
t
— - POS System

I. D. Rubasinghe 
ireshar@cse.mrt.ac.lk

D. A. Meedeniya 
dulanim@cse.mrt.ac.lk

G. I. U. S. Perera
indika@cse.mrt.ac.lk

Department of Computer Science and Engineering, 
University of Moratuwa, Sri Lanka

abstract Consequently, today different software traceability support tools 
and frameworks can be identified [ l J[2J. However, most solutionsSoftware traceability is a key notion in the software development. 

The paper explores the previously developed research-based 
Software Artefact Traceability Analyser tool called 'SAT- 
Analyser The workflow and capabilities of SAT-Analyser tool 
are described and evaluated using a case study of a Point of Sale 
system. Phases such as software artefact identification, data pre­
processing. data extraction and traceability establishment 
methodologies used in the tool SAT-Analyser are presented with 
graph-based traceability' outcome. The case-study based 
evaluation shows positive accuracy results for the SAT-Analyser 
tool. Moreover, the proposed traceability management framework 
for the entire software development life cycle is presented.

are research-based due to the challenging limitations

Software Artefact Traceability Analyser (SAT-Analyser) tool 
described in this paper is one such software traceability support 
tool. It is capable of establishing traceability among software 
artefacts in requirement, design and source code level and to 
visualize the traceability graph for a given software application 
Thus, this paper describes a Point of Sale (POS) based case study 
demonstrating the process, workflow of the SAT-Analyser and 
evaluates the accuracy of the traceability establishment process.

The paper is structured as follows. Section 2 explores set o! 
related work and Section 3 describes the case study application 
The accuracy of the tool is evaluated in Section 4 and Section 5CCS Concepts
concludes the paper with possible future extensions.• Software and its engineering —♦ Software creation and 

management —* Software post-development issues —*■ Software 2. BACKGROUND STUDY
evolution Software traceability is the ability to track artefact behaviors 

during the software development process by providing a logical 
connection among artifacts. Software traceability process consists 
of several sub processes such as establishing traceability' links 
among artefacts and traceability' maintenance [3j.

Keywords
Traceability establishment; Visualization: Traceability graph, 
SAT-Analyser tool.

1. INTRODUCTION An architecture-centric, stakeholder-driven, industry-oriented and 
open hypermedia traceability approach intluenced by e-Scicnce 
technologies, is presented in [4], It has addressed the multi­
faceted traceability problem by integrating the implementation to 
a traceability' tool named ArchStudio. They have followed a rule- 
based classification approach for establishing artefact-link 
relationships and n-ary first class links for trace relationships. A 
facet-based approach by r rc1 u-" f

Software system development is challenging due to the c anges 
occur in requirements, business organizations, legal ru es an 
improper use of tools and technologies. Managing these cianges 
is difficult and affects the success or the failure of a software 
system. Thus, it is essential to have appropriate S°M10** 
handle the changes during the Software Development i e 
(SDLC). The changes can occur at any phase to any intermediate 
software outcomes, which arc called artefacts. An alteration. 
single artefact can affect one or more other arte acts in on 
many phases with different severities. Therefore, identification 
die changes, affected artefacts, severity and the conscqu 
important to manage artefact traceability throughout e , 
Accordingly', the notion of software traceability has been c 
10 enable tracing capabilities among software arlefutcs.

'■j Gramme! [5]. has narrowed the 
traceability' scope into model-driven software development They 
have traced the model transformations using a domain specific 

(DSL) called trace-DSL for data extraction. A work on 
code and test case artefacts traceability using gamificalion 

technologies is presented in [6], with a proof-of-concepl prototype 
called GamiTraci. It is highly influenced by the similar previous 
work [7], that has used slicing and conceptual coupling techniques 
in establishing test to code traceability.
The accuracy of the traceability results is a major challenge. The 
reliability of the traceability is addressed in [8], that can be 
applied for safety critical software systems. It can be identified as 
a light-weight rcsults-oriented solution. Tin’s trace link model 
separates the untrusted links and conducts a remediation process 
continuously. However, there is a limitation of trace maintenance 
facilities. Traceclipse [9], is a research-based Eclipse plugin 
targeted for traceability link recovery and maintenance. Its link 
recovery process is influenced by Information Retrieval (IR)

