
I /

UNIVERSITY OF MORATUWA, SRI LANKA

TOOL SUPPORT FOR DevOps PROCESS ENHANCEMENTS

U5BA3Y
UNIVERSITY Op SR! LAHKA

VOS*TUWfi
By

Dr. D.A. Meedeniya

A REPORT

SUBMITTED TO THE SENATE RESEARCH

COMMITTEE [GRANT No. SRC /LT/2016/07]

■

.
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF MORATUWA0

2018
University of Moratmva SRCtfrc]

SRC169; \;
i'ikX *3f j:a ob(

r: :
i

GRc 169 .
i •..paif (oui,^ -

__ Jmj*
v> !\.x i 8RC163

j

Contents

01. Towards traceability management in continuous integration with SAT-
Analyzer
I.D. Rubasinghe / D.A .Meedeniya / G.I.U.S. Perera

02. Software artefact traceability analyser: a case-study on POS system

I.D. Rubasinghe / D.A .Meedeniya / G.I.U.S. Perera

i
i

?s

Adistr-ac£rs..

Title of Project: Tool Support for DevOps Process Enhancements

Grant No: SRC/LT/2016/07

Software system engineering is rapidly growing to larger scales and software maintenance tends
to be complex. The number of involving software artefacts increases with the growth of software
systems. Thus, different software development approaches are getting introduced to ease the
software management. Therefore, the notion of traceability management of software artefacts is
given prominence along with continuous integration. DevOps based software development is in
the rise among software development practitioners with the integration of developments and
operations. DevOps improves software delivery and customer satisfaction by bringing together a
set of activities, which can be repealed multiple times a day. Tool support for this level of
continuous delivery is essential. Provision of traceability management tool support for DevOps
process management remains unfulfilled at large, which we explored and addressed in this
research.

The objectives of this research are
- To identify challenges in DevOps based software development.
- To design a prototype tool to address DevOps process challenges.
- To develop and evaluate the proposed tool for DevOps practice.

First, we have performed a context survey to identify the theoretical model (prescriptive process)
of DevOps and the actual realization of the DevOps practice (descriptive process) in software
development. With the gap analysis we identified the key features that support within the tool.
Then, we have come up with an approach for managing traceability between software artefacts
and the architecture is designed accordingly. Next, a prototype tool is developed to support key
process steps of DevOps with continuous integration. This was evaluated with some case study
applications such as POS and tour management system.

This research is developed a tool called SAT-Analyzer (Software artefact traceability analyzer),
which is a prototype tool for establishing, managing and visualizing software artefacts in the
software development life cycle with continuous integration. The case-study based evaluation
shows positive accuracy results for the SAT-Analyser tool. The research output provides an
original contribution to the field of software process management in general and tool support
within DevOps in particular. With a usable tool support for DevOps practices can improve the
DevOps process stability and performance. This will enable further extensions to the tool and
conceptual model on DevOps usage into related areas such as software maintenance and quality
management as needed in the software industry. This will be a main contribution to a number of
research areas supporting software process management and enhanced software developed with
rapid delivery.

I

^7 31
m-Q.

megratiortrwith SAT-Analyzer
I. D. Rubasinghe, D. A. Meedeniya, I. Perera
Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka
ireshar@cse.mrt.ac.Ik, dulanim@cse.mrt.ac.lk, indika@cse.mrt.ac.lk

ABSTRACT Software artefacts are the intermediate by-products used in each
phase of the software development life cycle (SDLC) towards the
intended software product. Changes in software artefacts are the
primary motivation in software evolution (l|. It is crucial to
maintain the consistency between the software artefacts, with the
increasing scope of a software system. This is due to the rapid
generation of information across a large information space Thus,
there is a requirement of the ability to describe and follow the
artefact lifecycle. Without a well-defined traceability
management between the software artefacts the consequences of
different evolutions may result in expensive overheads in SDLC
Further, improper traceability management may lead to failures
of a product. Therefore, traceability of software artefacts is
important for the software evolution process It strengthens the
testability, maintainability and helps for system acceptance by
providing consistent documentation [3| The improper
management and outdated artefacts can lead to inconsistency
among artefacts, synchronization issues and lack of trust in
artefacts by stakeholders. Thus, it is significant to maintain the
traceability throughout the SDLC.

The concept of DcvOps (Development-Operations) represents
the integration of development environment and the operational
environment that encourages developing systems rather than
mere programs. DevOps ease the project management with
communication, understandability. integration and bridging the
gap between the development teams and operational teams. It
increases the rate of change and deploys features into production
faster [4]. There is a strong relationship between the quality of
the software developed and the agility of the organization to the
DevOps practices of software development [5]. Therefore,
DevOps practices contribute to enhance these software quality
attributes within continuous integration process.

SAT-Analyzer (Software Artefacts Traceability Analyzer) is a
prototype tool developed previously, with the intension of
traceability management [6] (7] [S]. It includes a core engine for
traceability establishment and visualization. However, it mainly
considers software artefacts such as natural language based
requirements, UML class diagrams, and Java source code for
traceability management as of nowr; the integration of DevOps
practices along with continuous integration is explored. This
paper mainly explores extensive related research and proposes an
optimised framework for traceability management with
continuous integration.

The paper is organized as follow's: Section 2 presents related
approaches in traceability management including change
detection, impact analysis, change propagation and consistency
management. Section 3 evaluates the literature and the proposed
framework is elaborated in Section 4. Finally, Section 5
concludes the paper with future research directions.

Software system engineering is rapidly growing to larger scales
and software maintenance tends to be complex. The number of
involving software artefacts increases with the growth of
software systems Thus, different software development
methodologies, processes and practices are getting introduced to
ease the software management Consequently, the management
of excessive software artefacts is also important towards a
successful maintenance. Therefore, the notion of traceability
management of software artefacts is given prominence along
with continuous integration. This paper explores the existing
traceability management approaches to propose an optimized
framework that overcomes current limitations. Hence, the
previous work of this research. SAT-Analyzer. which is a
prototype tool, is extended to support continuous integration with
DevOps practices.

CCS Concepts
• Softw'are and its engineering —> Software creation and
management —► Software post-development issues —*
Software evolution.

Keywords
Traceability management; continuous integration; change
detection; impact analysis, DevOps.

