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Abstract 
Accurate hydrological data is crucial for understanding streamflow changes and predicting 
extreme events in river basins. By utilising remotely sensed soil moisture products, the 
estimation of soil moisture distribution at the basin scale in hydrological modelling becomes 
feasible, addressing practical challenges. This study investigates the integration of remotely 
sensed soil moisture estimates to enhance the accuracy of hydrological model simulations in 
the upper Peradeniya catchment, Sri Lanka. A hydrological model (ABCD model) was 
developed for the catchment area. Soil moisture data from NASA's soil moisture active passive 
(SMAP L4) were integrated with the model's estimations to improve river flow simulations. 
The study reveals that the integration of SMAP L4 did not significantly enhance accuracy. 
However, notable differences in calibrated parameters emerged, highlighting the importance 
of incorporating multiple inputs for calibration. These findings demonstrate the potential of 
remotely sensed soil moisture in enhancing hydrological model simulations. Incorporating 
remotely sensed soil moisture can contribute to more reliable predictions and management of 
water resources in river basins, aiding in sustainable development and climate change 
adaptation. 
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1 Introduction 

Soil moisture was recognized as one of the 
fifty essential climate variables by the 
Global Climate Observing System in their 
2010 implementation plan update. Further, 
soil moisture was categorized as a crucial 
component of the terrestrial climate system 
[1]. 

In groundwater hydrology, soil moisture 
plays an important role in storing water 
resulting from precipitation. Based on the 
soil moisture content, the incoming 
precipitation is divided among infiltration, 
subsurface flow and runoff which makes 

soil moisture important in flood 
simulations and management.  

Soil moisture monitoring has been 
practised since the start of agriculture. 
However, with climate change, soil 
moisture monitoring has become a 
complex challenge with changes in 
temperature and precipitation [2]. Because 
of such challenges, having near real-time 
soil moisture data is important for 
productive decision-making and 
forecasting processes. 

For large catchment areas, obtaining 
spatially and temporally well-distributed 
soil moisture data sets is beneficial. 
However, due to practical issues such as 
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capital and maintenance costs of the 
instruments and limited spatial coverage, 
in-situ methods are not feasible to 
implement. With the evolution of satellite 
and computer technologies, new methods 
were introduced to overcome this barrier. 
Remote sensing and hydrological 
modelling that simulate soil moisture are 
two such technologies.  

The two technologies have been used in 
various ways to enhance the performance 
of a hydrological model. Joint calibration 
between observed streamflow and soil 
moisture is a method that has successfully 
used remotely sensed soil moisture (RSSM) 
data to improve the output (river 
discharge) of the hydrological model [3].  
The lumped hydrological model ABCD 
produces runoff as the output while 
simulating soil moisture variation 
internally[4]. Therefore, by using RSSM 
data, the performance of the ABCD model 
could be enhanced. 

The upper Peradeniya catchment (UPC) 
holds significant importance as a sub-
catchment within Sri Lanka's largest river 
basin, the Mahaweli river basin [5]. The 
sustainable management of water 
resources in this watershed is crucial due 
to its role in the operation of a cascade 
reservoir system. These reservoirs serve 
multiple purposes, including hydropower 
generation, irrigation, and domestic water 
supply. Given the dynamic nature of land 
use patterns and the impact of climate 
change, the hydrological behaviour of the 
UPC, the catchment is expected to change 
in the future. To address this, conducting a 
hydrological study of the upper 
Peradeniya catchment would prove 
beneficial to the country. A well-developed 
hydrological model with an appropriate 
technique for aggregating RSSM can be 
used to project the changes in the 
hydrological cycle over time and the 
subsequent impact on the downstream 
environment. 

2 Methodology 

The following methodology (Fig. 1) was 
followed for this study. 

Figure 1: Methodology flowchart 

2.1  Study area & data sets 

The UPC covers an area of 1,168 km2 and is 
located between the Kandy and Nuwara 
Eliya Districts of the Central Province in Sri 
Lanka (see Fig. 2). The study area is 
surrounded by a mountainous landscape, 
with notable mountains including 
Piduruthalagala Mountain, which marks 
the origin of the Mahaweli river and is the 
highest in Sri Lanka.  

The UPC is situated upstream from the 
Peradeniya hydrometric station, spanning 
a length of 99.6 km along the river. The 
average ground slope in the catchment is 
22.4%, with the steepest estimated slope 

Figure 2: Study area 
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reaching 99.98%. The study area has an 
average altitude of 595 m above mean sea 
level (M.S.L.), ranging from a minimum 
altitude of 478 m to a maximum altitude of 
2519 m. 