language
source

1 cr,nission to make digital or hard copies of all or pait of d arc 
Personal or classroom use is granted without fee provi ^ {\xal
n°l made or distributed for profit or commercial adx antag ^^ 
J°P,CS beat this notice and the full citation on the first P o • bc
0r components of this work owned by others t lan or
oaored. Abstracting with credit is permitted. To coj pri0r
Publish, to post on servers or to redistribute to ‘ • -on$ Horn

ppcc,r'c permission and/or a fee. Request P

24-26, 20, S. Singapore. S.ngapore.
Ar. Association for Computing Machinery 
u,1ISBN 978-1 --1503-6360-0/18/02...S15.00 

Ps//doi.org/l0.1145/3193092.3193094.

mailto:ireshar@cse.mrt.ac.lk
mailto:dulanim@cse.mrt.ac.lk
mailto:indika@cse.mrt.ac.lk


37*v l

techniques and limited for source code artefact in Java. A similar 
work on semi-automated traceability recovery with the use of IR 
and classification is presented in [10]. An ontology-based attempt 
has been conducted in [11], by mapping domain concepts and 
artefact indexes into an ontology. Rut the traceability support of it 
is limited only for Unified Process based software development. 
Although, there exist limitations and challenges in achieving 
traceability within the SDLC. traceability management has been 
an active research area in modem software development [ 12]J13].

Our previous work [14], has evaluated different traceability and 
consistency management techniques. We have proposed an 
extended framework for SAT-Analyzer to be compatible with 
traceability management and continuous integration for DevOps 
environments. Another research on managing traceability in self- 
adaptive systems is presented in [15], which is a generic toolkit 
with a interlink visualizer for inconsistency detection, further, 
considering the software artefacts in later stages of software 
development with DevOps practices is discussed in [16] providing 
continuous integration capabilities by using Jenkins.

normal order having only the cash on delivery facility. These 
requirements are stated in the software requirement specification 
in natural language. Figure 2. shows a section of the natural 
language requirements considered for this study.

The corresponding design in UML class diagram is shown in 
figure 3. The main classes are identified as Customer, Order and 
Item. An Order is specialized into SpecialOrder and NormalOrder 
Since the entity Order is composed of set of Item entities, there is 
an aggregation relationship. Similarly, the association between the 
entities, Customer class and Order class, is a composition 
relationship which is a strong aggregation. Thus, if the Customer 
entity is deleted, then Order (part) entity is deleted as well.

1■j

i
I Ir. a shop, a customer car. place more than one 

order, .-.n order can have more then one item. 
Customer details must record the name and 
location. Item details must record the item 
number and price. A customer can send and receive 
the order using the system The customer can order 
in two types. Orders are special order and normal 
order. An order can be confirmed and closed by the 
customer. The special order can order items 
online. Normal order can order items in cash on 
delivery. An item can be added and removed.

5
3. SAT-ANALYSER
3.1 Design Considerations
SAT-Analyser is a traceability management tool capable of 
tracing software requirement artefact. Unified Modelling 
Language (UML) class diagram artefact and the Java source code 
artefact [I7||I|(I8|. Thus, it can be used for traceability in 
requirements,-design and development stages of the SDLC. The 
system design is shown in figure I.

Figure 2. POS requirements in natural language

:Customer ' Item 
■ - f'emNtiu'lior
J •price
j MOdlWOiO 
- removelien'O

Order

I
____ j • nun be i

*conlimi(j 
-closer.