1. INTRODUCTION
Software systems, in today’s context, arc considered as critical
business assets. Change of a software system is inevitable and
required to be updated continuously in order to maintain the
value of these assets. Hence, software evolution is preferred over
building completely new software systems due to the cost and
time benefits [I], Generally, software evolution occurs in a
software system life cycle at a stage where it is in active
operation and is evolving due to new requirements. The software
evolution mainly depends on the type of software being
maintained; involved in the development processes and continues
within the software system lifecycle. The evolution is highly
coupled with the components that arc affected by the change;
hence the cost and change impact can be estimated [2],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies arc
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Request permissions from Pcrmissions@acm.org.
ICCIP'17, November 24 -26.2017. Tokyo, Japan
O 2017 Association for Computing Machinery.
ACM ISBN 978-1 -4503-5365-6/17/11. 5.15.00
DOI: https://doi.org/10.1145/3162957.3162985

77

mailto:ireshar@cse.mrt.ac.Ik
mailto:dulanim@cse.mrt.ac.lk
mailto:indika@cse.mrt.ac.lk
mailto:Pcrmissions@acm.org
https://doi.org/10.1145/3162957.3162985

32
The event-based approaches use the events occurring during
software development activities to maintain traceability links
Accordingly, the deletion of an artefact can be made as a trigger
to delete all'the connected traceability links to it. Many related
work has achieved this using similar conceptual techniques such
as publish and subscribe mechanism for connecting traceability
maintenance tasks to particular events [12] The requirements
and source code arc classified as mandatory inputs to the
hypertext-based traceability maintenance approaches, whereas
conformance analysis is identified as complementary inputs [3],
This has used XML and the types of software artefacts are
viewed as constraints on one another. A set of constraints are
provided in the constraint-based approaches that must not be
violated by any traceability link [13] The traceability links that
are not clearly referenced in any constraint are considered to be
consistent by default The transformation-based approaches have
shown that artefacts generated through model transformations

be enriched to generate traceability links [12], However, it is
still found to be contradictory in practice. Furthermore, graph-
transformation based methodologies are involved in to define,
identify and maintain the traceability links in this domain [14],

Alternatively, Design Decision Tree (DDT) provides ability to
connect requirements to aicliilecluie decision and design
elements under traceability establishment. There is a model
named ‘Architecture Rationale and Elements Linkage (AREL)’
that has targeted traceability in the design rationale modeling
using the conceptual UML notations [15], It can be used to
capture relationships between only the two entities: architecture
rationale and architecture elements.

2. TRACEABILITY APPROACHES
2.1 Terminology
A range of software artefacts is involved throughout the SDLC.
Some of the early stage artefacts are Software Requirement
Specification (SRS), design diagrams, architectural documents
and quality attributes or the non-functional requirements reports
and source code. Test scripts, walkthroughs, inspections, bug
reports, build logs and test reports, configuration files, user
manuals are important artefacts present in the latter stage 'of
SDLC. Nevertheless, there is a relationship between the primary
artefacts witli the final deliverables of the software product Thus
the consistent management of software artefacts contains
significant importance in fine-tuning the software products.

1
I■
] Software artefact traceability, which is a key notion in the

software evolution, refers to the ability of building and tracking
the relationships among'artcfacts b'otli backward arid forward [3]
Traceability of different software artefacts can be among
homogeneous, or heterogeneous such as requirement to design
traceability and design to source code traceability, for example.
Requirement traceability shows the dependencies between
requirements and among the requirements and design/ code of a
software system. Thus, the artefact management is essential to
maintain adequate consistency in approaching towards a software
product. Hence, the notion of software artefact traceability
facilitates to overcome the inconsistencies in software artefacts

DcvOps concept motivates, towards the reduction of the gap
between development and operations teams' [9].' In a DevOps
environment, significant software artefact changes arc expected
rapidly. Thus, there is a requirement of determining and
analysing the resulted impact of the traceability to make accurate
change acceptance decisions in a DevOps environment [5].

2.2 Traceability Management
The major challenges in tracing software artefacts arc due to
different formats, abstraction levels and lack of defined data
format for artefacts [10]. Extracting relcvarit'data arid analyzing
the content of the artefact is one of the primary techniques
towards the traceability link generation. When text is used to
provide descriptive details of the informal semantics in artefacts,
the frequently involved pre-processing steps can be identified as
text normalization, identifier splitting and stop wordremovaL

Traceability provides a..logical ,connection b.elwiam..artefacts, of
the software development process. The cost of maintaining a
larger number of artefact relationships when a change occurs is
identified as a major reason for the limited use of traceability in
practice. Moreover, it is signified that the effort of maintaining
artefact relations is considerably high though the number of
artefacts is minimal. Hence, traceability maintenance, ensuring
the correctness of traceability over time is significant to address
[II]. Thus, proper identification of a feasible traceability
maintenance approach could reduce the total cost and effort in
the software development process.

The Rule-based approaches define rules based on the attributes of
the artefacts to generate traceability links between different
software artefacts. Then the traceability links maintenance is
performed by rc-evaluating the rules. Furthermore, the rule-based
approaches can be combined with event-driven approaches. Thus
the traceability maintenance can be conducted in two phases:
recognizing changes based on events, and re-evaluating the rules
that governing link updates [12].

: can

2.3 Change Detection and Impact Analysis
Since software change is the central norm of today's mainstream
SDLC, it is an utmost importance to cope with the changes
properly to reduce cost regardless of the used software
development model. A hypothesis-based change management
with a traceability timeline in a feature-oriented manner is
presented in [16], They have mapped important requirements as
features and a change is addressed in the feature level

Change impact analysis (CIA) in software development detects
the consequences of an artefact alteration on other parts of the
software .system.-Generally,impact, analysis. is conducted.before
or/and after a change implementation [17]. The benefits of
piloting impact analysis prior to a change are understandability,
change impact prediction and cost estimations. Therefore,
conducting impact analysis after an execution of a change can be
beneficial in tracing ripple effects, selecting test cases and
performing change propagation. :
Different impact analysis methods are available in the literature.
One such categorization is traccability-bascd and dependence-
based [17]. The traccability-bascd CIA is narrowed in recovering
the traceability links among software artefacts. Dcpcndencc-

ased CIA is defined as estimating the change effects of a
proposed change. Another categorization of CIA techniques is
static impact analysis and dynamic impact analysis. Static CIA
techniques consider all possible behaviors and inputs [IS]. Thus,
contains a cost of precision though safe. Moreover, static CIA
cciniqucs analyze the syntax and semantic dependencies ot a

program cot e and construct intermediate representations using
cal graphs and program dependency grapiis such as call grapHs-

'« (>uaimc CIA techniques overcome this drawback by
impacSarefdemified*^teT* “C"C':’**

I

j
■

i

more precise though less safe. !

78

33
? 4 Change Propagation

feedback mechanism involved after each build script execution

IcciiorfoT tc'srcascs7'erc~[l 7]rWhefT airaltcratfohd
essential to ensure that other related artefacts arc consistent as
well. Change propagation considers the required new changes for
other entities in the application to ensure the consistency within
the system after an entity has been changed. Change propagation
is mostly performed during the incremental changes.

An approach for change propagation in heterogeneous software
artefacts by combining multi-perspective modeling and impact
analysis is presented in [19], They have introduced a recursive
change propagation algorithm that restricts the change
propagations across dependency relation regardless of the type
and limit size of the impact sets to be computed. Another
technique is the use of a distance measure to control the
propagation of changes to indirectly related artefacts by either
terminating the change propagation or by prioritizing the impact
paths based on their depth [20]. Furthermore, there exist
probabilistic models, such as Markov Chains and Bayesian Belief
Networks that model change propagations based on mathematical
theorems [21] finis, contribute in computing the probability of
an entity being impacted by a change in an artefact.