The daily mean for maximum temperature 
is 22.8ºC while the daily mean for 
minimum temperature is 14.5ºC. The 16-
year mean average annual temperature is 
roughly 18.6ºC, reaching a minimum 
monthly mean of 17.4ºC in January and a 
maximum monthly mean of 19.8ºC in May. 
Shuttle Radar Topography Mission Digital 
Elevation Model (DEM) files with 90 m × 
90 m resolution from the United States 
Geological Survey Earth Explorer were 
used and ArcGIS 10.8.2 was used to 
delineate the catchment area. 

RSSM product, soil moisture active passive 
(SMAP) L4 root zone soil moisture from 
The National Aeronautics and Space 
Administration (NASA) Earth data was 
used. SMAP satellite was launched by 
NASA on 31st January 2015, to measure SM 
and freeze/thaw at a global scale using an 
L-band (1.40 GHz) radiometer and an L-
band radar [6]. SMAP provides data at a 
spatial resolution of 36 km since SMAP 
radar stopped transmitting on 7th July 2015. 
SMAP L4 offers data from 2015/03/31 
onwards [6]. SMAP L4 provides two soil 
moisture data sets, near-surface (0 – 5 cm) 
and root zone (0 – 100 cm) soil moisture.   

SMAP L4 root zone soil moisture 
(SMAPL4_RZ_SM) dataset is produced by 
assimilating SMAP L‐band brightness 
temperature observations into the NASA 
catchment land surface model. The 
assimilation has resulted in soil moisture 
estimates at a spatial resolution of 9 km 
and a temporal resolution of 3 hours with 
a data latency of 3 days [6].  

Studies [7], and [8] have found that SMAP 
L4 near-surface soil moisture products 
have the highest accuracy compared to 
other RSSM products. ArcGIS 10.8.2 was 
used to create soil moisture maps of the 

catchment area from the SMAP L4 root 
zone soil moisture product as a soil 
moisture value that represents a greater 
depth than the near-surface zone product. 

The meteorological and hydrological data 
for the study were obtained from stations 
near the study area owned and operated by 
the Irrigation Department of Sri Lanka (see 
Fig. 2). Daily streamflow data were 
collected from the river gauging station at 
Peradeniya, covering the period from 
October 1984 to September 2020. Daily 
atmospheric temperature data were 
collected from three meteorological 
stations Katugasthota, Nuwara Eliya and 
Badulla, providing maximum and 
minimum temperature records from 
January 1996 to September 2021. Daily 
rainfall data was collected from the three 
meteorological stations Katugasthota, 
Nuwara Eliya, and Bandarawela, covering 
the period from January 2005 to December 
2020. 

2.2  Data processing and analysis 

Multivariate imputation by chained 
equations (MICE) is a method of imputing 
missing values in a dataset with multiple 
variables while preserving the correlations 
between variables [9]. There are various 
methods to perform MICE and for this 
study, predictive mean matching was 
used. The visual observation and manual 
data checking of hydrological and 
metrological data suggest that on a 
particular day, there was at least one data 
station without missing data. This high 
level of completeness enhances the 
suitability of the datasets for further 
analysis and imputation using the MICE 
method. The highest percentage of missing 
data was 0.99% recorded for minimum 
temperature at the Katugastota station. The 
missing data were imputed by running 
MICE in R programming language. After 
replacing the missing data, the potential 
evapotranspiration was derived from the 
temperature data using the Hargraves 
method. The rainfall data from the stations 
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were interpolated using the Thiessen 
polygon method. The Thiessen polygon 
were created using ArcGIS 10.8.2. 

2.3 Selection of model 

The ABCD model (Fig. 3) accepts 
precipitation, potential evapotranspiration 
(PE), initial soil moisture and initial 
groundwater storage as inputs. The model 
can be used at various temporal 
resolutions and the daily temporal 
resolution was chosen for this study. 

For the model simulation, arbitrary values 
were used for initial soil moisture and 
groundwater storage, which will not cause 
any problems when the model is run for a 
longer time, as the effect of the initial 
conditions on the model performance will 
be insignificant. 

In Fig. 3, Parameter 'a' shows the runoff 
tendency to occur before the soil is fully 
saturated. Parameter 'b' represents the 
upper limit of the sum of monthly soil 
moisture storage and actual 
evapotranspiration. Parameter 'c' controls 
the water input to the aquifers. The 
average groundwater residence time 
equals the reciprocal of the parameter 'd' 
[4]. 

