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ABSTRACT

Machine Translation (MT) is the automatic conversion of text in one language to

other languages. Neural Machine Translation (NMT) is the state-of-the-art MT

technique w builds an end-to-end neural model that generates an output sentence

in a target language given a sentence in the source language as the input.

NMT requires abundant parallel data to achieve good results. For low-resource

settings such as Sinhala-English where parallel data is scarce, NMT tends to give

sub-optimal results. This is severe when the translation is domain-specific. One

solution for the data scarcity problem is data augmentation. To augment the par-

allel data for low-resource language pairs, commonly available large monolingual

corpora can be used. A popular data augmentation technique is Back-Translation

(BT). Over the years, there have been many techniques to improve vanilla BT.

Prominent ones are Iterative BT, Filtering, Data Selection, and Tagged BT. Since

these techniques have been rarely used on an inordinately low-resource language

pair like Sinhala - English, we employ these techniques on this language pair

for domain-specific translations in pursuance of improving the performance of

Back-Translation. In particular, we move forward from previous research and

show that by combining these different techniques, an even better result can

be obtained. In addition to the aforementioned approaches, we also conducted

an empirical evaluation of sentence embedding techniques (LASER, LaBSE, and

FastText+VecMap) for the Sinhala-English language pair.

Our best model provided a +3.24 BLEU score gain over the Baseline NMT

model and a +2.17 BLEU score gain over the vanilla BT model for Sinhala →

English translation. Furthermore, a +1.26 BLEU score gain over the Baseline

NMT model and a +2.93 BLEU score gain over the vanilla BT model were ob-

served for the best model for English → Sinhala translation.

Keywords: Neural Machine Translation, Back-Translation, Data selection, Iterative

Back-Translation, Iterative filtering , Low-resource languages, Sinhala
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Chapter 1

INTRODUCTION

1.1 Background

Neural Machine Translation (NMT) has transpired as the factual solution for

Machine Translation (MT), surpassing the Statistical Machine Translation (SMT)

techniques. All supervised NMT models fall under the family of encoder-decoder

architectures. The basic task of an encoder is to read and encode a sentence into

a fixed-length vector whereas the task of a decoder is to output the translation

of the input sentence from the encoded vector. Encoder-decoder system is jointly

trained on parallel sentences so that given an input sentence, the probability of

correct translations could be maximized [1].

Early encoders and decoder models were constructed mainly by using recur-

rent neural network (RNN) based methods [2, 3] and convolution neural network

(CNN) based methods [4, 5]. "Long short-term memory networks (LSTMs) are a

type of a Recurrent Neural Network" (RNN) which are known for their capabil-

ity to learn long-term dependencies. A drawback of early encoder-decoder-based

approaches like RCTMs (Recurrent Continuous Translation Models) [1], and RN-

NEncdec (RNN Encoder-Decoder) [2] is that "the network needs to compress all

the necessary information of the source sentence into a fixed-length vector." To

diminish this issue, Bahdanau et al. [6] proposed an enhancement to the encoder-

decoder model which is a cable of learning to align and translate at the same time.

In this technique, the decoder generates each word based on the context vectors

associated with the relevant words in the source sentence and the words the de-

coder has previously generated. This dynamic calculation of the context vector

has been obtained by an attention mechanism [6].

One of the main drawbacks of recurrent models is their sequential nature which

causes issues like preventing parallelization between training examples which be-
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comes worse with longer sequence lengths since memory constraints limit batch-

ing across examples. These problems can be alleviated by Transformer models

[7] which are more parallelizable. Transformers steer clear of recurrence and use

only attention mechanisms to model dependencies by replacing the recurrent lay-

ers with multi-headed self-attention (Recurrent layers are most frequently used

in encoder-decoder architectures). Hence, the encoders and decoders in Trans-

formers were built using self-attention network (SAN) based methods (Attention

mechanism helps to pass information between the encoder-decoder pair effectively

in both directions. In addition to the aforementioned property, self-attention

helps the encoder encode the sequence much more efficiently).

1.2 Research Problem

For an NMT model to perform well, a large parallel corpus is needed. For

high-resource language pairs such as German-English and French-English, find-

ing parallel corpora is not difficult. However, for low-resource language pairs

(low-resource language is a language that lacks a unique writing system, lacks

(or has a limited) a presence on the World Wide Web, lacks linguistic expertise

specific to that language, and/or lacks electronic resources such as parallel and

monolingual corpora, vocabulary lists, etc [8]), finding parallel corpora between

the two languages is a challenge. Building parallel corpora for Machine Transla-

tion(MT) in low-resource languages is both time-consuming and expensive since

professional translators are limited as there are very limited bilingual speakers

of these languages. For MT in restricted domains such as official government

documents, the problem is even more severe. In other words, if the translation

task is domain-specific, the challenge is even harder. Sinhala is a morphologically

rich but low-resource language and does not have the luxury of large parallel

datasets [9]. However, compared to the limited amounts of parallel data, the

Sinhala-English language pair has large monolingual corpora for an open domain

such as Wikipedia and news.

To alleviate the difficulties in finding large parallel corpora for NMT, data
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augmentation can be used. In data augmentation, largely available monolingual

corpora are used to enlarge the number of parallel sentences available for training.

One such data augmentation method is Back-Translation (BT) [10].

Back-Translation is the process of translating a monolingual corpus in the

target language by an already existing MT system, in the reverse translation di-

rection, into the source language. Then the obtained synthetic source language

sentences along with their respective target language sentences are used to con-

struct a synthetic parallel corpus, which is then added to the already existing

parallel corpus to form an augmented parallel data set. Back-Translation is a

language and architecture-independent data augmentation technique, which can

be used in both NMT and SMT.