2.5 Consistency Management
The changes and refinements that occur in artefacts are not
guaranteed to happen in a same speed and pace Therefore the
consequences of each artefact change or refinement may not
result in a uniform pattern. Some refinements may reflect and
impact on other artefacts immediately. Thus, the stability among
artefacts can become inconsistent and can fail in representing the
expected software system solution. Consequently, that can lead
to stakeholder dissatisfaction and system failure. Therefore,
consistency management is essential to minimize efforts in
software maintenance. Consistency management is the ability to
preserve the synchronization among software artefacts along with
the occurring changes [2]. Accordingly, an artefact alteration or
the presence of outdated artefacts should consistently reflect on
other affected artefacts before continuing in the software process.

A significant holistic artefact management framework that
considers traceability in heterogeneous artefacts and the notions
of change detection, change impact analysis and consistency
checking has discussed in [2]. They have used different
code impact analysis techniques to support software artefacts
such as requirements in natural language, UML class diagrams
and Java source code. The presented prototype has emphasized
any artefact inconsistencies with solution options. However, Ik
work is limited for non-distributed development environments.

.______ ______ ------------------ in* ,i.r.y,w«rin p.p*^
—failures—defying—ts—recommended best -pr-aetke—to-
-preswve-Cl.-MoreoverTthe ratiohal^bf-verskfivcbntrollihg-usihg

lhe scripts to control code rather than individual
key methodology' in tracing software artefacts.

Tree

commands is a

DevOps broadens the view of software engineering paradigm by
defining metrics that are understood
measurement methods and tools, bring
'everything to share

across teams, sharing
in automation, measure

among team members and by making
performance part of agile stories [23]. DevOps is an approach in
testing strategies that increases the organization throughput It
has been a powerful selection for better results and in speeding
up customer query processing due to the evolving tool support

Jenkins is a prominent DevOps tool that supervises regularly
executed jobs. It is an open source, rapid, continuous integration
server that generates a scenario where errors are being detected ai
an early stage in the SDLC. The basic functionality of Jenkins
server is to conduct a list of steps supported bv a triaeer [24]
Puppet is another configuration tool in DevOps. that deploys
micro-serv ices [25] There is a central configuration server that is
polled by clients for making changes to the configuration [26}
The configurations are described using a set of scripts defined in
a Domain Specific Language (DSL). Docker is another open
platform for building, shipping and executing distributed
software applications even on a virtual machine or a cloud
environment The existence of microservices has enriched by
tools including Docker. It has made the containers or the objects
that hold and transport data accessible for everyone easily [25J.
Thus, the powerful utilization of Docker has reduced the
deployment efforts in microservices. Travis [27] is a recognized
distributed continues integration service that supports building
and testing open source software projects. It encourages
workings by tightly coupling to DevOps practices. Further, it
performs automatic scheduled tests with GilHub repositories.

team

3. TRACEABILITY IN PRACTICE
3.1 Traceability Support Techniques
Figure I, illustrates a combination of existing techniques and
approaches in the domain of traceability management, change
detection, impact analysis, consistency management and
continuous integration. It emphasizes the lack of specific
techniques in traceability management in Cl rather than
theoretical principles such as DevOps, probabilistic practices.

source

ChaA(« MKThMMd

Impact

Tr*c««M0tV

MMMfMMnt

Macmaon

7jff*

2-6 Continuous Integration
Continues Integration (Cl) is the repetitive integration process ot
building and testing in a software process. It elaborates the
frequent merging of the sole components of an application into a
shared branch by preserving the healthiness of the code
S>act of Cl is significant in reducing the risks 1,1
development such as lack of deployable software, late disc D
of defects and lower project visibility [22].Here, 1
commits to the version control repositories are frcqucn > -
mto the Cl servers and applied build scripts to m .
^ee, The principal Single Source Pain, »««***£
having version control repositories such as
erforce and Visual SourceSafe that allows to

c°des from a single primary location [22].

v.

Vm
'*****.

. Traceability support techniquesFigure 1access all source
Also there is a

79

34
. Evaluation of Iraccabilily support techniquesTable 1

LimitationsAdvantagesMcthods/ tccliniqucs followedTecliniquc Functionalities Weakness in recognition of
structural changes. [3]

Idea! for artefacts such as
requirements, use eases and
object models, f 11]_______

Rules based on artefact attributes.
Traceability maintenance is based
on rule re-evaluation (11}______.

Rule-based Define rules in
traceability links
generation____ Weekly support for other '

types of artefacts.
Supports requirements and
source code artefacts. [3]Hypertext-

based
Support traceability
maintenance.

XML
Markup specifications. [28]

Scalability issues when
maintaining the dynamicily
of the traceability. [291

Ability to maintain dynamic
links. [29]

Publish-subscribe relationshipEvent-based Automate trace link
generation and
maintenance.

mechanism.
Event-based subscriptions. [29]
Set of constraints arc provided that
must not be violated by any
traceability link. [13]_________
Incremental transformation [12]
Graph- transformation based
methodologies. [14] ___________

Difficulty in referencing all
traceability links to
constraints. [13]______

Most artefacts types can be
viewed as constraints on one

Constraint-
based

Support traceability
maintenance

another. [13]
Not all software artefacts are
generated by model
transformations. [12]

Beneficial for model basedTrans formati
on-based

Support traceability
maintenance. software systems. [12]

Lack of scalability and tool
support. [29]

Maintain the quality by
assessing the impact of
functional changes upon non-
functional requirements. [29]

Soft goal Interdependency
Graph (SIG).
Traceability matrix. [29]

Goal-centric
(OCT)

Manage change
impact of non
functional
requirements.

visualization of the traceability links. Correspondingly, the
DcvOps practices can be achieved in this framework.

A comparison of traceability management techniques is given in
Table I. The major limitations are being restricted for few types
of artefacts and insufficient tool support. Many techniques
addiesses only the requirements and design level software
artefacts. Thus, the artefacts in later phases ofSDLC such as test
reports and configuration files are not extensively addressed.

3.2 Challenges in Traceability Management
The current software industry is still reluctant in adapting the
traceability aspects in to the environments due to the above
identified limitations. The major challenge is in building an
automated tool for traceability support with a wide range of
customizability and scalability [29]. It is important to consider
most of the artefact types and development environments [12]
Also it is challenging to visualize traceability management in a
flexible way [30]. Many existing work lacks tangible direct
advantages of traceability'management in software development
Further, maintaining traceability links during continuous software
evolution is challenging, as it is an endless and error prone task.

•
AftcfaCtt

™W : Traceability
Establishment

&
Traceability Management j

Schedule
Continuous Integration__

Change : ;
1 Detection

i i
; Change ;
: Impact ! !