♦none 
-rot a ion

.r* sea JC’i tier ()
♦ ii>c«evoOidof(>11 Design

11 Artefact
Requirement

Artefact
Source Code 

Artefact

I I I
ANTLR

i»va Grammar
IS OH

Pre -processor[vVonfNctjNLP
NormalOrderSpecialOrder

I -ccnfirmO
♦closed
*cod()

♦ confirmfi
«closr»0
/•orJincOrdeiQ

Traceability Establishment

Jaro-WlnkJcr AJc?riU«n teventhteln Pittance XleocithmZ

i Figure 3. POS UML class diagram
i ,• ■ *v

! Artefacts and Relationships XML Conversion import java.util.HashMap.
import java.ulil. Iterator.
public static void main(Slring[ ] args) (
Customer customer “ new Customer (name, address); 
ItemManager ilemManagcr = new ltemManagcr(); 
HashMap<String, Itcm> itcmMap = itcmManagcr getAllItcms(); 
Itcrator<String> availableList = itcmMap.keySct().availablcList(); 
System.out.printIn("Ordcr Items"),
Order order = new Order (date, number, type); 
while (avaitablcLisi.hasNcxlO) (
Item itcin = itcmMap.gct(availablcList.ncxt()), 
order.ad<IIiem(iiem);
System.out .println(i(cm.name + “ -l + item.pi ice").

mdjm

I • • Visualization
n<«>4j Graph 00 I GepWGrjph Generator

:

i
Figure I. SAT-Analyser system design

SAT-Analyser tool considers three main artefacts; natural 
language based requirements, UML (Unified Modelling 
Language) class diagram as design artefact and Java source code 
for the implementation phase artefact. Initially, data pre­
processing techniques are applied for all three types of artefacts, 
retrieve necessary information and transform them into a common 
format in XML. Then traceability links are established between 
the dependent artefacts and visualized llic traceability 
relationships in a traceability graph.

3.2 Workflow: Point of Sale Application
A case study based evaluation is performed using the tool SAT- 
Analyser. The selected case study is a Point of Sale (POS) system, 
where a customer can place orders consist of items. An order can 
be cither a special order having the online ordering feature or a

}
order.con ft rmO
if(ordcr.lypc — "SpecialOrder”) {

SpecialOrder spccialordcr = new SpccialOrdcr(datc, number); 
spccialordcr.onl incOrdcr();

)
else}

NormalOrder spccialordcr = new NormalOrdcr(datc, number). 
order.cashOnDclivciy().

)
)

Figure 4. POS source code



Consequently, a similarity is marked if either threshold is met byThe relevant source code artefacts are given in Java programing

links arc parsed thiojlsJ!_hcd_iracclIuii C-Llrhr a5355s

corresponding classes (or object creation and method .calling-arc..: 
implemented separately, and considered as the code artefacts.

Requirements, design and development related artefacts are given 
as the inputs to the SAT-Analyser in their raw formats, namely 
requirements document in .txt, UML class diagram in either .mdj 
or .xmi formal and the source code in one or more .java files. 
Then. SAT-Analyser performs the artefact extraction in the data 
pre-processing stage. Since the inputs arc in three different 
formats, (I) requirements arc processed using the Stanford Core 
NLP libraries (I9| and WordNel lexical database; (2) design class 
diagram follows a JSON structure at the backend of its .mdj and 
.xmi formats; (3) source code is processed using the ANother 
Tool for Language Recognition (ANTLR) [20] Java 8 Grammar 
to identify the required artefact sub elements. The artefact 
elements include the requirements, classes, methods, attributes 
and the relationships inheritance, association and generalization. 
Next the extracted artefacts are listed and initiate the traceability 
establishment process The traces are generated and mapped based 
on a string comparison as give in Algorithm I

~ rthcrDocumcnt OHjccrKlbdcflDOM) parser [24j and converted 
into a predefined XML structure. Figure 5 shows a section of the 

of the generated intermediate XML file for the UML 
class diagram artefact; Customer and Order class
structure

<?xml vcrsion=“l 0" encoding-"L’TF-8"',> 
<Artcfacls>

<Anefact type=”UMl-Diagram“>
<ArtefactElemen( id="Dl" namc=”Customerr lype=*Class"> 

<AnefactSubElcmeni id=”Dl_Fl" namc-'nimc’
=”UMLAllribu(c" vanablcTypc="" visibility-'public' >type

