time', y = 'velocity',label='Velocity', ax = ax, color ='palevioletred')

ax.set_ylabel('Velocity ($\mathregular{ms^{-1}}$)',fontsize=30)

ax.set_xlabel('Time (s)',fontsize=30)

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2)

df['force_previous']=df.rtob_force.shift(1, axis = 0)

df['force_previous'][0]=0

f_x_h = []

f_v_h = []

f_a_h = []

f_x=0.0

f_v=0.0

f_a=0.0

for x in range(0, int(df.shape[0])):

 position = float (df_pred2.position_x.iloc[[x]])

 velocity = float (df.velocity.iloc[[x]])

 acceleration = float (df.acceleration.iloc[[x]])

 force=float (df.force_previous.iloc[[x]])

 if position==0:

121

 f_x= f_x

 else:

 f_x=force/position

 if velocity==0:

 f_v= f_v

 else:

 f_v=force/velocity

 if acceleration==0:

 f_a= f_a

 else:

 f_a=force/acceleration

 f_x_h.append(f_x)

 f_v_h.append(f_v)

 f_a_h.append(f_a)

df_v_108_area =pd.DataFrame()

df_v_108_area["Time"] =df_v_108.Time

df_v_108_area["Position"] =df_v_108.Position

df_v_108_area["Force_Response_adj"] =df_v_108.Force_Response_adj

df_v_108_area["Position_Diff"] =df_v_108.Position_difference

df_v_108_area["F*P"] = (df_v_108.Force_Response_adj * df_v_108_area.Position_Diff*0.000005).abs()

df_v_108_area["F*T"] = df_v_108.Force_Response_adj* df_v_108.Time_Duration

df_v_108_area

df_v_108_area["Cumsum_F*P"]=0

df_v_108_area["Cumsum_F*P"][:(1200000)]= df_v_108_area["F*P"][:(1200000)].cumsum()

df_v_108_area["Cumsum_F*P"][(1200000):(2400000)]= df_v_108_area["F*P"][(1200000):(2400000)].cumsum()

df_v_108_area["Cumsum_F*P"][(2400000):(3800000)]= df_v_108_area["F*P"][(2400000):(3800000)].cumsum()

df_v_108_area["Cumsum_F*P"][(3800000):(5200000)]= df_v_108_area["F*P"][(3800000):(5200000)].cumsum()

df_v_108_area["Cumsum_F*P"][(5200000):(6800000)]= df_v_108_area["F*P"][(5200000):(6800000)].cumsum()

df_v_108_area["Cumsum_F*P"][(6800000):(8400000)]= df_v_108_area["F*P"][(6800000):(8400000)].cumsum()

df_v_108_area["Cumsum_F*P"][(8400000):(10200000)]= df_v_108_area["F*P"][(8400000):(10200000)].cumsum()

df_v_108_area["Cumsum_F*P"][(10200000):(12000000)]= df_v_108_area["F*P"][(10200000):(12000000)].cumsum()

df_cumsum_pt= pd.concat([df_v_108_area["Cumsum_F*P"].iloc[[(1200000-1)]],

 df_v_108_area["Cumsum_F*P"].iloc[[(2400000-1)]], df_v_108_area["Cumsum_F*P"].iloc[[(3800000-1)]],

 df_v_108_area["Cumsum_F*P"].iloc[[(5200000-1)]],df_v_108_area["Cumsum_F*P"].iloc[[(6800000-1)]],

 df_v_108_area["Cumsum_F*P"].iloc[[(8400000-1)]],df_v_108_area["Cumsum_F*P"].iloc[[(10200000-1)]],

 df_v_108_area["Cumsum_F*P"].iloc[[(12000000-1)]]], ignore_index=True)

df_cumsum_pt = pd.DataFrame(df_cumsum_pt)

df_deformation.columns = [""]

df_cumsum_pt["Datapoint"] = [1200000,2400000,3800000,5200000,6800000,8400000,10200000,12000000]

pt_previous= np.array(df_cumsum_pt["Cumsum_F*P"])

pt_previous = np.insert(pt_previous,0,df_v_108_area["Cumsum_F*P"].iloc[[0]])