;
| . Consistency ' '
I '^Management

.•Jr---..--. 7
::v Visualization

Change
Propagation

, i— , .
:'j

4. PROPOSED FRAMEWORK
We propose a frame work: to'capture traceability management in
continuous integration environment with DevOps practices and
the high-level view is illustrated in Figure 2..The previous work of
this research [6] [7] [8], SAT-Analyzcr, is primarily involved in
this framework for extending with the proposed enhancements,
which are shown in dashed line. Yet, the existing components of
the SAT-Analyzcr, which are shown in filled colour arc still need
enhancements to cater new software artefacts and considerations.

a

Figure 2. High-level view of the SAT-Analyzcr extension

5. CONCLUSION
Traceability management in a continuous integration environment
is an important aspect in SDLC due to the risk of conflicts and the
growth of software maintenance cost. This paper explores
literature on traceability management, change detection, impact
analysis, change propagation, consistency management an
continuous integration. The main limitation in existing context is
ack of sufficient tools and techniques. The existing tools are

limited to certain types of software artefacts and development
environments depending on the used programming languages or
the design notations. Tims, the automation of traceability relations
generation has become unachievable completely. Moreover, U>e
support for traceability and continuous integration is important to
be available throughout the SDLC, which is not complete,
preserved in current practices. Thus, the necessity of a frame***
lor traceabUuy management and continuous integration to cow
a DLL with DevOps practices is identified. Further, this PaP

This framework mainly considers software artefacts in Cl
such as configuration files and test scripts. With the scheduler a
scheduling algorithm will be implemented to automatically trigger
the continuous integration along with traceability management by
providing automation in a DevOps environment. The Cl process
can be integrated with the DevOps tools such as Jenkins that
supports build automation, versioning, triggering and distributed
development [31]. Therefore, enables DevOps with rapid changes,
collaborations, constant monitoring, Cl and delivery. Thus, the Cl
component is compromised with change detection, change impact
analysis, change propagation through the dependent artefacts and
consistency management among the affected artefacts prior to ihe

process

80

?j !

proposed an extended framework for the existing SAT-Anal
jl5| Tang A. et al. 2007. A rationale-based architecture modelyzer

development-in—terms—ef-iraeieabifiiv-nwno^^J^
"^continuous integration.------------------------------- ~ -—

frvil—\w7TT

l^arer

[16] Passos, L et a!72013:FcatureT3nenied Soflware Evolution
Categories and Subject Descriptors In Proc. of the Int.
worksop on Variability Modelling of Software Intensive
Systems (VaMoS). ACM. (2013). 17 1-17:8.

6. ACKNOWLEDGMENTS
The author acknowledges the support received from the LK
Domain Registry in publishing this paper The conclusions and
recommendations in this paper arc those of the author and
necessarily reflect the views of the LK Domain Registry. [17] Li, B. et al. 2013. A survey of code-based change impact

analysis techniques. Software Testing Verification and
Reliability. 23. 8 (2013). 613-646.

may not

7. REFERENCES
[18] Sun, X. et al 2010. Change impact analysis based

taxonomy of change types. In Proc. of the Int. Computer
Software and Applications Conference (2010), 373-382.

[19] Lehnert, S. et al. 2013. Rule-Based Impact Analysis for
Heterogeneous Software Artifacts. In Proceedings of die
I7'h European Conference on Software Maintenance and
Reengineering (2013). 209-2 IS.

[201 Di Rocco, J. et al. 2013. Traceability Visualization in
Metamodel Change Impact Detection In Proceedings of die
2nd Workshop on Graphical Modeling Language
Development. (2013). ACM. NY. USA. 51-62.

[211 Lehnert. S. 2011. A review of software change impact
analysis. (2011).

[22] Duvall. P. et al. 2007. Continuous integration: improving
software quality and reducing risk. Addison-Wesley. 2007.
1-272.

[1] Rajlich, V. and Vaclav 2014. Software evolution and
maintenance. In Proceedings of the on Future of Sofi\
Engineering (FOSE 2014). ACM. New York, USA. (2014).
133-144

on a
rare

[2] Pete, 1 ct al. 2015 Handling the differential evolution of
software artefacts' A framework for consistency
management. In Proc.of the 2Td Int. Conf. on Software
Analysis. Evolution, and Reengineering. (2015), 599-600

[3] Cleland-Huang, J ct al. 2012. Software and systems
traceability. Springer.

[4] Kim, G. 2011. Top 11 Things You Need to Know About
DevOps. IT Revolution Press. (201 I).

[5] Perera, I. et al. 2016. Evaluating the impact of DevOps
practice in Sri Lankan software development organizations.
In Proceedings of the I6'1' Int.Conf.on Advances in ICT for
Emerging Regions, (2016), 281-287. [23] Cottesheim, W. et al. 2015. Challenges, benefits and best

practices of performance focused DevOps. In Proceedings
of the 4'h ACM/SPEC l/U. Workshop on Large-Scale
Testing^2015). ACM, NY, USA. 3-3.

[24] Mullaguru. S. 2015. Changing Scenario of Testing
Paradigms using DevOps-A Comparative Study with
Classical Models. Global Journal of Computer Science and.
15.2(2015).
Viktor, F. 2016. The DevOps 2.0 Toolkit: Automating the
Continuous Deployment Pipeline with Containerized
Microservices. 2nd ed. Victor Farcis. (2016). 397.
Schafer, A. cl al. 2011. Collaborative Administration in the

of Research Computing Systems. October. II,

[6] Wijesinghe, D.B. et al. 2014. Establishing traceability links
software artefacts. In Proceedings of the I4,h Int.among

Conf. on Advances in ICT for Emerging Regions. (2014).
55-62.

[7] Kamalabalan, K. et al. 2015. Tool Support for Traceability
of Software Artefacts. In Proceedings of the Moratuwa
Engineering Research Conference, (2015), 318-323.

[8] Arunlhavanathan, A. et al. 2016. Support for traceability
management of software artefacts using Natural Language
Processing. In Proceedings of the 2nd Int. Moratuwa
Engineering Research Conference, (2016), 18-23.

[9] Pfleegcr, P.C. et al. 2015. DevOps A Software
Perspective.

[10] AI-Ani, B. et al. Continuous coordination within the context
of cooperative and human aspects of software engineering,
In Proc.of the Int. workshop on Cooperative and human
aspects of software engineering, ACM, NY, (200S), 1-4.

[11] Mader, P. and Gotcl, O. 2012. Towards automated
traceability maintenance. Journal of Systems and Software.
85, 10(2012), 2205-2227.

[12] Mnro, S. cl al. Traceability Maintenance: Factors and
Guidelines. In Proceedings of the 3ISI IEEE/ACM hit. Conf
on Automated Software Engineering (ASE 2016). ACM.
USA, 1313- 1322.

[25]

[26]
Architect’s Context

(2011), 1-6.
[27] Travis Cl - Test and Deploy Your Code with Confidence:

https://travis-ci.org/. Accessed: 2017-07-05.
[2S] Alves-Foss, J. et al. 2002. Experiments in the use of XML to

enhance traceability between object-oriented design
specifications and source code. In Procof the Annual
Hawaii hit. Conf on System Sciences., (2002), 3959-3966.
Galvao, I. and Goknil, A. 2007. Survey of Traceability

in Model-Driven Engineering. In Proceedings
Distributed Object

[29]
Approaches
of the --
Computing Conference,

U* IEEE Int.Enterprise
(2007), 313-313.