<ArtcfactSubElemeni id=”DI_F2" namc=’location"
iypc="LIMLAttributc" vanablcTypc="" visibilit>-’publ:c*'> 

<AncfactSubElcmcnt id='DI_MI" name="sendOrder" 
parametcrs="' retumTypc=”" statu>="" 
type="LIMLOpcration” visibility-"public"/> 

<ArtefaciSubElement id=“DI_M2" name=’recieveOrder" 
parametersretumTypc-"' status^'"' 
type="LrMLOperation' visibilit>'="public’/> 

</ArtcfaciElcmcnt>
cArtefactElemenl id="D2’ nanic-“Ordcr" t>pc=“Clasi,'> 

<Arxcfact5ubElcmcnt id=''D2_Fl" namc="date' 
typc=’UMLAttribute’ variabIcTypc=” visibility-“public”. > 

<ArtefaetSubElemcnt id-“D2_F2” name="nomber" 
iype=”UMLAttribute" variableTspe-"' visibility-"public” > 

<ArtefactSubElcment id=”D2_M I' name="coiifirm" 
parameters3"” rclumTypc3”” status3"” t\pc="UMl.Operation' 
visibility =”public"/>

<ArtcfaclSubElcmcnl id=”D2_M2" namc=”closc" paratneters="' 
rciurnTvpe3"" status3"" t>pc=,,UMLOperaiion" visibility="public" 

</ArtefactElemem>

j

I
Algorithm I Traceability link generation 
Require: Software artefacts 
Ensure: Building relationships among artefacts 

input: artefacts a 
Ibr (a )

gel sy nonyms from WordNel 
String comparison for names of classes, attributes, 
methods and relationships

matchDistance = Jaro Winkler algorithm
similarity (elemcnll.elemenl2) 

If (matchDistance > = 0.8 and <= 1.0)
Build trace link among two artefact elements

I
2
3.

!4.

Figure 5. UML Artefact XML file5.
considered as the major artefactAccordingly, the classes 

elements and arc given a unique id. The corresponding attributes 
and the methods are listed as the artefact sub elements for each 
artefact clement with a unique identifier starting with the id of the 
parent artefact element. For an example, the 
as a class name and the attributes of it arc the name and location, 
while the methods are sendOrder and receiveOrder.

are
6.
7.
8. Else

customer is identifiededilDistance= Lcvenshlein Distance algorithm 
distance (elementI,elcmenl2) 

matchDistance = l - edilDislance 
If (matchDistance > = 0.8 and < = 1.0)

Build trace link among two artefact elements 
XML Writer (nodes, links)

15. output: XML conversion of artefact traceability' links 
____________(Rclations.xml)__________________

9.
10.
II.

A£> y Artefacts Contiirrotion - °.
■ •* C3 rwrnva; oro*i 
i •0*04 o*de<

*-C3d«ai 
f G3cu»tom«r

12.
13. Ffe14. *

* 1

l*- E3
i- QR*<JiOA*NB>

t c3
*-C3 A»\r>ut*« 
t GSfcWhccs

D
1 ■ D

t c3 *

♦ C3
Q CMtf o»J*f

i ..
1 j

iAlgorithm I, handles the pre-processed artifact data towards the 
traceability link generation. It ensures the relationship building 
among the extracted artefact elements that arc input for the 
algorithm. Then using the WordNct synonyms and pre-deftned 
dictionary' ontology, a string similarity compulation is performed 
using the Jaro-Winklcr algorithm [21] and Lcvcnshtcin Distance 
Algorithm [22]. Jaro-Winkler algorithm is selected prominently 
due to its efficiency than Lcvcnshtcin algorithm [23]. The former 
algorithm considers that, the differences near the start of the 
strings arc more significant than differences close to the end of the 
strings, while Lcvcnshtcin algorithm computes the number of 
edits needed to convert one string to another. Fixed threshold 
values arc associated for both algorithms and Lcvcnshtcin is used 
for deep comparison if the Jaro-Winklcr similarity measure is not 
in the range of 0.8 and 1.0. Additionally, the WordNel synonym 
selection is done using the Lcvcnshtcin Distance algorithm with a 
threshold of 0.85.

i

3■ •»

.■r.-r-w*

Figure 6. Artefact Extraction Confirmation Window

At the end of these backend data pre-processing, data extraction 
and traceability establishment, the results are presented in a tree 
structure by' the artefact confirmation option of the tool as shown 
in Figure 6. The use of the DOM parser is benefiUed, since it is 
capable of loading the full XML documents into a tree structure.