The translation models trained with additional synthetic parallel data tend

to contain novel words, which implies that using additional synthetic source sen-

tences and monolingual target sentences can improve the word-level fluency of

MT systems [10]. Basic Back-Translation has issues with respect to the quality

of the synthetic parallel corpus generated. Low-quality synthetic data could de-

grade the performance of NMT systems acutely [11]. Hence, methods to improve

the quality of back-translated data have been introduced. We have identified 4

main approaches to improve the performance of BT: iterative BT [12], filtering

[13], data selection [14, 15] and Tagged BT [16, 17].

The aforementioned four approaches individually improve the quality of BT

models, mainly for low-resource language pairs. However, how they would work

for Sinhala-English language pairs and how they would perform when they are

combined are not yet known.

1.3 Research Objectives

The objectives of this research are as follows:

1. Implement a Back Translation algorithm for Sinhala-English, by improving

and combining the following existing techniques to further improve Back

Translation;
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(a) iterative BT

(b) filtering

(c) data selection

(d) tagged BT

2. Utilize the constructed synthetic data to improve Sinhala-English NMT

over the baseline models.

3. Empirical evaluation of different sentence embedding techniques for filtering

sentences in Sinhala-English (which are translations of each other).

1.4 Contributions

We made the following contributions to this thesis:

1. Used Back-Translation to improve the translation performance of domain-

specific Sinhala-English NMT models.

2. Empirically showed that by combining Data selection, Filtering, and Iter-

ative Back-Translation, we could achieve better results than the existing

techniques for further improving BT.

3. Achieving better results than the existing techniques lead to setting a new

baseline for Sinhala-English domain-specific machine translation.

4. Experimental evaluation of the following sentence embedding techniques for

filtering sentences in Sinhala-English (which are translations of each other):

(a) FastText combined with VecMap

(b) LASER

(c) LaBSE

4



1.5 Publications

• Koshiya Epaliyana, Surangika Ranathunga, Sanath Jayasena ”Improving

Back-Translation with Iterative Filtering and Data Selection for Sinhala-

English NMT” 2021 Moratuwa Engineering Research Conference (MER-

Con) (Accepted).

1.6 Organization

The remainder of this thesis is organized as follows. Chapter 2 consists of the

previous work done on Back-Translation and different approaches to improving

Back-Translation. Chapter 3 presents the methodology we followed to build our

Machine Translation models. Chapter 4 describes the experimental setup, data,

and experimental details. Chapter 5 discusses the results of our NMT models

obtained using training on augmented parallel data. We conclude this document

with a discussion of the results obtained and our observations.
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Chapter 2

LITERATURE SURVEY

In this section, we discuss previous research on Back-Translation as well as the

techniques proposed by various researchers on improving Back-Translation. We

discuss Iterative BT, Filtering, and Data selection approaches such as Transduc-

tive Data selection, selecting difficult to predict words, and selecting data closer

to the target domain. In addition to the aforementioned approaches, we also

discuss methods like Incrementally filtered BT, Tagged BT, Iterative Tagged BT,

Sampling, using both source-side and target-side monolingual data, Noised BT,

and using a pivot language. All these techniques have contributed to improving

Back-Translation. Hence, we discuss and critically analyze these techniques to

identify the best ones amongst them.

2.1 Basic Back-Translation

Back-Translation is the process of translating a monolingual corpus in the target

language by an already existing MT system, in the reverse translation direction,

into the source language. Back-Translation was first introduced by Sennrich et

al. [10]. They have applied BT between a high-resource language pair as well as a

low-resource language pair. The gains from BT were higher for the high-resource

language pair than for the low-resource language pair. However, Poncelas et

al. [18] have empirically shown that BT is likely to give better results for low-

resource scenarios. They have also shown that when the size of the training corpus

increases, the performance also increases not only for the model trained only on

authentic parallel data but for the model trained only on synthetic parallel data

and the model trained on both authentic and synthetic (hybrid) data. Figure 2.1

is a depiction of the Back-Translation process proposed by Sennrich et al. [10].

Even though Back-Translation improves over basic NMT models, BT itself

has limitations and drawbacks. As observed by Poncelas et al. [18], the coverage
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Figure 2.1: Back-Translation process
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("the percentage of tokens (words, numbers, and other characters) of the test set

that are covered by the vocabularies which are used to build the NMT models")

has decreased with the size of the synthetic parallel data. The reason for this

is, that when more synthetic data are added, the more its vocabulary starts to

dominate. The vocabulary of synthetic data is restricted compared to authentic

data. In addition to the restricted vocabulary, synthetic sentences also intro-

duce translation errors of the NMT system that has been used to translate the

monolingual corpus. These affect the performance of the NMT system adversely

causing the performance to deteriorate based on the nature of the synthetic cor-

pus. Hence, various research has proposed different techniques to further improve

Back-Translation by mitigating its sub-optimal nature. Out of all these tech-

niques, four take dominance; Iterative BT, Filtering, Data selection and Tagged

BT.

2.2 Iterative Back-Translation

Iterative BT has been used as an approach to further improve Back-Translation

[12, 19, 20]. Figure. 2.2 is a depiction of Iterative BT. It is the process of training

the two Back-Translation systems (target → source and source → target) multiple

times. After obtaining the Back-translated NMT model in the source → target

direction, that model is used to back-translate the monolingual source sentences

in the source → target translation direction and vice versa. This process is carried

out iteratively until no improvement is observed in the performance of the NMT

models.