Visual Dashboard for
Teams. In Proceedings of

Human hactors
al. FASTDash: A

in Software[30] Bichl, J.T. ct
Fostering Awareness
the 2010 ACM SIGCHI hit,Conference on
in Computing Systems, ACM, USA, 1313-1322.

[31] Berg, A.M. 2012. Jenkins Continuous Integration Cookbook.
I. PACKTpublishing, (2012), 344.

tic establishment and
ID] Fockcl, M. ct al. 2012. Scmi-automa

maintenance of valid traceability in automotive development
processes. In Proc. of the 2nd hit. Workshop on Software
Engineering for Embedded Systems, (2012), 37—13.

[D] Sclnvarz, H. ct al. 2010. Graph-based traceability: a
comprehensive approach. Software ct Systems Mot e mg.

4 (2010), 473-492.

81

A

https://travis-ci.org/

t
— - POS System

I. D. Rubasinghe
ireshar@cse.mrt.ac.lk

D. A. Meedeniya
dulanim@cse.mrt.ac.lk

G. I. U. S. Perera
indika@cse.mrt.ac.lk

Department of Computer Science and Engineering,
University of Moratuwa, Sri Lanka

abstract Consequently, today different software traceability support tools
and frameworks can be identified [l J[2J. However, most solutionsSoftware traceability is a key notion in the software development.

The paper explores the previously developed research-based
Software Artefact Traceability Analyser tool called 'SAT-
Analyser The workflow and capabilities of SAT-Analyser tool
are described and evaluated using a case study of a Point of Sale
system. Phases such as software artefact identification, data pre
processing. data extraction and traceability establishment
methodologies used in the tool SAT-Analyser are presented with
graph-based traceability' outcome. The case-study based
evaluation shows positive accuracy results for the SAT-Analyser
tool. Moreover, the proposed traceability management framework
for the entire software development life cycle is presented.

are research-based due to the challenging limitations

Software Artefact Traceability Analyser (SAT-Analyser) tool
described in this paper is one such software traceability support
tool. It is capable of establishing traceability among software
artefacts in requirement, design and source code level and to
visualize the traceability graph for a given software application
Thus, this paper describes a Point of Sale (POS) based case study
demonstrating the process, workflow of the SAT-Analyser and
evaluates the accuracy of the traceability establishment process.

The paper is structured as follows. Section 2 explores set o!
related work and Section 3 describes the case study application
The accuracy of the tool is evaluated in Section 4 and Section 5CCS Concepts
concludes the paper with possible future extensions.• Software and its engineering —♦ Software creation and

management —* Software post-development issues —*■ Software 2. BACKGROUND STUDY
evolution Software traceability is the ability to track artefact behaviors

during the software development process by providing a logical
connection among artifacts. Software traceability process consists
of several sub processes such as establishing traceability' links
among artefacts and traceability' maintenance [3j.

Keywords
Traceability establishment; Visualization: Traceability graph,
SAT-Analyser tool.

1. INTRODUCTION An architecture-centric, stakeholder-driven, industry-oriented and
open hypermedia traceability approach intluenced by e-Scicnce
technologies, is presented in [4], It has addressed the multi
faceted traceability problem by integrating the implementation to
a traceability' tool named ArchStudio. They have followed a rule-
based classification approach for establishing artefact-link
relationships and n-ary first class links for trace relationships. A
facet-based approach by r rc1 u-" f

Software system development is challenging due to the c anges
occur in requirements, business organizations, legal ru es an
improper use of tools and technologies. Managing these cianges
is difficult and affects the success or the failure of a software
system. Thus, it is essential to have appropriate S°M10**
handle the changes during the Software Development i e
(SDLC). The changes can occur at any phase to any intermediate
software outcomes, which arc called artefacts. An alteration.
single artefact can affect one or more other arte acts in on
many phases with different severities. Therefore, identification
die changes, affected artefacts, severity and the conscqu
important to manage artefact traceability throughout e ,
Accordingly', the notion of software traceability has been c
10 enable tracing capabilities among software arlefutcs.

'■j Gramme! [5]. has narrowed the
traceability' scope into model-driven software development They
have traced the model transformations using a domain specific

(DSL) called trace-DSL for data extraction. A work on
code and test case artefacts traceability using gamificalion

technologies is presented in [6], with a proof-of-concepl prototype
called GamiTraci. It is highly influenced by the similar previous
work [7], that has used slicing and conceptual coupling techniques
in establishing test to code traceability.
The accuracy of the traceability results is a major challenge. The
reliability of the traceability is addressed in [8], that can be
applied for safety critical software systems. It can be identified as
a light-weight rcsults-oriented solution. Tin’s trace link model
separates the untrusted links and conducts a remediation process
continuously. However, there is a limitation of trace maintenance
facilities. Traceclipse [9], is a research-based Eclipse plugin
targeted for traceability link recovery and maintenance. Its link
recovery process is influenced by Information Retrieval (IR)

language
source

1 cr,nission to make digital or hard copies of all or pait of d arc
Personal or classroom use is granted without fee provi ^ {\xal
n°l made or distributed for profit or commercial adx antag ^^
J°P,CS beat this notice and the full citation on the first P o • bc
0r components of this work owned by others t lan or
oaored. Abstracting with credit is permitted. To coj pri0r
Publish, to post on servers or to redistribute to ‘ • -on$ Horn

ppcc,r'c permission and/or a fee. Request P

24-26, 20, S. Singapore. S.ngapore.
Ar. Association for Computing Machinery
u,1ISBN 978-1 --1503-6360-0/18/02...S15.00

Ps//doi.org/l0.1145/3193092.3193094.

mailto:ireshar@cse.mrt.ac.lk
mailto:dulanim@cse.mrt.ac.lk
mailto:indika@cse.mrt.ac.lk

37*v l

techniques and limited for source code artefact in Java. A similar
work on semi-automated traceability recovery with the use of IR
and classification is presented in [10]. An ontology-based attempt
has been conducted in [11], by mapping domain concepts and
artefact indexes into an ontology. Rut the traceability support of it
is limited only for Unified Process based software development.
Although, there exist limitations and challenges in achieving
traceability within the SDLC. traceability management has been
an active research area in modem software development [12]J13].

Our previous work [14], has evaluated different traceability and
consistency management techniques. We have proposed an
extended framework for SAT-Analyzer to be compatible with
traceability management and continuous integration for DevOps
environments. Another research on managing traceability in self-
adaptive systems is presented in [15], which is a generic toolkit
with a interlink visualizer for inconsistency detection, further,
considering the software artefacts in later stages of software
development with DevOps practices is discussed in [16] providing
continuous integration capabilities by using Jenkins.

normal order having only the cash on delivery facility. These
requirements are stated in the software requirement specification
in natural language. Figure 2. shows a section of the natural
language requirements considered for this study.