■



39'L v.

Hcncc. the user can alter, delete or add any misinterpreted artefact 
elements prior die confirmation.

The generated intermediate XML tiles would be modified 
accordingly and soon after the traceability project is created to the 
user. Afterwards, all these set of XML files are converted into an 
array formal that follows a key-value pair structure using DOM 
parser und the Simple API for XML (SAX) parser's exception 
handling capabilities [25J to store in the Neo4j graph database 
(26). Then the open graph visualization platform Gephi (27J is 
used for the graph generation using the nodes and links stored in 
Nco4j. Consequently, the SAT-Analyser visualizes the traceability 
links among artefacts or any selected artefact sub elements. The 
set of visualization filtering are as follow.

• Full graph view with artefacts and their links
• F«dge filtered view for the relationship among the 

identified classes, attributes, operations for each of the 
artefact in requirements, design and code.

• Artefact filtered views for each one of 3 artefacts 
separately.

Accordingly, the metrics precision and recall are applied as 
information retrieval accuracy measurements (28). The artefact 
and relationship extraction results arc evaluated as follows.

Artefact, relationship extraction precision 
_ number of correctly identified artefacts, relations

I total numberofidenlified artefacts, relations

Similarly, the recall is measured as follows

Artefact, relationship extraction recall 
_ number of correctly identified artefacts, relations

total numberofactual artefacts, relations

Moreover. F-measure (FI score), which is the weighted average 
of the obtained precision and recall: is derived as follows 

^ prcscion « recall 
prescion + recall

Table I. Evaluation of traceability support techniques

FI =

Traceability
Establishment

F-MeasurcArtefact Precision Recall

! Requirement — 
Design

0.8Class 0 8I
0.6Attribute 0.5I

fijwr. • 0.6Method 0.5I
Design — 

Source eode
Class III

Attribute 0.40.3I
0.5 0.6Method 0.8

Requirement — 
Code

IClass I I
0,6 0.7Attribute I

0.7Method I 0.6
U)ll«c« WjMi

c ----- *-
E-------

Traceability establishment accuracy among similar artefacts in 
different phases of the SDLG is shown in Table I. The precision 
denotes positive results for the generated trace links, while the 
lower recall signifies that there exist missing links among 
attributes and methods. It is observed that the inaccurate artefact 
elements extraction and identification with NLP that contain 
different naming conventions and less meaningful names in 
requirement artefacts, have led to the lack of accuracy. However, 
the overall F-mcasurcs arc biased towards I and requirement to 
code traceability has shown a high accuracy.

MO.o ««n.M Jt m
f/ •• »*«»»».«>

, LI isyi.ixvym

i l y
Figure 7. Full graph view of traceability in POS system

!
5. CONCLUSIONFigure 7 illustrates a selected section of the obtained full graph 

view of this POS system case study. Color codes arc used for each 
type of nodes and links in the representation. Moreover, the 
details of each selected node arc listed in the information section 
separately. The length of the edges denotes the strength of the 
similarity between each two nodes. Thus, larger the siring 
comparison value means shorter the length of corresponding edge. 
For example, in Figure 7, the edit distance value among RQI and 
D4 is 0.916 which denotes normal order class in requirement 
artefact and design, respectively. Similarly, the value among 
RQI_M2 and D4_M3 is 1.0, which represents cash on delivery 
method in requirements artefact and UML design artefact, 
respectively. Titus, the length of the edge between RQI and D4 is 
bit lengthy as the UML class diagram artefact has used the class 
name with naming conventions.