Hoang et al. [12] have shown that more iterations cause much better transla-

tion quality in Back-Translated models. The synthetic parallel corpus generated

through those models also were of higher quality. Hence, it is evident that, with

the number of iterations, translation performance has also improved. However,

Cotterell et al. [21] have shown that out of out-of-domain and in-domain data,

the gains have been observed earlier(at iteration-2) for in-domain data since the

original parallel data, monolingual data and test data originate from the same
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Figure 2.2: Iterative Back-Translation process
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domain. In addition to the number of iterations, as observed by both Hoang

et al. [12] and Cotterell et al. [21], for in-domain data, performance gains from

Iterative BT have been higher for high-resource language pairs than that for

low-resource language pairs. Cotterell et al. [21] have further experimented with

out-of-domain data for the high-resource language pair. Out of all the in-domain

and out-of-domain experiments, the gains have been the highest in the out-of-

domain approach (at iteration-3) due to Back-Translation enabling adaptation to

the new domain.

Artetxe et al. [19] have experimentally shown that Iterative BT tends to con-

verge to similar outcomes/results regardless of the initial MT model used. To

elaborate more, despite the initial system used; RBMT (Rule-Based Machine

Translation), Supervised NMT, Supervised SMT, and Unsupervised SMT, the

final system obtained after Iterative BT is more or less the same.

Furthermore, Abdulmumin et al. [20] have introduced batch Back-Translation,

which is an enhancement to the standard Iterative BT where only batches of

monolingual data have been used. They claim that using the entire monolingual

corpus at once degrades the forward model by introducing a lot of noise. Fur-

thermore, they explain that "the noise (bad signals) from the preceding iteration

supposedly overwhelms the good signals of the subsequent iterations." Hence, the

impact of the noise has been reduced by reducing the number of sentences to be

back-translated at each iteration [20].

2.3 Data Selection

Data selection refers to selecting the most appropriate monolingual data to be

translated to create synthetic data. Appropriate monolingual data refers to sen-

tences that are closer to the domain of interest than other sentences in the large

monolingual corpus. In addition to that, data selection also refers to selecting

target monolingual data using prediction loss i.e. sentences with words that have

been identified as hard to predict words.

10



2.3.1 Transductive Data Selection algorithms

One of the possible Data Selection methods is Transductive learning where the

data is selected based on the test set which consists of texts to be translated. One

of the main features of Transductive learning is that one has already come across

both training and testing datasets before training the model. Hence, Ponselas et

al. [14, 15] have introduced two Transductive data selection algorithms (TDA)

called Feature Decay Algorithm (FDA) and Infrequent n-gram Recovery (INR)

which have selected data by using the test set as seed and have retrieved those

sentences that are comparatively closer to this seed than the others.

Feature Decay Algorithm (FDA) [14, 15]:

FDA uses n-grams of both the 𝑡𝑒𝑠𝑡𝑠𝑟𝑐 and the monolingual corpus to retrieve

sentences from the large monolingual corpus that are most similar to the 𝑡𝑒𝑠𝑡𝑠𝑟𝑐.

• Takes a set of monolingual sentences 𝐾 as input and the seed (in this

experiment, the test set)

• Given 𝐾 and the seed (𝑡𝑒𝑠𝑡𝑠𝑟𝑐), FDA retrieves an organized sequence of

sentences 𝑇 from 𝐾.

– Sentences are ordered according to the number of n-grams they share

with the seed.

– The higher the number of shared n-grams, the higher the preference.

• The algorithm initializes 𝑇 as an empty sequence and iteratively selects one

sentence 𝑠 ∈ 𝐾 − 𝑇 and appends it to 𝑇 .

– The sentence 𝑠 selected at each step is based on the number of n-grams

that 𝑠 shares with the 𝑡𝑒𝑠𝑡𝑠𝑟𝑐.

• The score(s) of each sentence is computed as follows.

𝑠𝑐𝑜𝑟𝑒(𝑠) =

∑︀
𝑚∈𝑛𝑠

0.5𝐾𝑛(𝑚)

𝑁
(2.1)
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– 𝑛𝑠 is the set of n-grams present in both 𝑡𝑒𝑠𝑡𝑠𝑟𝑐 and 𝐾. 𝑁 is the number

of words in 𝑠

– 𝐾𝑛(𝑚) is the count of n-gram 𝑚 in the sequence 𝑇

– Including 𝐾𝑛(𝑚) in the formula makes the algorithm penalize n-grams

which have been selected several times. Thus, favoring sentences con-

taining new n-grams.

Incremental n-gram recovery algorithm (INR)[15]

• It extracts sentences containing n-grams (which are also found in the test

set) that are considered infrequent.

– Hence, words such as stop words are ignored.

• If the count of an n-gram in the selected pool of sentences is higher than a

threshold, that n-gram does not contribute to the scoring of the sentence it

contains.

• If the computed score of the sentence is larger than a threshold (which is

selected by observing the scores of the sentences), the sentence is selected

and added to the pool of selected sentences.

• The sentences in the candidate data W are scored according to the following

equation.

𝑠𝑐𝑜𝑟𝑒(𝑠,𝑊 ) =
∑︁

𝑛𝑔𝑟∈𝑆𝑡𝑒𝑠𝑡

𝑚𝑎𝑥(0, 𝑡−𝐾𝑆𝐼+𝐶(𝑛𝑔𝑟)) (2.2)

– t is the threshold that indicates whether an n-gram is frequent or not

– 𝐾𝑆𝐼+𝐶(𝑛𝑔𝑟) is the count of the n-gram 𝑛𝑔𝑟 in the selected pool C (an

in-domain set 𝑆𝐼 is used for initialization).

As evident in Equation 2.1 and Equation 2.2, both FDA and INR penalize

n-grams that are too frequent. FDA penalizes too frequent n-grams by dimin-

ishing their contribution to the score of the sentence whereas INR penalizes n-

grams(recurrent ones) by not allowing them to contribute to the score of the

12



sentence at all. Out of these two techniques, INR has performed better than

FDA. The reason might be its strict penalizing approach.