2.4 Preprocessing of soil moisture 
data 

2.4.1 Spatial and temporal aggregation of 
soil moisture 

SMAPL4_RZ_SM datasets are provided as 
raster data, and fifteen data cell centres 
were located within the catchment area. To 
use the SMAPL4_RZ_SM data with the 

ABCD lump model, it was necessary to 
aggregate the cell values into a single 
representative value for the entire 
catchment area (spatial aggregation). The 
inverse distance weighting (IDW) method 
was selected for this purpose. 

The SMAPL4_RZ_SM datasets offer a 
temporal resolution of 3 hours, resulting in 
eight spatially aggregated soil moisture 
values per day. Since the ABCD model of 
this study operates on a daily scale, the 
spatially aggregated soil moisture values 
needed to be aggregated accordingly 
(temporal aggregation). The simple 
average method was used to accomplish 
this, as it has previously been used with 
other soil moisture products [10]. The 
spatially and temporally aggregated soil 
moisture values are then multiplied from 
1000 mm (SMAPL4_RZ_SM captures soil 
moisture up to 1 m depth), converting the 
unit of soil moisture from volumetric units 
to mm. More than 14,600 raster files had to 
be processed and the Model Builder 
feature of ArcGIS 10.8.2 was used to 
automate the process. 

2.4.2  Rescaling and cumulative 
distribution function matching of soil 
moisture 

A rescaling procedure is needed to remove 
systematic differences or biases between 
the raw SMAPL4_RZ_SM product and the 
ABCD simulated soil moisture. For this 
rescaling cumulative distribution function 
(CDF) matching method [3] was chosen, 
and to implement this method, a MATLAB 
algorithm was used. The SMAPL4_RZ_SM 
dataset captures soil moisture up to 100 cm 
depth. However, the model simulates soil 
moisture up to aquifer depth. Therefore, a 
direct comparison is unreasonable. 

A widely adopted approach [3] to address 
this concern is to employ the exponential 
filtering (EF) technique, introduced 
initially by [11], to transform the rescaled 
remote sensing soil moisture data 
(∅𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶−𝑅𝑅𝑅𝑅) into the soil wetness index (SWI) 

Wt – Available Soil Water
Yt – Evapotranspiration Potential  
Pt – Precipitation
St - Soil Moisture
PETt – Potential Evapotranspiration
ETt – Actual Evapotranspiration
DRt – Direct Runoff 
GRt – Groundwater Recharge
GDt – Groundwater Discharge  
Gt – Groundwater Storage 
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Figure  3:  ABCD model 
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of the root zone. The following EF is 
applied to develop the SWI time series: 

∅tn
SWI=∅tn-1

SWI+Kn(∅tn
CDF-RS-∅tn-1

SWI)        (1) 

Here, ∅tn

SWI is the SWI value for the nth day 
and Kn is gain time which can be denoted 
as follows.  

Kn= Kn-1

Kn-1+e
-�

tn-tn-1
T �

                    (2) 

The parameter T is a characteristic time 
length that controls the smoothing degree 
of the ∅𝑡𝑡𝑛𝑛

𝐶𝐶𝐶𝐶𝐶𝐶−𝑅𝑅𝑅𝑅series and the response time 
to the changes in the surface wetness 
conditions. In this study, T takes the value 
of 1 day as it provides the best correlation 
between ∅𝑅𝑅𝑆𝑆𝑆𝑆 and ∅𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶. For the initial 
conditions, K1 and ∅𝑡𝑡1

𝑅𝑅𝑆𝑆𝑆𝑆 were taken as one 
and ∅𝑡𝑡𝑛𝑛

𝐶𝐶𝐶𝐶𝐶𝐶−𝑅𝑅𝑅𝑅adapting [3]. 

The degree of agreement between the 
observed and simulated river flow was 
assessed using the Kling-Gupta efficiency 
coefficient (KGE) [12]. When integrating 
SMAPL4_RZ_SM estimations into the 
ABCD model, a weighted objective 
function considering both stream flow and 
soil moisture data was used. The respective 
equations are mentioned as follows.  

