DEVELOPMENT OF A RAINFALL-RUNOFF-INUNDATION MODEL AND FLOOD MONITORING SYSTEM BASED ON SATELLITE IMAGERY FOR KALU GANGA BASIN, SRI LANKA

Tina Sultana

208363F

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2022

DEVELOPMENT OF A RAINFALL-RUNOFF-INUNDATION MODEL AND FLOOD MONITORING SYSTEM BASED ON SATELLITE IMAGERY FOR KALU GANGA BASIN, SRI LANKA

Tina Sultana

208363F

Supervised by

Prof. R. L. H. L. Rajapakse

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Civil Engineering

> UNESCO Madanjeet Singh Centre for South Asia Water Management (UMCSAWM) Department of Civil Engineering

> > University of Moratuwa Sri Lanka

> > > February 2022

DECLARATION OF THE CANDIDATE AND SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text".

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other media. I retain the right to use this content in whole or part in future works (such as articles or books).

UOM Verified Signature

2022-02-03

Tina Sultana

Date

The above candidate has carried out research for the Masters Dissertation under my supervision.

UOM Verified Signature

2022-02-03

Prof. R. L. H. L. Rajapakse

Date

ABSTRACT

Development of a Rainfall-Runoff-Inundation Model and Flood Monitoring

System based on Satellite Imagery for Kalu Ganga Basin, Sri Lanka

Floods are getting severe due to climate change and anthropogenic activities which need immediate response to lower the risk and decrease the human and financial losses. Flood inundation mapping for flood risk preparedness using satellite data has been widely used in many recent studies. However, satellite imageries may contain some uncertainties. Therefore, flood inundation maps from satellite data need to be verified with flood inundation maps generated by hydrological models from observed data for accurate estimation of flood risk. Although satellite-generated flood maps are widely used to determine the inundation extent, there are certain challenges to their use such as inaccessibility of imagery due to satellite orbit or cloud cover, which hampers accurate measurement of inundation risk.

In this study, the rainfall-runoff inundation (RRI) model for the Kalu Ganga basin was developed, and its applicability to evaluate the discharge and flood inundation areas was discussed. The RRI model could estimate discharge, water levels, and inundation areas simultaneously based on two-dimensional diffusion wave equations. The results and statistical analysis indicate that the RRI model could efficiently estimate extreme flood events. For model calibration, the R^2 value ranges from 0.72-0.80 and for model validation, the R^2 value ranges from 0.75-0.90, which shows good performance of the model.

The simulated inundation extents were verified and compared with Sentinel 1A SAR (Synthetic Aperture Radar) satellite imagery data for 2016 and 2017 flood events. Sentinel 1A, GRD-IW (Ground Range Detected - Interferometric Wide swath) mode of VV co-polarization, with a spatial resolution of 20 m was acquired and pre-processed using the Sentinel Application Platform (SNAP) software toolbox. The pre-processed images were corrected, and maximum likelihood supervised classification was performed to produce the flood inundation maps of the study area. The actual flooded area from RRI is found to be 291.97 km² and that from satellite image is found to be 201.7 km² for the 2016 flood event. For the 2017 flood event, the actual flooded area from RRI is found to be 371.14 km² and that from satellite image is found to be 297.42 km². Hence, the flooded area difference was found to be 35.54 % for 2016 and 22.13 % for 2017 flood events from the total area selected from the model. Most of the floodplains from the RRI model and satellite images were along the main river in the basin, including the city of Ratnapura (upstream), the city of Kalutara (downstream), and the areas in between. These results with an accuracy level of $\sim 25 \% - 30 \%$ are deemed to be within an acceptable range for emergency evacuation and rapid flood damage assessment purposes. Future studies should further investigate and validate the flood inundation mapping ability of Sentinel 1A SAR using ground-based reference flood maps or other satellite data. This study reveals that satellite imagery can be one of the most costeffective ways to capture the flood disaster footprints, identify flood-prone areas, and understand the flooding problem in a better way. This methodology can be effectively used for disaster risk management, where the time factor is very critical.

Keywords: Catchment hydrology, Extreme events, River discharge, SAR, Sentinel 1A

DEDICATION

I would like to dedicate this work to my parents and my brother who always supported me, encouraged, and guided me throughout my life.