2.3.2 Selecting sentences consisting of difficult to predict words

Apart from Transductive Data selection, Back-Translation can be further im-

proved using another technique which selects data from a monolingual corpus by

focusing on ‘hard to predict‘ words. Fadaee et al. [22] have empirically shown

that by selecting sentences containing difficult to predict words or words with high

prediction losses, the translation quality of a system can be improved. Wang et

al. [23] have also carried out experiments to select monolingual data by targeting

difficult words. It has been observed that difficult to predict words mostly ben-

efit from additional back-translated data. By oversampling sentences consisting

of difficult-to-predict tokens the effectiveness of using back-translated data can

be improved [22]. When it comes to difficult words with high prediction losses,

by providing more sentences consisting of difficult words, the model’s estimation

has improved and the model’s uncertainty in prediction has reduced [22].

2.3.3 Selecting target domain data

In addition to Transductive data selection and selecting sentences with difficult to

predict words, selecting data closer to the target domain (domain of the training

and test data) has also been proposed by previous research to improve Back-

Translation. Sennrich et al. [10] have identified that selecting in-domain target

monolingual data for BT reduces overfitting and better modeling of fluency. This

caters to domain adaptation. Niu et al. [24] have applied cross-entropy difference

to select pseudo-in-domain data from both in-domain and out-of-domain data.

Artetxe et al. [19] have indicated that using domain-specific monolingual data to

back-translate could help domain adaptation. Abdulmumin et al. [25] point out

that fine-tuning a pre-trained model on in-domain data improves the quality of the

BT model. The dynamic data selection proposed by Dou et al. [26], has selected

subsets of sentences from a set of monolingual sentences by gradually shifting

13



from selecting general domain data to target domain data at each training epoch.

2.4 Filtering

Filtering techniques aim at filtering out low-quality synthetic sentences that could

degrade the performance of the NMT system. The filtering process involves com-

puting the similarity score between a synthetic sentence and its monolingual

counterpart using a sentence-level similarity metric. If this similarity score is

above a certain threshold value, the sentence pair is added to the filtered syn-

thetic parallel corpus. Previous research has used several sentence-level similarity

metrics that fall under two broad categories: those that only use surface informa-

tion of sentences when calculating the similarity and those that use distributed

representations of sentences.

2.4.1 Sentence-level similarity metrics using surface information of

sentences

• Sentence-level BLEU (Sent-BLEU): It is the BLEU score of each sentence

pair; computed using the monolingual target sentence as the reference and

synthetic target sentence as the candidate [27, 28].

To generate the synthetic target sentence, synthetic source sentences are

translated back to the target language. (This is called a round-trip trans-

lation)

2.4.2 Sentence-level similarity metrics using distributed representa-

tions of sentences

These metrics use the vector representations of words and sentences.

• Average alignment similarity (AAS): "The average cosine similarity between

vectors of all words in monolingual and synthetic target sentences" [29]

• Maximum alignment similarity (MAS): "The average of the cosine similar-

ity between the most similar word from the monolingual target sentence
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and each word from the synthetic target sentence and the cosine similarity

between the most similar word from the synthetic target sentence and each

word from the monolingual target sentence" [29]

• Sent-BiEmb: "The sentence-level cosine similarity between sentence em-

beddings of the synthetic source sentence and monolingual target sentence"

[30]

2.4.3 Comprehensive analysis of different filtering techniques

Imankulova et al. [31] have used only sentence-level BLEU (Sent-BLEU) as the

sentence-level similarity metric whereas Imankulova et al. [13] have extended this

work([31]) by performing extensive experiments using three different sentence-

level similarity metrics: Sent-BLEU, AAS, and MAS. In addition to those, they

have used a sentence-level language model (sent-LM) to filter a corpus by taking

only synthetic source sentences into account. All these sentence-level similarity

metrics (Sent-BLEU, AAS, and MAS) use round-trip translations to generate

synthetic target sentences. Xu et al. [30] have used both Sent-BLEU and Sent-

BiEmb as sentence-level similarity metrics whereas Jaiswal et al. [32] have only

used Sent-BiEmb.

Imankulova et al. [13] have used Word2vec model [33] to generate word em-

beddings to calculate AAS and MAS metrics. While Xu et al. [30] have used

FastText [34] and VecMap model [35] to generate sentence embeddings, Jaiswal

et al. [32] have used Multilingual Universal Sentence Encoder (MUSE) [36]. For

each sentence, first, Xu et al. [30] have created word embeddings using FastText

and obtained the sentence embedding vector by averaging the accumulated word

vectors to form a single mean vector representation. Afterward, they used the

VecMap model to ensure that the sentence embeddings of the monolingual target

sentence and the respective synthetic source sentence are located in the same

vector space.

Xu et al. [30] have shown that out of Sent-BiEmb and Sent-BLEU, the former

is more effective than the latter for filtering noise in synthetic data. The reason
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could be that in Sent-BiEmb, "semantic information of words in both synthetic

and monolingual sentences are considered by using both source and target word

embeddings" whereas, in Sent-BLEU, only the target sentences are considered.

Even though Xu et al. [30] used filtered synthetic parallel data to augment

the parallel data and eventually train the NMT model, Jaiswal et al. [32] used

the filtered parallel data to fine-tune the open-domain base model (trained on the

publicly available parallel corpus from different domains).

Both Imankulova et al. [31] and Imankulova et al. [13] have observed that fil-

tering improves the performance of low-resource language pairs than high-resource

language pairs. The improvements across different scoring metrics have been

consistent with negligible differences for low-resource language pairs [13]. Hence,

proving that filtering significantly impacts low-resource language pairs.