The corresponding design in UML class diagram is shown in
figure 3. The main classes are identified as Customer, Order and
Item. An Order is specialized into SpecialOrder and NormalOrder
Since the entity Order is composed of set of Item entities, there is
an aggregation relationship. Similarly, the association between the
entities, Customer class and Order class, is a composition
relationship which is a strong aggregation. Thus, if the Customer
entity is deleted, then Order (part) entity is deleted as well.

1■j

i
I Ir. a shop, a customer car. place more than one

order, .-.n order can have more then one item.
Customer details must record the name and
location. Item details must record the item
number and price. A customer can send and receive
the order using the system The customer can order
in two types. Orders are special order and normal
order. An order can be confirmed and closed by the
customer. The special order can order items
online. Normal order can order items in cash on
delivery. An item can be added and removed.

5
3. SAT-ANALYSER
3.1 Design Considerations
SAT-Analyser is a traceability management tool capable of
tracing software requirement artefact. Unified Modelling
Language (UML) class diagram artefact and the Java source code
artefact [I7||I|(I8|. Thus, it can be used for traceability in
requirements,-design and development stages of the SDLC. The
system design is shown in figure I.

Figure 2. POS requirements in natural language

:Customer ' Item
■ - f'emNtiu'lior
J •price
j MOdlWOiO
- removelien'O

Order

I
____ j • nun be i

*conlimi(j
-closer.

♦none
-rot a ion

.r* sea JC’i tier ()
♦ ii>c«evoOidof(>11 Design

11 Artefact
Requirement

Artefact
Source Code

Artefact

I I I
ANTLR

i»va Grammar
IS OH

Pre -processor[vVonfNctjNLP
NormalOrderSpecialOrder

I -ccnfirmO
♦closed
*cod()

♦ confirmfi
«closr»0
/•orJincOrdeiQ

Traceability Establishment

Jaro-WlnkJcr AJc?riU«n teventhteln Pittance XleocithmZ

i Figure 3. POS UML class diagram
i ,• ■ *v

! Artefacts and Relationships XML Conversion import java.util.HashMap.
import java.ulil. Iterator.
public static void main(Slring[] args) (
Customer customer “ new Customer (name, address);
ItemManager ilemManagcr = new ltemManagcr();
HashMap<String, Itcm> itcmMap = itcmManagcr getAllItcms();
Itcrator<String> availableList = itcmMap.keySct().availablcList();
System.out.printIn("Ordcr Items"),
Order order = new Order (date, number, type);
while (avaitablcLisi.hasNcxlO) (
Item itcin = itcmMap.gct(availablcList.ncxt()),
order.ad<IIiem(iiem);
System.out .println(i(cm.name + “ -l + item.pi ice").

mdjm

I • • Visualization
n<«>4j Graph 00 I GepWGrjph Generator

:

i
Figure I. SAT-Analyser system design

SAT-Analyser tool considers three main artefacts; natural
language based requirements, UML (Unified Modelling
Language) class diagram as design artefact and Java source code
for the implementation phase artefact. Initially, data pre
processing techniques are applied for all three types of artefacts,
retrieve necessary information and transform them into a common
format in XML. Then traceability links are established between
the dependent artefacts and visualized llic traceability
relationships in a traceability graph.

3.2 Workflow: Point of Sale Application
A case study based evaluation is performed using the tool SAT-
Analyser. The selected case study is a Point of Sale (POS) system,
where a customer can place orders consist of items. An order can
be cither a special order having the online ordering feature or a

}
order.con ft rmO
if(ordcr.lypc — "SpecialOrder”) {

SpecialOrder spccialordcr = new SpccialOrdcr(datc, number);
spccialordcr.onl incOrdcr();

)
else}

NormalOrder spccialordcr = new NormalOrdcr(datc, number).
order.cashOnDclivciy().

)
)

Figure 4. POS source code

Consequently, a similarity is marked if either threshold is met byThe relevant source code artefacts are given in Java programing

links arc parsed thiojlsJ!_hcd_iracclIuii C-Llrhr a5355s

corresponding classes (or object creation and method .calling-arc..:
implemented separately, and considered as the code artefacts.

Requirements, design and development related artefacts are given
as the inputs to the SAT-Analyser in their raw formats, namely
requirements document in .txt, UML class diagram in either .mdj
or .xmi formal and the source code in one or more .java files.
Then. SAT-Analyser performs the artefact extraction in the data
pre-processing stage. Since the inputs arc in three different
formats, (I) requirements arc processed using the Stanford Core
NLP libraries (I9| and WordNel lexical database; (2) design class
diagram follows a JSON structure at the backend of its .mdj and
.xmi formats; (3) source code is processed using the ANother
Tool for Language Recognition (ANTLR) [20] Java 8 Grammar
to identify the required artefact sub elements. The artefact
elements include the requirements, classes, methods, attributes
and the relationships inheritance, association and generalization.
Next the extracted artefacts are listed and initiate the traceability
establishment process The traces are generated and mapped based
on a string comparison as give in Algorithm I

~ rthcrDocumcnt OHjccrKlbdcflDOM) parser [24j and converted
into a predefined XML structure. Figure 5 shows a section of the

of the generated intermediate XML file for the UML
class diagram artefact; Customer and Order class
structure

<?xml vcrsion=“l 0" encoding-"L’TF-8"',>
<Artcfacls>

<Anefact type=”UMl-Diagram“>
<ArtefactElemen(id="Dl" namc=”Customerr lype=*Class">

<AnefactSubElcmeni id=”Dl_Fl" namc-'nimc’
=”UMLAllribu(c" vanablcTypc="" visibility-'public' >type

<ArtcfactSubElemeni id=”DI_F2" namc=’location"
iypc="LIMLAttributc" vanablcTypc="" visibilit>-’publ:c*'>

<AncfactSubElcmcnt id='DI_MI" name="sendOrder"
parametcrs="' retumTypc=”" statu>=""
type="LIMLOpcration” visibility-"public"/>

<ArtefaciSubElement id=“DI_M2" name=’recieveOrder"
parametersretumTypc-"' status^'"'
type="LrMLOperation' visibilit>'="public’/>

</ArtcfaciElcmcnt>
cArtefactElemenl id="D2’ nanic-“Ordcr" t>pc=“Clasi,'>

<Arxcfact5ubElcmcnt id=''D2_Fl" namc="date'
typc=’UMLAttribute’ variabIcTypc=” visibility-“public”. >

<ArtefaetSubElemcnt id-“D2_F2” name="nomber"
iype=”UMLAttribute" variableTspe-"' visibility-"public” >

<ArtefactSubElcment id=”D2_M I' name="coiifirm"
parameters3"” rclumTypc3”” status3"” t\pc="UMl.Operation'
visibility =”public"/>

<ArtcfaclSubElcmcnl id=”D2_M2" namc=”closc" paratneters="'
rciurnTvpe3"" status3"" t>pc=,,UMLOperaiion" visibility="public"

</ArtefactElemem>

j

I
Algorithm I Traceability link generation
Require: Software artefacts
Ensure: Building relationships among artefacts

input: artefacts a
Ibr (a)

gel sy nonyms from WordNel
String comparison for names of classes, attributes,
methods and relationships

matchDistance = Jaro Winkler algorithm
similarity (elemcnll.elemenl2)

If (matchDistance > = 0.8 and <= 1.0)
Build trace link among two artefact elements

I
2
3.