ACKNOWLEDGEMENT

I would like to sincerely thank my supervisor, Prof. Lalith Rajapakse, for his help and guidance during the duration of this project. His help and advice were major factors that contributed to the completion of the project.

I would also like to thank Prof. Sohan Wijesekera for imparting his knowledge and his expert guidance during his classes which helped me in planning and execution of my project.

I will be eternally grateful to the late Sri Madanjeet Singh, SAF India chapter, and the UMCSAWM Centre for funding my Masters' level studies. Without their support, I would not have been able to support my MSc thesis.

My special thanks to my mentor, Mr. Wajira Kumarasinghe, and the staff of the Department of Civil Engineering and the University of Moratuwa for all their help during this program, especially during the lockdown due to the Covid pandemic. I would also thank the Irrigation Department and Meteorological Department of Sri Lanka for supplying me with the necessary data for the project and my colleagues for their constant help and support for the execution of the project.

Finally, I would thank my parents and my brother for all their support throughout my life and for their encouragement to pursue higher studies in this field of Water Resource Engineering.

TABLE OF CONTENTS

Declaration of the candidate and supervisor V
AbstractVII
DedicationIX
AcknowledgementsXI
Table of contentsXIII
List of figures XVII
List of tablesXIX
List of abbreviationsXXI
Chapter 1 1
1 Introduction 1
1.1 General:
1.2 Background:
1.3 Problem Identification
1.4 Problem Statement
1.5 Objectives
1.5.1 Main Objective
1.5.2 Specific Objective
1.6 Significance of Research
Chapter 2
2 Literature review
2.1 General
2.2 Flooding in South Asia and Growing Concerns due to Climate Impacts
2.3 Flood Monitoring Systems

2.4 MODIS/ Other Satellite data	12
2.5 Types of Hydrologic Models	15
2.6 RRI Model	17
2.7 Methods for Selection of Averaging of Point Rainfall over an Area	23
2.8 Model Discharge Evaluation Indices	24
2.0 Woder Discharge Evaluation indices	27
apter 3	
Materials and methods	27
3.1 Methodology	27
3.2 Study Area	
2.2 Date Charling and Analysia	24
2.2.1 Trada to be used for data and second in	
3.3.1 Tools to be used for data processing	
3.3.2 Thiessen polygon for selection of rainfall gauging station	
3.3.5 Data checking for missing values	
3.3.4 Filling of missing values of rainfall data	
3.3.5 Seasonal trends	
3.3.6 Streamflow data	
3.3.7 Gumbel distribution method	
3.3.8 Identification of floodplain areas	
apter 4	63
Model development and applications	63
4.1 RRI Model Application	63
4.1.1 Overview of the model structure	63
4.1.2 Two-dimensional surface and subsurface flow model	
4.2 Model Setup and Development	67
4.3 Sensitivity Analysis	73
apter 5	81
Results	81

	5.1	Model Calibration			
	5.2	Model Validation			
	5.3	Inundation Analysis			
C	Chapter 6 101				
6	D	iscussion			
	6.1	Data Analysis			
	6.2	Selection of Events 102			
	6.3	Evaluation of Discharge from RRI Model 102			
	6.4	Evaluation of Inundation Areas 103			
Chapter 7 107					
7	С	onclusions			
Chapter 8 109					
8	R	ecommendations 109			
Bibliography 111					
Annexure 1 119					
Data Checking For Missing Values 119					
Annexure 2 121					
Calibration of RRI Model 121					
V	alida	tion of RRI Model 124			