Arukgoda et al. [37] have introduced a method called incrementally filtered

BT. In incrementally filtered BT, source → target and target → source trans-

lations are done in parallel. In other words, in this approach, iterative BT is

performed in both translation directions simultaneously with an additional step

of filtering synthetic parallel data and adding the filtered synthetic parallel corpus

to the authentic parallel corpus. The performance improvement obtained in one

translation direction is used to improve the performance of the NMT model in

the other translation direction.

As we investigated more into the sentence-level similarity metrics which use

vector representations, we came across different sentence embedding models.

Here, we discuss a few sentence embedding models which claim to be giving

the best results in different NLP tasks. These sentence embedding models have

different architectures and it is necessary to do a comparative analysis of these

techniques since one could get an idea of why various techniques create different

sentence embeddings for the same sentence pair which are translations of each

other.
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2.4.4 Sentence Embedding techniques

Word embeddings are vector representations of words where words with similar

meanings have similar representations. Many techniques have been introduced

over the years to generate word embeddings. Word2Vec [38] is a pioneering

technique in generating word embeddings that provides two models for comput-

ing word representations: skip-gram and CBOW (i.e continuous-bag-of-words).

"The CBOW model predicts the current word from a window of neighboring con-

text words whereas the skip-gram model uses the current word to predict the

neighboring window of context words." FastText1 [34] is another word embed-

ding technique which is an extension of Word2Vec model. It works very well on

a variety of languages by leveraging the morphological structure of the language.

Furthermore, FastText incorporates subword information which has proven to

be effective in morphologically rich languages. FastText has released pre-trained

word vectors for 294 languages that have been trained on Wikipedia data.

However, FastText is not capable of building multilingual word representations

(multilingual word vectors). Hence, to map two vectors generated by FastText (in

two different languages) to the same Vector space, the VecMap model can be used.

It is a framework to learn cross-lingual word embedding mappings2 [35]. VecMap

offers 4 main modes: Supervised, Semi-supervised, Identical, and Unsupervised.

LASER is a toolkit built for multilingual sentence representations which com-

pute multilingual sentence embeddings for zero-shot cross-lingual transfer3 [39].

"LASER generates embeddings for a set of languages together in a single shared

space rather than having a separate model for each language." Similar sentences

are mapped to close vectors despite the input language. Hence, LASER is known

to be a model that generates language-independent sentence vectors. The latest

version of LASER provides an encoder that has been trained in 93 languages

and written in 28 different scripts. The same BiLSTM encoder is used to encode

all these languages. Hence, it is not necessary to point out the input language.
1https://fasttext.cc/
2https://github.com/artetxem/vecmap
3https://github.com/yannvgn/laserembeddings
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However, tokenization is language-specific.

LaBSE (Language-agnostic BERT Sentence Embedding) is a multilingual

BERT embedding model proposed by Feng et al. [40] which generates language-

agnostic cross-lingual sentence embeddings for 109 languages. It has been effective

in low-resource languages as well, although no data were available for training.

Since this is a multilingual embedding model it maps text from different lan-

guages into a shared embedding space like LASER. "This model is trained and

optimized to generate similar vector representations for bilingual sentence pairs

which are translations of each other." It has a dual encoder architecture where

the source and target text are encoded separately using a shared transformer em-

bedding network. This model can be differentiated from a word-level embedding

model like FastText as this model takes word sequence into account rather than

just individual words4 [40].

XLM-RoBERTa (XLM-R)5 is a transformer-based multilingual masked lan-

guage model pre-trained on unlabeled text in 100 languages proposed by Conneau

et al. [41]. XLM-R is a self-supervised model which performs well even for low-

resource languages. It is capable of training a single model for many languages

while withholding per-language performance. XLM-R is trained the same way as

RoBERTa but on a large multilingual dataset. It only uses the Masked Language

Modeling (MLM) objective like RoBERTa [42] avoiding the Translation Language

Modeling (TML) objective (which is used by XLM [43]).

2.5 Tagged BT

Caswell et al. [16] have experimentally shown that Tagged BT outperforms stan-

dard BT and noised BT for both high-resource and low-resource language pairs.

Tagged Back-Translation(TaggedBT) is prepending a <BT> tag to each syn-

thetic sentence in the source language. Through Tagged BT, rather than adding

noise to data, they have tried another way to signal the model that the source side

of the synthetic parallel data is back-translated. This would eventually allow the
4https://tfhub.dev/google/LaBSE/1
5https://github.com/facebookresearch/XLM
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model to treat the synthetic parallel data differently than the original/authentic

parallel data [16, 17]. Furthermore, Marie et al. [17] have empirically shown that

although Tagged BT prevents the translation quality of original texts from dimin-

ishing, Tagged BT also struggles with translationese (manually translated) texts.

However, by tagging test sentences in addition to synthetic source sentences, the

performance can be boosted for translationese texts [17].

Caswell et al. [16] have also shown that Iterative Tagged BT improves over

Tagged BT with each iteration outperforming Iterative standard BT. Standard

BT has not improved over each iteration. With Tagged BT, the model is given

the liberty to bootstrap more effectively from the back-translated data whilst not

being damaged by the quality concerns. However, standard BT models do not

have the ability to distinguish between synthetic and authentic sentences and are

often misled by the fluctuation of quality of BT data [16].

2.6 Other approaches

Apart from the above-mentioned approaches, we came across other techniques

which have contributed to improving Back-Translation. In this section, we discuss

and compare these various techniques which have empirically shown to improve

Back-Translation.