122

pt_previous = np.resize(pt_previous, df_cumsum_pt["Cumsum_F*P"].size)

df_cumsum_pt['FP_previous'] = pt_previous

df_cumsum_pt['FP_diff']= (df_cumsum_pt['FP_previous'] - df_cumsum_pt["Cumsum_F*P"]).abs()

df_cumsum_pt

cumsum_diff= [0]

for i in range(0, df_cumsum_pt.shape[0],2):

 cumsum_rising = float (df_cumsum_pt['FP_diff'].iloc[[i]])

 cumsum_falling = float (df_cumsum_pt['FP_diff'].iloc[[i+1]])

 cumsum_diff_element = float (cumsum_rising - cumsum_falling)

 # print(i,cumsum_rising, cumsum_falling, cumsum_diff_element)

 cumsum_diff.append(cumsum_diff_element)

cumsum_diff = pd.DataFrame(cumsum_diff)

cumsum_diff

df_deformation= pd.concat([df_v_108.Position.iloc[[0]],

 df_v_108.Position.iloc[[2400000-1]],

 df_v_108.Position.iloc[[5200000-1]],

 df_v_108.Position.iloc[[8400000-1]],

 df_v_108.Position.iloc[[12000000-1]]], ignore_index=True)

df_deformation = pd.DataFrame(df_deformation)

df_deformation.columns = [""]

df_deformation

position_previous= np.array(df_deformation.Position)

position_previous = np.insert(position_previous,0,0)

position_previous = np.resize(position_previous, df_deformation['Position'].size)

df_deformation['Position_previous'] = position_previous

haptics_data['Position_previous'] = position_previous*0.005

haptics_data['Position'] = haptics_data['Position'] *0.005

df_deformation['Deformation']=df_deformation.Position - df_deformation.Position_previous

df_deformation

df_v_1=df_v[:2400000]

df_v_1["Cycle no."] = 1

df_v_2=df_v[2400000:5200000]

df_v_2["Cycle no."] = 2

df_v_3=df_v[5200000:8400000]

df_v_3["Cycle no."] = 3

df_v_4=df_v[8400000:12000000]

df_v_4["Cycle no."] = 4

np.random.seed(42)

Shuffle the data

df_train_shuffled = df_train.sample(frac=1)

haptics_data_50_shuffled = haptics_data_50.sample(frac=1)

data normalization with sklearn

from sklearn.preprocessing import MinMaxScaler

123

norm = MinMaxScaler().fit(haptics_data_50_shuffled)

transform training data

df_norm = norm.transform(haptics_data_50_shuffled)

df_norm = pd.DataFrame(df_norm)

adding column name to the respective columns

df_norm.columns =haptics_data_50_shuffled.columns

df_norm.describe()

df1= pd.read_csv(urlip11)

df2= pd.read_csv(urlip12)

df4= pd.read_csv(urlip14)

df5= pd.read_csv(urlip15)

df= pd.concat([df1,df2,df4,df5], ignore_index=True)

df = df.drop('Unnamed: 0',axis =1)

df.T

array1=np.arange(0,df.shape[0],2)

array_remove1 = [x for x in range(df.shape[0]) if x not in array1]

df = df.drop(labels=array_remove1, axis=0)

df.T

df.columns

X_tp_train =df_train_shuffled[['function_exicution_time',

 'position_x', 'velocity', 'acceleration', 'f_previous_x',

 'f_previous_v', 'f_previous_a']]

y_tp_train = df_train_shuffled["Force_Response_adj"]

X_tp_test1=X_tp_test

X_tp_test=X_tp_test.drop(["function_exicution_time"],axis=1)

Split data into X and y

X_tp = df_norm.drop(['Force_Command', 'Force_Response','Force_Command_adj', 'Time_Duration','Position_difference',

'Deformation', 'Area_FP','Force_Response_adj'] ,axis=1)

X_tp = df[["function_exicution_time","position_x","velocity",'acceleration']]

y_tp = df["Force_Response_adj"]