LIST OF FIGURES

Figure 2-1 Catchment area along with other satellite data spatial resolution	12
Figure 3-1: Methodology flowchart for the study area	· 28
Figure 3-2: Methodology flowchart for the inundation analysis	· 29
Figure 3-3: Study area	31
Figure 3-4: Slope map of Kalu Ganga River Basin [Source: SRTM DEM http://srtm.csi.cgiar.org] -	32
Figure 3-5: Landuse map of Kalu Ganga River Basin [Source: Survey Department of Sri Lanka, 19	99]
	33
Figure 3-6: Thiessen polygon map of Kalu Ganga Basin	36
Figure 3-7: Linear regression analysis for Ratnapura, USK Valley, Galatura, and Halwatura rainfall	28
Eigure 3.8: Single mass curve	30
Figure 3-0: Single mass curve of all combined rainfall gauging stations	40
Figure 3-10: Double mass curve of all rainfall stations	40
Figure 3-11: Vearly rainfall variation (mm) of Kalu Ganga Basin from 1960-2020	· +1 /1
Figure 3-12: Seasonal variation of Patnanura, USK Vallay, Calatura Estata, and Halwatura rainfall	41
gauging stations	43
Figure 3-13: Rainfall and streamflow graph for Kalu Ganga Basin	. 44
Figure 3-14: Box plot graph of all rainfall gauging stations	45
Figure 3-15: Annual total streamflow at Ellagawa station	46
Figure 3-16: Seasonal variation of streamflow at Ellagawa station	47
Figure 3-17: Maximum, minimum, and average streamflow- Ellagawa station	47
Figure 3-18: Annual total streamflow at Ratnapura station	48
Figure 3-19: Average monthly streamflow at Ratnapura station (1981-1996 and 2006-2020)	48
Figure 3-20: Seasonal variation of streamflow at Ratnapura station	49
Figure 3-21: Maximum, minimum, and average Streamflow- Ratnapura station	50
Figure 3-22: Annual total streamflow at Putupaula station	50
Figure 3-23: Average monthly streamflow at Putupaula station from 1994-2017	51
Figure 3-24: Seasonal variation of streamflow at Putupaula station	- 51
Figure 3-25: Maximum, minimum, and average streamflow- Putupaula station	52
Figure 3-26: Gumbel distribution of all rainfall stations	54
Figure 3-27: Return period and flood discharge using Gumbel distribution for Putupaula streamflow	v 57
Figure 3-28: Flood-prone areas in the Kalu Ganga basin	. 59
Figure 3-29: Flood ploine areas in the Kalu Ganga basin	. 60
Figure 3-30: Floodplain sections of the main channel of the Kalu Ganga basin along with the spatia	1
resolution of various satellite data	- 61
Figure 3-31: Floodplain sections of secondary/tertiary channels of the Kalu Ganga basin along with	1
the spatial resolution of various satellite data	61
Figure 4-1: Schematic diagram of the rainfall-runoff-inundation (RRI) model	64
Figure 4-2: Area selected for RRI model	68
Figure 4-3: Digital Elevation Model of the study area	69
Figure 4-4: Flow direction of the study area	· 69
Figure 4-5: Zoomed view of flow direction near the outlet of the study area	· 70
Figure 4-6: Flow accumulation of the study area	. 70
Figure 4-7: Thiessen polygon map of the study area	. 70
Figure 4-8: Landuse of the study area [Source: Global Land Cover Characterization provided by	_
USGS]	· 71

Figure 4-9: Soil cover of the study area [Source: Global Land Cover Characterization provided by
USGS]71
Figure 4-10: Dataset for 2008 flood event72
Figure 4-11: Sensitivity analysis graph for Manning's roughness coefficient for the river, hillslope
coefficient, soil depth, and lateral saturated hydraulic conductivity77
Figure 4-12: Model discharge from RRI model at the outlet78
Figure 4-13: Inundation area obtained for 2008 flood event78
Figure 4-14: Maximum inundation at the outlet for 2008 flood event79
Figure 5-1: Simulated discharge and observed discharge with total rainfall for calibration of 2008
flood event83
Figure 5-2: Simulated discharge and observed discharge with total rainfall for calibration of 2014
flood event84
Figure 5-3: Simulated discharge and observed discharge with total rainfall for validation of 2016 flood
event86
Figure 5-4: Simulated discharge and observed discharge with total rainfall for validation of 2017 flood
event88
Figure 5-5: Inundation areas from RRI model for 2008 flood event89
Figure 5-6: Inundation areas from RRI model for 2014 flood event90
Figure 5-7: Inundation areas from RRI model for 2016 flood event91
Figure 5-8: Sentinel 1A 2016 flood event before pre-processing [Source: ESA-
https://scihub.copernicus.eu/]92
Figure 5-9: Sentinel 1A 2016 flood event after pre-processing93
Figure 5-10: Histograms of arithmetic mean after correction for 2016 flood event94
Figure 5-11: Inundation areas from Sentinel 1A image for 2016 flood event95
Figure 5-12: Inundation areas from RRI model for 2017 flood event96
Figure 5-13: Sentinel 1A 2017 flood event before pre-processing [Source: ESA-
https://scihub.copernicus.eu/]97
Figure 5-14: Sentinel 1A 2017 flood event after pre-processing97
Figure 5-15: Histograms of arithmetic mean after correction for 2017 flood event98
Figure 5-16: Inundation areas from Sentinel 1A image for 2017 flood event99