2.6.1 Using both target-side and source-side monolingual data

Both Wu et al. [44] and Niu et al. [24] have used not only the target-side monolin-

gual data but also source-side monolingual data in BT. Wu et al. [44] have experi-

mentally shown that using target-side monolingual data only has performed better

than using source-side monolingual data only. However, better results have been

obtained by using a combination of both target-side and source-side monolingual

data. Although Wu et al. [44] have used separate source → target and target →

source NMT models to back-translate monolingual target sentences and mono-

lingual source sentences respectively, Niu et al. [24] have used a bi-directional

model to translate source and target monolingual data. This bi-directional NMT
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model has been trained on both directions of a language pair jointly which has

reduced the overall computing resources significantly in comparison to training

an individual model for each language direction.

By combining all synthetic parallel data (generated from source and target

monolingual data) for bi-directional models, improvements have been observed

over standard BT for low-resource settings. Nonetheless, for high-resource set-

tings, no improvements have been observed by the bi-directional model over the

uni-directional models [24]. Bi-directional models have consistently reduced the

training time by 15 -30%.

2.6.2 Noised Back-Translation

Adding noise to Back-Translated data has also been tried out by Edunov et al. [45]

and Caswell et al. [16]. Both research have used noised beam BT where they have

added noise to beam search outputs. Edunov et al. [45] have empirically shown

that noised beam BT outperforms the original parallel data only model, and

standard BT using pure beam and greedy methods. Furthermore, Caswell et

al. [16] have experimentally shown that Noised BT outperforms standard BT in

high-resource settings but fails to do so in low-resource settings. The reason for

noise + beam to work well is that noisy source sentences make target translations

harder to predict which eventually helps to learn [45].

Wu et al. [44] have also shown that adding noise to synthetic parallel sen-

tences improves the performance over standard BT. One of the key differences

from the aforementioned research ([45, 16]) has been using both source-side and

target-side synthetic data. Hence they have not only added noise to source-side

synthetic sentences but also to source-side monolingual sentences. Their standard

BT model has also been trained on original parallel data and synthetic parallel

data consisting of both source-side and target-side synthetic sentences (also their

respective monolingual sentences). Furthermore, by fine-tuning the noised models

with clean synthetic data combined with original parallel data, the performance

has further improved.
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2.6.3 Sampling

Edunov et al. [45] have empirically shown that sampling is better than beam

and greedy methods to generate synthetic source sentences. This claim has been

confirmed by Wang et al. [23] who have observed that sampling is better than

beam. Not only beam and greedy, sampling too has outperformed the original

parallel data only model as well. The reason why sampling performs better than

pure beam and greedy methods is that sampling better approximates the data

distribution. Hence providing a better training signal than the others [45]. In

addition to that, the results have shown that sampling is more effective than

beam in high-resource settings whereas beam is more effective in resource-poor

settings.

2.6.4 Using a pivot language

Currey et al. [46] have factually proven that adding pivot-language monolingual

data improves zero-resource NMT performance. Zero-resource translation has

started from a multilingual NMT system and has improved the zero-shot direction

using the synthetic parallel corpus. They have back-translated the monolingual

pivot data into both language A and language B using the multilingual NMT

model. For each sentence in the monolingual corpus C, its translations in language

A and language B have been obtained and the synthetic parallel corpus 𝐴′ ↔

𝐵′ has been constructed. Models obtained by training on original parallel data

combined with the generated synthetic parallel corpus (using monolingual data in

pivot language) have outperformed the best direct translation model for a rather

high-resource language pair. In addition to that, models obtained by only fine-

tuning them using original parallel data combined with synthetic parallel corpus

have also improved over the performance of the best direct translation model [46].

21



2.6.5 Training the model on synthetic data and fine-tuning on au-

thentic data

Abdulmumin et al. [25] have outperformed standard BT by training the model on

the synthetic data and fine-tuning the model on authentic data. This approach

has aimed to enable the model to learn efficiently through pre-training and fine-

tuning. Moreover, this model converges earlier than other models, thus requiring

less time to train.

2.6.6 The impact of the size of the monolingual corpus on Back-

Translation

Some of these research has investigated the impact of the size of the synthetic

data on the performance of the machine translation model. Hence, they have

conducted experiments with different sizes of synthetic data to determine the

effectiveness of adding more/less synthetic data. Various other factors also con-

tribute to the impact of the size of the synthetic data. Hence, different research

has witnessed distinct results. However, in most cases, when the size of the

synthetic data has been much larger than the size of the authentic data, the

performance of the machine translation system has dropped.

Xu et al. [30], Abdulmumin et al. [25] and Fadaee et al. [22] have empirically

shown that the ratio between synthetic to authentic data depends on the language

pair as well. Xu et al. [30] have trained models for a low-resource language pair

where models which have been trained on authentic to synthetic ratio 1:5 have

outperformed the ratio 1:1 by a large margin. The 1:10 ratio of real-to-synthetic

data has performed best in the experiments. Abdulmumin et al. [25] have also

observed that performance improves up to a ratio between 1:5 for a different

low-resource language pair.

However, Fadaee et al. [22] have shown that the model trained on a 1:4

ratio of authentic to synthetic data has achieved the best results whereas the

model trained on a 1:10 ratio has performed not well compared to the former.

These models were trained for high-resource language pairs. Poncelas et al. [18]
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have also observed that the performance has diminished after the ratio between

authentic to synthetic was 1:2 for a high-resource language pair.

Abdulmumin et al. [25] have observed that for Tagged BT, the scores have

gradually risen from a ratio of 1:1 between authentic to synthetic data to a ratio

of 1:3. And then, the performance dropped slightly when the ratio increased up

to 1:5. These experiments have been conducted for a low-resource language pair.