Split into train & test set

X_tp_train, X_tp_test, y_tp_train, y_tp_test = train_test_split(X_tp, y_tp, test_size=0.3)

X_tp_train, X_tp_test, y_tp_train, y_tp_test = train_test_split(X_tp,

 y_tp,

 test_size=0.3,shuffle = True, random_state=42)

example of correlation feature selection for numerical data

from sklearn.datasets import make_regression

from sklearn.model_selection import train_test_split

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import f_regression

124

from matplotlib import pyplot

feature selection

def select_features(X_train, y_train, X_test):

 # configure to select all features

 fs = SelectKBest(score_func=f_regression, k='all')

 # learn relationship from training data

 fs.fit(X_train, y_train)

 # transform train input data

 X_train_fs = fs.transform(X_train)

 # transform test input data

 X_test_fs = fs.transform(X_test)

 return X_train_fs, X_test_fs, fs

plt.rcParams.update({'font.size': 30})

fig, ax = plt.subplots(figsize=(20, 12))

load the dataset

X, y = make_regression(n_samples=1000, n_features=100, n_informative=10, noise=0.1, random_state=1)

split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

feature selection

X_train_fs, X_test_fs, fs = select_features(X_train, y_train, X_test)

X_train_fs, X_test_fs, fs = select_features(X_tp_train, y_tp_train, X_tp_test)

what are scores for the features

for i in range(len(fs.scores_)):

 print('Feature %d: %f' % (i, fs.scores_[i]))

plot the scores

pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)

pyplot.show()

a= ['position_x', 'velocity', 'acceleration', 'f_previous_x',

 'f_previous_v', 'f_previous_a', 'cycle_No','deformation', 'Area_FP']

plt.rcParams.update({'font.size': 30})

fig, ax = plt.subplots(figsize=(20, 12))

pyplot.xticks(rotation=45)

pyplot.bar(a, fs.scores_)

pyplot.show()

feature selection

def select_features(X_train, y_train, X_test):

 # configure to select all features

 fs = SelectKBest(score_func=mutual_info_regression, k='all')

 # learn relationship from training data

 fs.fit(X_train, y_train)

 # transform train input data

 X_train_fs = fs.transform(X_train)

125

 # transform test input data

 X_test_fs = fs.transform(X_test)

 return X_train_fs, X_test_fs, fs

plt.rcParams.update({'font.size': 30})

fig, ax = plt.subplots(figsize=(20, 12))

load the dataset

X, y = make_regression(n_samples=1000, n_features=100, n_informative=10, noise=0.1, random_state=1)

split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)

feature selection

X_train_fs, X_test_fs, fs = select_features(X_tp_train, y_tp_train, X_tp_test)

what are scores for the features

for i in range(len(fs.scores_)):

 print('Feature %d: %f' % (i, fs.scores_[i]))

plot the scores

pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)

pyplot.show()

plt.rcParams.update({'font.size': 30})

fig, ax = plt.subplots(figsize=(20, 12))

pyplot.xticks(rotation=45)

pyplot.bar(a, fs.scores_)

pyplot.show()

df_corr = df_train_shuffled[['position_x', 'velocity', 'acceleration', 'f_previous_x', 'f_previous_v',

'f_previous_a','cycle_No','deformation', 'Area_FP','Force_Response_adj']]

Let's make our correlation matrix a little prettier

corr_matrix = df_corr.corr()

plt.rcParams.update({'font.size': 20})

fig, ax = plt.subplots(figsize=(15, 10))

ax = sns.heatmap(corr_matrix,

 annot=True,

 linewidths=0.5,

 fmt=".2f",

 cmap="YlGnBu");

bottom, top = ax.get_ylim()

ax.set_ylim(bottom + 0.5, top - 0.5)

correlations = df_corr.corr()

plt.rcParams.update({'font.size': 20})

fig, ax = plt.subplots(figsize=(15, 10))

San Juan

(correlations

 .Force_Response_adj

 .drop('Force_Response_adj') # don't compare with myself

 .sort_values(ascending=False)

126

 .plot

 .barh())