LIST OF TABLES

Table 2-1 Literature review summary for flood monitoring systems	10
Table 2-2: Literature review summary for MODIS/other satellite data	14
Table 2-3: Literature review summary for the RRI model	20
Table 3-1: Data and data sources	34
Table 3-2: Data collection	35
Table 3-3: Gumbel distribution of Putupaula streamflow station	55
Table 3-4: Return period and flood discharge of Putupaula streamflow station	56
Table 3-5: Confidence limits for different return period	58
Table 4-1: Input data- observed rainfall data for 2008 flood event	67
Table 4-2: Parameter value and ranges for sensitivity analysis	73
Table 4-3: Considering different values for sensitivity analysis	74
Table 4-4: Parameters considered for sensitivity analysis	74
Table 5-1: RRI model parameter in different flow conditions	81
Table 5-2: Calibration results for 2008 flood event	82
Table 5-3: Objective function values for calibration of 2008 flood event	83
Table 5-4: Calibration results for 2014 flood event	84
Table 5-5: Objective function values for calibration of 2014 flood event	85
Table 5-6: Validation results for 2016 flood event	85
Table 5-7: Objective function values for validation of 2016 flood event	86
Table 5-8: Validation results for 2017 flood event	87
Table 5-9: Objective function values for validation of 2017 flood event	88
Table 5-10: Basic specifications of the Sentinel-1 datasets used in the study	92
Table 6-1: Evaluation of discharge along with the objective functions	103
Table 6-2: Comparison of flooded areas from RRI model and satellite image	106
Table A1- 1: General arrangement of rainfall data in chronological order in excel	119
Table A2- 2: Calibration of 2008 flood event	121
Table A2- 3: Calibration of 2014 flood event	122
Table A2- 4: Validation of 2016 flood event	124
Table A2- 5: Validation of 2017 flood event	125

LIST OF ABBREVIATIONS

AMSR	Advanced Microwave Scanning Radiometer
ALOS	Advanced Land Observing Satellite
APHRODITE	Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation
ASAR	Advanced Synthetic Aperture Radar
ASTER	Advanced Space-borne Thermal Emission and Reflection
AVHRR	Advanced Very High Resolution Radiometer
AVNIR	Advanced Visible and Near Infrared Radiometer
DEM	Digital Elevation Model
ENVISAT	Environmental Satellite
ESA	European Space Agency
ESRI	Environmental Systems Research Institute
EW	Extra Wide Swath
FBD	Fine Beam Dual
GIS	Geographic Information System
GPCC	Global Precipitation Climatology Centre
GSMaP (RNL)	Global Satellite Mapping of Precipitation Reanalysis Product
GRD	Ground Range Detected
IR	Infra-red Wave

IW	Interferometric Wide Swath
MERIS	Medium Resolution Imaging Spectrometer
MLSWI	Modified Land Surface Water Index
MODIS	Moderate Resolution Imaging Spectro-Radiometer
MSE	Mean Square Error
MSI	Multi Spectral Imaging Mission
NIR	Near Infra-red Wave
NDVI	Normalized Differential Vegetation Index
NDWI	Normalized Differential Water Index
NOAA	National Oceanic and Atmospheric Administration
NSE	Nash Sutcliffe Efficiency
LSWI	Land Surface Water Index
LULC	Land-Use Land Cover
PALSAR	Phased Array Type L-Band Synthetic Aperture Radar
PERSIANN-	Precipitation Estimation from Remotely Sensed Information
CDR	using Artificial Neural Networks- Climate Data Record
RADARSAT	Radar Satellite
RGB	Red Green Blue
RMSE	Root Mean Square Error
RRI	Rainfall-runoff-inundation
SAR	Synthetic Aperture Radar

- SM Strip-map Mode
- SNAP Sentinel Application Platform
- SLC Single Look Complex
- SRTM Shuttle Radar Topography Mission
- SWIR Short Wave Infra-red
- TRMM Tropical Rainfall Measuring Mission
- VH Vertical Transmit- Horizontal Receive
- VV Vertical Transmit- Vertical Receive
- WV Wave Mode