KGEQ= 1-�(rQ-1)2+ �
μQ-ABCD

μQ-O
-1�

2
+ �σQ-ABCD

σQ-O
-1�

2
          

(3) 
In (3), 𝑟𝑟𝑄𝑄 is the correlation between 
observed and simulated river flows, 
𝜇𝜇𝑄𝑄−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 and 𝜇𝜇𝑄𝑄−𝑂𝑂 are the means of the 
simulated and observed river flow series, 
and 𝜎𝜎𝑄𝑄−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 and 𝜎𝜎𝑄𝑄−𝑂𝑂 are the standard 
deviations of the simulated and observed 
river flow series, respectively. After the 
initial parameter calibration using river 
flow data, the KGE coefficient for soil 
moisture was estimated as follows. 

KGESM=1-�(r∅-1)2+ �
μ∅ABCD

μ∅SWI
-1�

2
+ �

σ∅ABCD

σ∅SWI
-1�

2
 

(4) 

In (4), rφ represents the correlation between 
φ ABCD and φ SWI, µφ ABCD and µφ SWI are the 
means of φABCD and φSWI, and σφABCD and 
σφSWI are the standard deviations of φABCD 
and φSWI, respectively. The Weighted 
Objective Function that evaluates 
SMAPL4_RZ_SM soil moisture integration 
to the model is shown in (5). There, the 
coefficient α is the assigned weight, which 
ranges from 0 to 1. 

KGEα=α×KGESM+(1-α)×KGEQ        (5) 

To assess the influence of RSSM estimates 
on model calibration, eleven different 
calibration schemes were implemented for 
the study catchment. Within these eleven 
schemes, the weight parameter α in the 
objective function KGEα was varied from 0 
to 1 with 0.1 increments. It is important to 
note that when α is set to 0, the model 
calibration solely relies on streamflow 
data, resulting in KGEα being equivalent to 
KGEQ. 

3 Results and discussion 

3.1  Rainfall shadow effect 

Usually, with increasing elevation, the 
annual average rainfall should also 
increase. This is called the orographic effect 
of rainfall. When the annual average 
rainfall (from 2005 - 2020) and the 
elevations of the rainfall gauging stations 
Katugasthota, Nuwara Eliya and 
Bandarawela were considered, an anomaly 
from the rainfall orographic effect was 
identified. Despite Katugasthota having 
the lowest elevation, it has the highest 
annual average rainfall (Table 1).  

Table 1: Annual average rainfall and elevations 

Rainfall 
gauging 
station 

Elevation 
from 
mean sea 
level (m) 

Annual 
average 
rainfall 
(mm/year) 

Katugastota 417 2527.73 

Nuwara Eliya 1894 2414.36 
Bandarawela 1225 2244.44 
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The Katugasthota and Bandarawela 
stations are located outside the basin and 
Nuwara Eliya is inside the basin. A 
mountain range surrounds the entire 
basin, and this anomaly is due to the 
rainfall shadowing effect. 

3.2  Land use land cover of UPC  

According to the land use and land cover, 
(LULC) extracted from the Sentinel – 2, 10 
m land use/land cover time series of the 
world, UPC has an estimated area of 53% 
tree cover, 16.7% grasslands and 26.9% 
built-up areas. The built-up areas are more 
frequent in the northern part of the 
catchment than in other areas (see Fig. 4). 

 
Figure 4: LULC map of UPC 

3.3  CDF matching  

Before performing the CDF matching, the 
spatially and temporally aggregated RSSM 
has to be converted to mm/day. The 
simulated soil moisture data from the 
ABCD model was used as reference data. 
The polynomial (7) of the corrected data 
curve (Fig. 5) is as follows. 

The absolute bias after the correction was 
20.4. The degree of the polynomial was 
chosen from trial and error. The third-
degree polynomial gave the least absolute 
bias and the best-fitting curve with the 
reference data. 

 

Figure 5: CDF curve 

𝑋𝑋𝐶𝐶 = 1.56 × 10−5𝑋𝑋3 − 1.19 × 10−2𝑋𝑋2  + 2.34𝑋𝑋 −
293.88   (7) 

Xc - Corrected RSSM   
X - Spatially and temporally aggregated 
RSSM soil moisture  

3.4  ABCD modelling  

During the calibration process using the 
weighted objective function, the Microsoft 
Excel solver evaluation mode was 
employed for the initial calibration. Solver 
evaluation mode requires ranges for the 
variable parameters and the ranges were 
provided from a, b, c and d values of 
previous studies [4]. Subsequently, manual 
fine-tuning was conducted. Table 2 
presents the results obtained. N/A 
indicates that the objective function is not 
applicable. 