!4.

Figure 5. UML Artefact XML file5.
considered as the major artefactAccordingly, the classes

elements and arc given a unique id. The corresponding attributes
and the methods are listed as the artefact sub elements for each
artefact clement with a unique identifier starting with the id of the
parent artefact element. For an example, the
as a class name and the attributes of it arc the name and location,
while the methods are sendOrder and receiveOrder.

are
6.
7.
8. Else

customer is identifiededilDistance= Lcvenshlein Distance algorithm
distance (elementI,elcmenl2)

matchDistance = l - edilDislance
If (matchDistance > = 0.8 and < = 1.0)

Build trace link among two artefact elements
XML Writer (nodes, links)

15. output: XML conversion of artefact traceability' links
____________(Rclations.xml)__________________

9.
10.
II.

A£> y Artefacts Contiirrotion - °.
■ •* C3 rwrnva; oro*i
i •0*04 o*de<

*-C3d«ai
f G3cu»tom«r

12.
13. Ffe14. *

* 1

l*- E3
i- QR*<JiOA*NB>

t c3
-C3 A»\r>ut«
t GSfcWhccs

D
1 ■ D

t c3 *

♦ C3
Q CMtf o»J*f

i ..
1 j

iAlgorithm I, handles the pre-processed artifact data towards the
traceability link generation. It ensures the relationship building
among the extracted artefact elements that arc input for the
algorithm. Then using the WordNct synonyms and pre-deftned
dictionary' ontology, a string similarity compulation is performed
using the Jaro-Winklcr algorithm [21] and Lcvcnshtcin Distance
Algorithm [22]. Jaro-Winkler algorithm is selected prominently
due to its efficiency than Lcvcnshtcin algorithm [23]. The former
algorithm considers that, the differences near the start of the
strings arc more significant than differences close to the end of the
strings, while Lcvcnshtcin algorithm computes the number of
edits needed to convert one string to another. Fixed threshold
values arc associated for both algorithms and Lcvcnshtcin is used
for deep comparison if the Jaro-Winklcr similarity measure is not
in the range of 0.8 and 1.0. Additionally, the WordNel synonym
selection is done using the Lcvcnshtcin Distance algorithm with a
threshold of 0.85.

i

3■ •»

.■r.-r-w*

Figure 6. Artefact Extraction Confirmation Window

At the end of these backend data pre-processing, data extraction
and traceability establishment, the results are presented in a tree
structure by' the artefact confirmation option of the tool as shown
in Figure 6. The use of the DOM parser is benefiUed, since it is
capable of loading the full XML documents into a tree structure.

■

39'L v.

Hcncc. the user can alter, delete or add any misinterpreted artefact
elements prior die confirmation.

The generated intermediate XML tiles would be modified
accordingly and soon after the traceability project is created to the
user. Afterwards, all these set of XML files are converted into an
array formal that follows a key-value pair structure using DOM
parser und the Simple API for XML (SAX) parser's exception
handling capabilities [25J to store in the Neo4j graph database
(26). Then the open graph visualization platform Gephi (27J is
used for the graph generation using the nodes and links stored in
Nco4j. Consequently, the SAT-Analyser visualizes the traceability
links among artefacts or any selected artefact sub elements. The
set of visualization filtering are as follow.

• Full graph view with artefacts and their links
• F«dge filtered view for the relationship among the

identified classes, attributes, operations for each of the
artefact in requirements, design and code.

• Artefact filtered views for each one of 3 artefacts
separately.

Accordingly, the metrics precision and recall are applied as
information retrieval accuracy measurements (28). The artefact
and relationship extraction results arc evaluated as follows.

Artefact, relationship extraction precision
_ number of correctly identified artefacts, relations

I total numberofidenlified artefacts, relations

Similarly, the recall is measured as follows

Artefact, relationship extraction recall
_ number of correctly identified artefacts, relations

total numberofactual artefacts, relations

Moreover. F-measure (FI score), which is the weighted average
of the obtained precision and recall: is derived as follows

^ prcscion « recall
prescion + recall

Table I. Evaluation of traceability support techniques

FI =

Traceability
Establishment

F-MeasurcArtefact Precision Recall

! Requirement —
Design

0.8Class 0 8I
0.6Attribute 0.5I

fijwr. • 0.6Method 0.5I
Design —

Source eode
Class III

Attribute 0.40.3I
0.5 0.6Method 0.8

Requirement —
Code

IClass I I
0,6 0.7Attribute I

0.7Method I 0.6
U)ll«c« WjMi

c ----- *-
E-------

Traceability establishment accuracy among similar artefacts in
different phases of the SDLG is shown in Table I. The precision
denotes positive results for the generated trace links, while the
lower recall signifies that there exist missing links among
attributes and methods. It is observed that the inaccurate artefact
elements extraction and identification with NLP that contain
different naming conventions and less meaningful names in
requirement artefacts, have led to the lack of accuracy. However,
the overall F-mcasurcs arc biased towards I and requirement to
code traceability has shown a high accuracy.

MO.o ««n.M Jt m
f/ •• »*«»»».«>

, LI isyi.ixvym

i l y
Figure 7. Full graph view of traceability in POS system

!
5. CONCLUSIONFigure 7 illustrates a selected section of the obtained full graph

view of this POS system case study. Color codes arc used for each
type of nodes and links in the representation. Moreover, the
details of each selected node arc listed in the information section
separately. The length of the edges denotes the strength of the
similarity between each two nodes. Thus, larger the siring
comparison value means shorter the length of corresponding edge.
For example, in Figure 7, the edit distance value among RQI and
D4 is 0.916 which denotes normal order class in requirement
artefact and design, respectively. Similarly, the value among
RQI_M2 and D4_M3 is 1.0, which represents cash on delivery
method in requirements artefact and UML design artefact,
respectively. Titus, the length of the edge between RQI and D4 is
bit lengthy as the UML class diagram artefact has used the class
name with naming conventions.

Software traceability is essential to ensure .the proper
synchronization among software artefacts during the software
development process. There exist various software traceability
related solutions; however most of them have certain limitations.
SAT-Analyser tool presented in this paper is one such tool support
software requirement, design and source code artefacts. This
paper highlights the accuracy of the traceability establishment
process of SAT-Analyser tool using a POS based application.

Requirement, design and development related artefacts in their
raw formats arc fed to the tool as text. UML class diagram file and
Java source code files, respectively. SAT-Analyser pre-processed
the input data and extracts the relevant artefact elements. The
traceability links among the artefacts arc established based on a
similarity calculation algorithm. Moreover, the traceability
relationships arc visualized using traceability graphs for developer
decision making. The tool allows manual artefact trace alterations
and updates the graphs accordingly.