Software traceability is essential to ensure .the proper 
synchronization among software artefacts during the software 
development process. There exist various software traceability 
related solutions; however most of them have certain limitations. 
SAT-Analyser tool presented in this paper is one such tool support 
software requirement, design and source code artefacts. This 
paper highlights the accuracy of the traceability establishment 
process of SAT-Analyser tool using a POS based application.

Requirement, design and development related artefacts in their 
raw formats arc fed to the tool as text. UML class diagram file and 
Java source code files, respectively. SAT-Analyser pre-processed 
the input data and extracts the relevant artefact elements. The 
traceability links among the artefacts arc established based on a 
similarity calculation algorithm. Moreover, the traceability 
relationships arc visualized using traceability graphs for developer 
decision making. The tool allows manual artefact trace alterations 
and updates the graphs accordingly.

SAT-Analyser is evaluated using the accuracy measures precision, 
recull and F-measure based on the established traceability links 
among artefacts in the considered case study. Significant positive

i
■■

i
■

4. EVALUATION
The evaluation of the applied POS system is conducted using 
correctness measures based on the artefact, relationship extraction 
shown in Figure 6, since proper artefact and relationship 
identification is crucial towards the final traceability outcomes.



[I3J Poshvvanyk. D. ct al. 6ih In(. workshop on traceability inresults have been obtained and identified possible improvements
ifh.

—Furthermore, tire—integration—of- ■Proceedtngs- 41 ■cuipu ic.
Soft-ware Engineering (ICSE 'll). ACM. NY, USA. 1214-
1215

continuous integration support lor the tool with DevOps principles
would be an important future work to cope with the agile based 
software development environments. f141 Rubasinghc, I D. et al 2017. Towards Traceability 

Management in Continuous Integration with SAT-Analyser 
In Proceedings of the 3rd Int Conf. on Communication and 
Information Processing. (2017). ACM. Tokyo.

(15] Percra. I et al 2015 A Traceability’ Management 
framework for Artefacts in Self-Adaptive Systems. In 
Proceedings of the IOth Int. Conf. on Industrial and 
InformationSystems(ICHS). (2015). IEEE 37-42

(I6| Palihawadana. S. cl a! 2017. Tool support for traceabihi\ 
management of software artefacts with DevOps practices. In 
Proceedings of the Mora luxe a Eng Research Conf 
(MERCon). (2017). IEEE. 129-134

[I7| Wijcsinghe. D.B. el al. 2014 Establishing traceabililv links 
among software artefacts. In Proceedings of the 14th Int 
Con) on Advances in ICT for Emerging Regions. (2014 j 
IEEE 55—62.

1181 Arunthavanaihan. A. et al 2016. Support for traccabilitv 
management of software artefacts using Natural Language 
Processing. In Proceedings of the 2nd Int Moratuwa Eng 
Research Conf (MERCon) (2016). IFF.F 18-23

(19| Manning. C. D. et al. 2014 The Stanford CoreNLP Natural 
Language Processing Toolkit. In Proceedings of 32nd 
Annual Meeting o) the Association for Computational 
Linguistics System Demonstrations. Baltimore. Maryland. 
55-60.

(20| AN I LK: http ■•www.antlr.org/. Accessed: 2017-07-21

http ;alias-
i com lingpipe docs api/com/aliasi 'spell/Jaro ft 'inkle rDis tan 
ce.html Accessed. 2017-08-14

(22] Efficient Implementation of the Levcnshlein-Algorithm. 
Fault-tolerant Search Technology. Error-tolerant Search 
Technologies: http www levenshtein.net'’. Accessed: 2017- 
10-14.

6. ACKNOWLEDGMENTS
The author acknowledges the support received from the Senate 
Research Committee Grant SRC/LT/2016/07, University of 
Moratuwa, Sri Lanka in publishing this paper.

7. REFERENCES
II | Kamalabalan. K. ct al 2015. Tool Support for Traceability 

of Software Artefacts In Proceedings of the Moratuwa Eng. 
Research ConJ. (MERCon). (2015). IEEE. 318-323.