Based on the results during the calibration 
period, the highest KGEQ value is achieved 
for the α = 0.1 arrangement. However, it is 
essential to note that the gain in 
performance is at the fourth decimal point, 
indicating that the impact of this gain is 
insignificant. However, in this 
arrangement, the model successfully 
simulates soil moisture (KGESM) up to a 
satisfactory level of 0.6518 (with SWI) in 
Table 2, aligning with the findings of 
previous research conducted by [3]. 

As the α value increases, the KGEQ value 
during the calibration period exhibits 
irregular behaviour. According to previous 
studies [3], aggregating RSSM in joint 
calibration [6] during the calibration 
process leads to a slight degradation in 
KGEQ. In the study by [3], one study area 
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showed this irregular behaviour. One 
possible reason is the limitation of the 
conceptual lump model (ABCD) to 
precisely simulate the complex soil profile 
characteristics of the UPC. The simplified 
representation of soil processes in the 
model can result in discrepancies between 
the simulated and observed soil moisture 
(Processed RSSM) values. 

Table 2: Results of simulations of all arrangements 

However, the integrated attempt of both 
stream flow and remotely sensed soil 
moisture in parameter calibration 
produced a reasonably good agreement 
with KGE of more than 0.65 for all cases. 
Additionally, uncertainties associated with 
input data can contribute to KGEQ 
degradation. These uncertainties can arise 
from various sources, such as RSSM data 
errors or inaccuracies in the meteorological 
inputs used for model calibration. These 
uncertainties propagate throughout the 
modelling process and can impact the 
model's overall performance. 

When comparing the observed and the 
simulated soil moisture (Fig. 6), it is 
observed that, at specific points, the 
catchment exhibits a lag in response to 
precipitation. This delay can be attributed 
to the Kothmale reservoir and dam within 
the UPC area. As mentioned previously, 
the ABCD model exhibits limitations in 

catchments with large water bodies, as it 
does not accurately simulate the storage 
effect of reservoirs and the impact of dams 
on streamflow.   

However, the model has simulated 
streamflow up to a satisfactory level of 
0.7301 when calibrated only with observed 
streamflow (α = 0). Flow duration curves 
(FDC) plotted for the observed and 
simulated flows (Fig. 7) show reasonably 
good agreement. There is no apparent 
difference in results for different 
weightages.  

When examining the Fig. 7, it becomes 
apparent that the FDC curves of the 
simulated streamflow data are almost 
identical. All simulated flows consistently 
underestimate extreme high flows 
compared to in situ extreme high flows. 
However, in the case of mid and low flows, 
the simulated flows tend to overestimate 
the observed flow values. 

 
Figure 7: FDC curve of UPC 

α 
Calibration Validation 
KGEQ KGESM KGEα KGEQ 

0 0.7301 0.6483 N/A 0.6247 
0.1 0.7310 0.6519 0.7230 0.6306 
0.2 0.7300 0.6521 0.7144 0.6277 
0.3 0.7299 0.6519 0.7065 0.6267 
0.4 0.7299 0.6520 0.6987 0.6274 
0.5 0.7298 0.6518 0.6908 0.6262 
0.6 0.7299 0.6520 0.6832 0.6275 
0.7 0.7300 0.6521 0.6754 0.6278 
0.8 0.7300 0.6521 0.6677 0.6281 
0.9 0.7301 0.6521 0.6599 0.6279 
1 0.7301 0.6522 N/A 0.6283 

Figure 6: Soil moisture variation over time 
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4 Conclusion  

The findings of this study suggest that the 
ABCD model can simulate soil moisture to 
an acceptable level, even only when 
calibrated with streamflow data. The 
incorporation of RSSM has a limited impact 
on improving streamflow simulation 
performance, with only a slight variation 
observed. However, when considering 
simulated soil moisture, there is an overall 
tendency for slight performance 
improvement. The joint calibration function 
indicates a degradation in the model 
performance when incorporating RSSM. 
However, it is essential to note that 
including reliable data sources reduces the 
number of uncertain simulated components 
of the model, potentially increasing its 
reliability and bringing the simulations 
closer to real-world conditions. The changes 
observed in the SWI and ABCD simulated 
soil moisture variation patterns over time 
support this notion. Thus, the joint 
calibration approach could serve as an 
alternative to traditional calibration 
methods. In future studies, selecting 
catchments with no large water bodies or 
employing models capable of handling 
such situations is recommended. 
approaches such as data assimilation and 
multi objective calibration can also be 
explored. Other RSSM products with 
extended temporal coverage could also be 
explored. The examination of the impact of 
spatial resolution, especially with the 
availability of finer-resolution products 
such as Sentinel 1, could further enhance 
the understanding of this approach. 
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