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

file = 'https://aegis4048.github.io/downloads/notebooks/sample_data/unconv_MV_v5.csv'

df = pd.read_csv(file)

df = df.iloc[:, 1:-1]

corr = df_corr.corr(method='spearman')

Generate a mask for the upper triangle

mask = np.zeros_like(corr, dtype=np.bool)

mask[np.triu_indices_from(mask)] = True

Set up the matplotlib figure

fig, ax = plt.subplots(figsize=(30, 20))

Generate a custom diverging colormap

cmap = sns.diverging_palette(220, 10, as_cmap=True, sep=100)

Draw the heatmap with the mask and correct aspect ratio

sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1, vmax=1, center=0, linewidths=.5,

 annot=True,

 fmt=".2f",)

fig.suptitle('Correlation matrix of features', fontsize=15)

ax.text(0.77, 0.2, 'aegis4048.github.io', fontsize=13, ha='center', va='center',

 transform=ax.transAxes, color='grey', alpha=0.5)

fig.tight_layout()

k-fold CV (using all the 13 variables)

lm = LinearRegression()

scores = cross_val_score(lm, X_train, y_train, scoring='r2', cv=5)

scores

lm.fit(X, y)

lm.fit(X_tp_train, y_tp_train)

predictions_linear_reg = lm.predict(X_tp_test.drop(["Time"],axis=1))

predictions_linear_reg = lm.predict(X_tp_test1.drop(["function_exicution_time"],axis=1))

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

print("R2 score : %.2f" % r2_score(y_tp_test,predictions_linear_reg))

print("mean_absolute_error : %.2f" % mean_absolute_error(y_tp_test,predictions_linear_reg))

print("mean_squared_error : %.2f" % mean_squared_error(y_tp_test,predictions_linear_reg))

print("root_mean_squared_error : %.2f" % np.sqrt(mean_squared_error(y_tp_test,predictions_linear_reg)))

X_tp_test=X_tp_test.sort_values(by=['function_exicution_time'])

X_tp_test

127

X_tp_test1.to_csv("/content/drive/MyDrive/Msc/ML_Models/mlmodel_prashhaptics/dataset/test_lm.csv")

Instantiate model with 1000 decision trees

rf = RandomForestRegressor(n_estimators=1000, max_depth=9,random_state=50)

rf = RandomForestRegressor()

Train the model on training data

rf.fit(X_tp_train, y_tp_train);

import os

import joblib

import numpy as np

from sklearn.datasets import load_iris

from sklearn.ensemble import RandomForestClassifier

joblib.dump(rf,

"/content/drive/MyDrive/Msc/ML_Models/mlmodel_prashwi/dataset/test_02/adj/x_test_all_features_rf_5var.joblib",

compress=3) # compression is ON!

print(f"Compressed Random Forest:

{np.round(os.path.getsize('/content/drive/MyDrive/Msc/ML_Models/mlmodel_prashwi/dataset/test_02/adj/x_test_all_features_

rf_5var.joblib') / 1024 / 1024, 2) } MB")

>>> Compressed Random Forest: 0.03 MB

loaded_model =

joblib.load('/content/drive/MyDrive/Msc/ML_Models/mlmodel_prashwi/dataset/test_02/adj/x_test_all_features_rf_5var.joblib’)

result = loaded_model.score(X_test, Y_test)

print(result)

show_scores(rf)

Create evaluation function (the competition uses RMSLE)

from sklearn.metrics import mean_squared_log_error, mean_absolute_error, r2_score, mean_squared_error

def rmsle(y_test, y_preds):

"""

Caculates root mean squared log error between predictions and

true labels.

"""

return np.sqrt(mean_squared_log_error(y_test, y_preds))

def rmse(y_test, y_preds):

 """

 Caculates root mean squared log error between predictions and

 true labels.

 """

 return np.sqrt(mean_squared_error(y_test, y_preds))

Model evaluation metrics documentation - https://scikit-learn.org/stable/modules/model_evaluation.html

R^2 (pronounced r-squared) or coefficient of determination.