[2] Satish. C. J. el al. 2016. A Review of Tools for Traceability 
Management in Software Projects. Int .Journal for research 
in emerging science and technology. 3. 3 (2016), 6-10

[3] Mader. P. and Gotel. O 2012. Towards automated 
traceability maintenance. Journal of Systems and Software. 
85. 10 (2012). 2205-2227

(4] Hazeline U. Asun ion. 2008. Towards practical software 
traceability. In Companion of the 30tli international 
conference on Software engineering (ICSE Companion '08). 
ACM, NY. USA. 1023-1026.

(5] Grammel. B and Kastenholz. S 2010. A generic 
traceability framework for facet-based traceability data 
extraction in model-driven software development. In 
Proceedings of the 6th ECMFA Traceability Workshop 
(F.CMFA-TW ' 10;. ACM, NY. USA, 7-14

(6] Parizi, R. M. On the gamifiealion of human-centric 
traceability tasks in software testing and coding. In 
Proceedings of the 2016 IEEE Nth Int. Conf on Software 
Eng Research. Management and Applications (SERA). 
IEEE, 193-200.

(7] Qusef, A. et al. 2011. SCOTCH: Tesl-lo-code traceability 
using slicing and conceptual coupling. In Proceedings of the 
2011 27th IEEE Int. Conf. on Software Maintenance 
(ICSM), IEEE, 63-72.

(8] Clcland-Huang, J. ct al. 2014. Achieving lightweight 
trustworthy traceability. In Proceedings of the 22nd ACM 
SIGSOFT Int. Symposium on Foundations of Software Eng. 
(FSE 2014). ACM, NY, USA, 849-852.

(9] Klock, S. ct al. 2011. Traceclipsc: an eclipse plug-in for 
traceability link recovery and management. In Proceeding 
of the 6th hit. workshop on Traceability in emerging forms 
of Soflwarc Eng. (TEFSE 'll). ACM, NY, USA, 24-30.

(10] Mills C. Automating traceability link recovery through 
classification. In Proceedings of the 2017 l/tli Joint 
Meeting on Foundations of Sofrwarc Eng. (ESEC/FSE 
2017) ACM, NY, USA, 1068-1070.

(11] Noll. R. P. and Ribciro. M B. Enhancing traceability using 
ontologies. In Proceedings of the 2007 ACM symposium on 
Applied computing (SAC ’07) ACM, NY, USA, 1496- 
1497. DOMutp.Y/dx.doi.org/10.1145/1244002.1244322.

(12] Clcland-Huang, J. Traceability research: taking the next 
steps. In Proceeding of the 6th Int workshop on 
Traceability in emerging forms of Software Eng (TEFSE 
'll). ACM, NY, USA, 1-2.

[21] JaroWinklerDislance (LingPipe API):

2006. A Comparison of Personal Name(23] Christen P.
Matching: Techniques and Practical Issues. In Proceedings 
of the IEEE Sixth Data Mining Workshop (ICDM ’06). 
IEEE, Hong Kong, China.

(24] Le Hors. A. et al. 2004. Document Object Model (DOM) 
Level 3 Core S/>ecification. W3C Technical Report. 
Massachusetts Institute of Technology. Cambridge. MA.

(25] Parser
hHp//www.sa.xprojectorg/apidoC’'org.xml/sax/Parser.html.
Accessed: 2017-10-15.

(26] Graph Visualization for Neo4j: Tools. Methods and More: 
https:, 7neo4j.com 'dcveloper/guidc-data-visualization/. 
Accessed: 2017-07-23.

(27| Gephi - The Open Graph Viz Platform: https:7igephi.orgi. 
Accessed: 2017-10-14.

(28| Zcugmann T. et al. 2011. Precision and Recall. In 
Encyclopedia of Machine Learning. Springer US, Boston, 
M A, 781-781.

:
'

/ 'RECEIVED' 

n '8 OCT 2022 )i?ico
&
\s\ v

. 'Is AC • SECTION'OX
■v .\

(:
J

http://www.antlr.org/
http://www.sa.xprojectorg/apidoC%e2%80%99'org.xml/sax/Parser.html