SAT-Analyser is evaluated using the accuracy measures precision,
recull and F-measure based on the established traceability links
among artefacts in the considered case study. Significant positive

i
■■

i
■

4. EVALUATION
The evaluation of the applied POS system is conducted using
correctness measures based on the artefact, relationship extraction
shown in Figure 6, since proper artefact and relationship
identification is crucial towards the final traceability outcomes.

[I3J Poshvvanyk. D. ct al. 6ih In(. workshop on traceability inresults have been obtained and identified possible improvements
ifh.

—Furthermore, tire—integration—of- ■Proceedtngs- 41 ■cuipu ic.
Soft-ware Engineering (ICSE 'll). ACM. NY, USA. 1214-
1215

continuous integration support lor the tool with DevOps principles
would be an important future work to cope with the agile based
software development environments. f141 Rubasinghc, I D. et al 2017. Towards Traceability

Management in Continuous Integration with SAT-Analyser
In Proceedings of the 3rd Int Conf. on Communication and
Information Processing. (2017). ACM. Tokyo.

(15] Percra. I et al 2015 A Traceability’ Management
framework for Artefacts in Self-Adaptive Systems. In
Proceedings of the IOth Int. Conf. on Industrial and
InformationSystems(ICHS). (2015). IEEE 37-42

(I6| Palihawadana. S. cl a! 2017. Tool support for traceabihi\
management of software artefacts with DevOps practices. In
Proceedings of the Mora luxe a Eng Research Conf
(MERCon). (2017). IEEE. 129-134

[I7| Wijcsinghe. D.B. el al. 2014 Establishing traceabililv links
among software artefacts. In Proceedings of the 14th Int
Con) on Advances in ICT for Emerging Regions. (2014 j
IEEE 55—62.

1181 Arunthavanaihan. A. et al 2016. Support for traccabilitv
management of software artefacts using Natural Language
Processing. In Proceedings of the 2nd Int Moratuwa Eng
Research Conf (MERCon) (2016). IFF.F 18-23

(19| Manning. C. D. et al. 2014 The Stanford CoreNLP Natural
Language Processing Toolkit. In Proceedings of 32nd
Annual Meeting o) the Association for Computational
Linguistics System Demonstrations. Baltimore. Maryland.
55-60.

(20| AN I LK: http ■•www.antlr.org/. Accessed: 2017-07-21

http ;alias-
i com lingpipe docs api/com/aliasi 'spell/Jaro ft 'inkle rDis tan
ce.html Accessed. 2017-08-14

(22] Efficient Implementation of the Levcnshlein-Algorithm.
Fault-tolerant Search Technology. Error-tolerant Search
Technologies: http www levenshtein.net'’. Accessed: 2017-
10-14.

6. ACKNOWLEDGMENTS
The author acknowledges the support received from the Senate
Research Committee Grant SRC/LT/2016/07, University of
Moratuwa, Sri Lanka in publishing this paper.

7. REFERENCES
II | Kamalabalan. K. ct al 2015. Tool Support for Traceability

of Software Artefacts In Proceedings of the Moratuwa Eng.
Research ConJ. (MERCon). (2015). IEEE. 318-323.

[2] Satish. C. J. el al. 2016. A Review of Tools for Traceability
Management in Software Projects. Int .Journal for research
in emerging science and technology. 3. 3 (2016), 6-10

[3] Mader. P. and Gotel. O 2012. Towards automated
traceability maintenance. Journal of Systems and Software.
85. 10 (2012). 2205-2227

(4] Hazeline U. Asun ion. 2008. Towards practical software
traceability. In Companion of the 30tli international
conference on Software engineering (ICSE Companion '08).
ACM, NY. USA. 1023-1026.

(5] Grammel. B and Kastenholz. S 2010. A generic
traceability framework for facet-based traceability data
extraction in model-driven software development. In
Proceedings of the 6th ECMFA Traceability Workshop
(F.CMFA-TW ' 10;. ACM, NY. USA, 7-14

(6] Parizi, R. M. On the gamifiealion of human-centric
traceability tasks in software testing and coding. In
Proceedings of the 2016 IEEE Nth Int. Conf on Software
Eng Research. Management and Applications (SERA).
IEEE, 193-200.

(7] Qusef, A. et al. 2011. SCOTCH: Tesl-lo-code traceability
using slicing and conceptual coupling. In Proceedings of the
2011 27th IEEE Int. Conf. on Software Maintenance
(ICSM), IEEE, 63-72.

(8] Clcland-Huang, J. ct al. 2014. Achieving lightweight
trustworthy traceability. In Proceedings of the 22nd ACM
SIGSOFT Int. Symposium on Foundations of Software Eng.
(FSE 2014). ACM, NY, USA, 849-852.

(9] Klock, S. ct al. 2011. Traceclipsc: an eclipse plug-in for
traceability link recovery and management. In Proceeding
of the 6th hit. workshop on Traceability in emerging forms
of Soflwarc Eng. (TEFSE 'll). ACM, NY, USA, 24-30.

(10] Mills C. Automating traceability link recovery through
classification. In Proceedings of the 2017 l/tli Joint
Meeting on Foundations of Sofrwarc Eng. (ESEC/FSE
2017) ACM, NY, USA, 1068-1070.

(11] Noll. R. P. and Ribciro. M B. Enhancing traceability using
ontologies. In Proceedings of the 2007 ACM symposium on
Applied computing (SAC ’07) ACM, NY, USA, 1496-
1497. DOMutp.Y/dx.doi.org/10.1145/1244002.1244322.

(12] Clcland-Huang, J. Traceability research: taking the next
steps. In Proceeding of the 6th Int workshop on
Traceability in emerging forms of Software Eng (TEFSE
'll). ACM, NY, USA, 1-2.

[21] JaroWinklerDislance (LingPipe API):

2006. A Comparison of Personal Name(23] Christen P.
Matching: Techniques and Practical Issues. In Proceedings
of the IEEE Sixth Data Mining Workshop (ICDM ’06).
IEEE, Hong Kong, China.

(24] Le Hors. A. et al. 2004. Document Object Model (DOM)
Level 3 Core S/>ecification. W3C Technical Report.
Massachusetts Institute of Technology. Cambridge. MA.

(25] Parser
hHp//www.sa.xprojectorg/apidoC’'org.xml/sax/Parser.html.
Accessed: 2017-10-15.

(26] Graph Visualization for Neo4j: Tools. Methods and More:
https:, 7neo4j.com 'dcveloper/guidc-data-visualization/.
Accessed: 2017-07-23.

(27| Gephi - The Open Graph Viz Platform: https:7igephi.orgi.
Accessed: 2017-10-14.

(28| Zcugmann T. et al. 2011. Precision and Recall. In
Encyclopedia of Machine Learning. Springer US, Boston,
M A, 781-781.

:
'

/ 'RECEIVED'

n '8 OCT 2022)i?ico
&
\s\ v

. 'Is AC • SECTION'OX
■v .\

(:
J

http://www.antlr.org/
http://www.sa.xprojectorg/apidoC%e2%80%99'org.xml/sax/Parser.html