This shows that even though in Tagged BT, authentic and synthetic data have

been explicitly differentiated, the model might not have been able to distinguish

between authentic and synthetic data completely while training.

These results brought us to the conclusion that there is no definite ratio

between authentic to synthetic training data and it depends on the language

pair, the domain match (whether the authentic data are in the same domain as

synthetic data), and the underlying NMT architecture.

2.7 Summary

Even though the aforementioned existing literature have improved Back-Translation

using various approaches, none of them has combined 3 or more of these tech-

niques. Iterative BT [12, 19, 20], Filtering [30, 31, 13, 32] and Transductive Data

selection algorithms [14, 15] have not been combined together by any of these

previous research to improve Back-Translation. In addition to those, none of the

research has combined Tagged BT/Iterative Tagged BT [16, 17] and Filtering

[30, 31, 13, 32]. None of these previous research on Filtered BT has done a com-

prehensive analysis of multilingual sentence embedding techniques like LASER,

LaBSE, and FastText+VecMap.

23



Chapter 3

Methodology

We identified Filtering, Iterative Back-Translation, Data selection and Tagged

BT as four vital contributors to further improving Back-Translation. Previous

research has used these approaches individually to improve Back-Translation.

However, none of the previous research has combined three or more of these

methods to enhance the performance of Back-Translation. Hence, we conducted

experiments on these methods separately and then combined them together to

evaluate their effectiveness. First, we formed vanilla BT models for Sinhala →

English and English → Sinhala translation directions. Then, we constructed

Iterative BT models by iteratively executing the Back-Translation process in both

Sinhala → English and English → Sinhala translation directions.

We also combined Back-Translation with filtering (various experiments were

carried out with different multilingual embedding techniques to generate sentence

embeddings) and built Filtered BT models for English ↔ Sinhala. We also did

a comprehensive analysis of different sentence embedding techniques used for

filtering. Next, we combined Iterative BT with filtering and formed Iterative

Filtered BT models for English ↔ Sinhala. Finally, we combined Data selection

with Iterative Filtered BT using Transductive Data selection algorithms on both

monolingual Sinhala corpus and monolingual English corpus. In addition to the

above-mentioned experiments, we also generated NMT models using Tagged BT

by prepending a tag to the synthetic source sentences. We further improved

the performance of the models obtained by Tagged BT by executing Iterative

Tagged BT, Tagged BT with filtering and Iterative Tagged BT with filtering.

Our research process is depicted in Figure 3.1.
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Figure 3.1: Research process

3.1 Vanilla Back-Translation

First, we trained NMT models on the original parallel data in Sinhala → English

translation direction and English → Sinhala translation direction. To generate

synthetic sentences in the English language, we took the monolingual Sinhala cor-

pus and translated it to English using Sinhala → English NMT model. Then the

generated synthetic English sentences and their respective monolingual Sinhala

sentences were used to construct a synthetic parallel corpus which was added

to the already existing authentic parallel corpus. Next, using this augmented

parallel corpus, an NMT model in English → Sinhala translation direction was

trained. Thus, creating the vanilla BT model for English → Sinhala translations.

To generate a Back-Translated NMT model for Sinhala → English direction,

the monolingual English sentences were translated to Sinhala using the English

→ Sinhala NMT model trained only on authentic parallel data. The generated

synthetic Sinhala sentences and their monolingual English counterparts were used

to construct a synthetic parallel corpus. These parallel data were added to the

authentic parallel data to form an augmented parallel corpus. Then a Sinhala →

English NMT model was trained on the augmented parallel data. Thus, building

the vanilla BT model for Sinhala → English translations.

In addition to the aforementioned vanilla BT models trained on in-domain

synthetic and authentic parallel corpora, we also tried to determine the impact
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of the size of the synthetic parallel corpus on the NMT model, we experimented

with different sizes of monolingual corpora. Since we couldn’t find many monolin-

gual sentences in the ‘official government document domain‘ we used News data

crawled from the web. By using monolingual corpora in the News domain, we

study the impact of domain adaptation in Back-Translation. Since the authentic

parallel data were from the ‘official government document domain‘ and monolin-

gual corpora were from a different domain we got to investigate the impact of the

combination of in-domain and out-of-domain data on Back-Translation.

3.2 Iterative Back-Translation

For the Sinhala-English language pair, the monolingual English corpus was back-

translated using the English → Sinhala NMT model, and the monolingual Sinhala

corpus was back-translated using the Sinhala → English NMT model. The gen-

erated synthetic corpora, which contained ’monolingual English sentences and

synthetic Sinhala sentences’ were added to the authentic parallel corpus to train

the NMT model in Sinhala → English translation direction. The other corpora

consisting of ’monolingual Sinhala sentences and synthetic English sentences’ were

added to the authentic parallel corpus to train the NMT model in English → Sin-

hala translation direction. This process was performed iteratively on the Back-

translated NMT models obtained from the previous iteration in both translation

directions until no improvements were observed in the BLEU scores for both

translation directions.

3.3 Filtered BT

After Back-Translation, the generated synthetic Sinhala sentences and their re-

spective monolingual English sentences were filtered to form the filtered synthetic

parallel corpus. For Sinhala → English translation direction, the Filtered Back-

Translated NMT model was trained on augmented parallel corpus constructed

by combining authentic parallel data along with the generated filtered synthetic

parallel corpus.
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Likewise, for English → Sinhala translation direction, English synthetic sen-

tences and their Sinhala monolingual counterparts were filtered to form a filtered

synthetic parallel corpus which was then added to the original parallel corpus

to construct an augmented parallel corpus. This augmented parallel corpus was

used to train the NMT model in the English → Sinhala direction.