Mean absolute error (MAE)

Mean squared error (MSE)

128

Create function to evaluate model on a few different levels

def show_scores(model):

 train_preds = model.predict(X_tp_train)

 test_preds = model.predict(X_tp_test)

 scores = {"Training MAE": mean_absolute_error(y_tp_train, train_preds),

 "Test MAE": mean_absolute_error(y_tp_test, test_preds),

 # "Training RMSLE": rmsle(y_train, train_preds),

 # "Valid RMSLE": rmsle(y_valid, val_preds),

 "Training MSE": mean_squared_error(y_tp_train, train_preds),

 "Test MSE": mean_squared_error(y_tp_test, test_preds),

 "Training RMSE": rmse(y_tp_train, train_preds),

 "Test RMSE": rmse(y_tp_test, test_preds),

 "Training R^2": r2_score(y_tp_train, train_preds),

 "Test R^2": r2_score(y_tp_test, test_preds)}

 return scores

svr = SVR()

svr = SVR(kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=0.1, epsilon=0.1, shrinking=True,

cache_size=200, verbose=False, max_iter=-1)

svr = SVR(kernel='rbf', gamma=0.002, tol=0.001, C=0.1, epsilon=0.0001)

svr = SVR(kernel='rbf', gamma=0.002, C=0.1, epsilon=0.0001)

Train the model on training data

svr.fit(X_tp_train, y_tp_train);

create NN model

forcemodel_tp = Sequential()

forcemodel_tp.add(Dense(150, input_dim=6, activation='sigmoid'))

forcemodel_tp.add(Dropout(0.2))

forcemodel_tp.add(Dense(25, activation='tanh'))

forcemodel_tp.add(Dropout(0.2))

forcemodel_tp.add(Dense(1, activation='sigmoid'))

forcemodel_tp.summary()

129

Compile model

opt = tf.keras.optimizers.SGD(learning_rate=0.000001)

forcemodel_tp.compile(loss='mean_squared_error', optimizer=opt)

Fit the model

%%time

forcemodel_tp.fit(x=X_tp_train, y=y_tp_train, epochs=100, batch_size=5, validation_split=0.20)

opt = tf.keras.optimizers.Adam(learning_rate=0.000001)

model.summary()

from keras.layers.recurrent import LSTM

design network

model = Sequential()
model.add(LSTM(100, input_shape=(train_X.shape[1], train_X.shape[2])))

model.add(Dense(1))

model.compile(loss='mae', optimizer=opt)
fit network

history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False)

plot history

plt.plot(history.history['loss'], label='train')

plt.plot(history.history['val_loss'], label='test')

plt.legend()
plt.show()

130

APPENDIX F Important R codes

• Reconstruction

install.packages('devtools')
install.packages("keras")

install.packages("mlbench")

install.packages("dplyr")
install.packages("magrittr")

install.packages("neuralnet")

install.packages("nnet")
install.packages("tensorflow")

install.packages("pmml")

install.packages("keras2pmml")
install.packages("r2pmml")

install.packages("pmmlTransformations")

install.packages("randomForest")
install.packages("readr") #https://cran.r-project.org/web/packages/readr/readme/README.html

Libraries

library(randomForest)
library(XML)

library(pmml)

library("readr")
data

path <- "/content/testdata_train_shuffle.csv"

path <-"/home/linux/Documents/Rstudio/data/testdata_train_shuffle.csv"

reading contents of csv file

content <- read_csv(path, col_names = TRUE, row.names = FALSE)
content <- read_csv(path, col_names = TRUE)

Buid a rf model
keeps <- c("position_x","velocity","acceleration","f_previous_x","f_previous_v","f_previous_a","Force_Response_adj")

content = content[keeps]

print (content)
#Working in r and c++

Not run:

Build a randomForest model
force_rf <- randomForest(Force_Response_adj ~ ., data = content, ntree = 1000)

fit <- nnet(Species ~ ., data = iris, size = 4)

Convert to pmml
force_rf_pmml <- pmml(force_rf)

force_rf_pmml <- pmml(force_rf)
rm(force_rf) #delete objects from the memory.

save_pmml(force_rf_pmml, "Force_Response_adj_pmml.pmml")