To filter sentence pairs, the ’Sent-BiEmb’ sentence-level similarity metric was

used as proposed by Xu et al. [30] since it has proven to perform better than

the ’Sent-BLEU’ similarity metric. Even though Xu et al. [30] used FastText

embeddings along with the VecMap model, we also used the LASER embeddings

[39] and LaBSE embeddings [40] as they are both multilingual embedding models

pre-trained with a large data set and support the Sinhala language. Moreover,

we experimented with 6 threshold values to find the best threshold value for each

MT model.

We used FastText embeddings to create word embeddings of each word in a

sentence and then the sentence vector was obtained by averaging the accumu-

lated word vectors. These sentence embeddings of English and Sinhala languages

did not share the same vector space. To locate them in the same vector space

we used the VecMap model as used by Xu et al. [30]. Since LASER and LaBSE

are multilingual sentence embedding models we did not have to use the VecMap

model to map the sentence embeddings of Sinhala and English languages into

the same vector space. To compute the similarity score between the two sentence

embeddings, cosine similarity was used. If the cosine similarity between the sen-

tence embeddings of the synthetic source sentence and the respective monolingual

target sentence was above a certain threshold, the sentence was selected for the

filtered synthetic parallel corpus. Cosine similarity between two vectors 𝑆𝑥 and

𝑆𝑦 is computed according to the following formula.

𝑆𝑐𝑜𝑟𝑒(𝑆𝑥, 𝑆𝑦) =
𝑆𝑥 · 𝑆𝑦

|𝑆𝑥| ·
⃒⃒
𝑆𝑦

⃒⃒ (3.1)

Filtered BT for some sample data is depicted in Figure 3.2. It demonstrates

the process for English → Sinhala translation direction.
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Figure 3.2: En → Si Filtered BT process
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3.3.1 Iterative Filtered Back-Translation

Iterative Filtered BT is the combination of Iterative BT and filtering [37]. With

iterative filtering, we filter the back-translated data and train the NMT system

with the filtered synthetic parallel corpus iteratively. In other words, the back-

translated data are filtered using the filtering algorithm and then the filtered

parallel data are added to the original parallel corpus at each iteration. The

difference between Iterative BT and Iterative Filtered BT is that in Iterative

Filtered BT, before adding to the original parallel data at each iteration, the

synthetic parallel sentences are filtered to form a filtered parallel corpus.

We chose the best NMT model from the models trained on original parallel

data along with filtered synthetic parallel data which were filtered using Fast-

Text+VecMap, LASER, and LaBSE embeddings. These models were trained on

data filtered by different threshold values. Then starting from the picked model,

Iterative Filtered BT was performed while filtering data by the same thresh-

old value as the initial best model. Hence, at each iteration, different pairs of

sentences (monolingual target and synthetic source sentences) were filtered out.

Assuming that the performance of NMT models improves at each iteration, the

quality of the synthetic data also improves. We execute Iterative Filtered BT

until no improvements in the performance of the NMT models were observed.

3.4 Data selection

Transductive data selection algorithms were used for data selection. Feature

Decay Algorithm (FDA) was implemented to pick sentences with a score above a

certain threshold where sentences are scored based on the n-grams (here we used

unigrams) common in both the training data (seed) and the particular sentence.

The higher the number of n-grams common with the seed, the higher the score

of the sentence. However, the scoring formula penalizes n-grams that are too

frequent in the selected pool of sentences.

Even though Poncelas et al. [15] used a test set as the seed for both INR and

FDA, we used the training set as the seed as we assumed that the former intro-
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duces a bias since the same test set is used for evaluation. Moreover, since online

processing has given better results for Poncelas et al. [15], we also used online

processing where the training data (authentic parallel data) in the source lan-

guage was translated to the target language using source → target NMT model.

These translated data were used as the seed set.

Before feeding into FDA and INR algorithms, we translated the Sinhala train-

ing data to English and the English training data to Sinhala. Then, we fed the

Sinhala monolingual corpus with the translated English training data (now in Sin-

hala) and the English monolingual corpus along with translated Sinhala training

data (now in English) to the TDAs. For each monolingual sentence, if the score

of the sentence is greater than the threshold, the sentence was picked from the

selected pool of sentences.

3.5 Iterative Filtered BT with Data selection

After Iterative Filtered BT was over, we pick the best model for each translation

direction from the models obtained at each iteration. Then we translated the

source-side training data to the target language using the picked best models.

After obtaining the translated corpora as the seed sets(in target language), we ran

the FDA and INR algorithms for both Sinhala and English monolingual corpora.

Then the monolingual Sinhala sentences selected by the TDAs were translated

to the source language using the best Sinhala → English Iterative Filtered Back-

Translated NMT model. Then the generated synthetic parallel corpus was added

to authentic parallel data to construct the augmented parallel corpus which was

used to train the NMT model in English → Sinhala translation direction.

To train a finer model in the other translation direction, monolingual English

sentences selected by the TDAs were translated to the Sinhala language using the

best English → Sinhala Iterative Filtered BT model. Then these synthetic parallel

sentences were added to the authentic parallel data to form an augmented parallel

corpus. Next, Sinhala → English NMT model was trained on the augmented

parallel data. The NMT models obtained after this entire process for English →
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Sinhala and Sinhala → English translation directions are the models attained by

combining Iterative BT, Filtering, and Data Selection.

3.6 Tagged Back-Translation

Tagged Back-Translation is the process of prepending a tag to the synthetic sen-

tences after Back-Translation. By tagging the synthetic sentences, Caswell et

al. [16] states that a signal to the model is sent that the source side is back-

translated. Thus, allowing the decoder to distinguish between authentic and

synthetic parallel data.

After Back-translating the monolingual Sinhala corpus and monolingual En-

glish corpus, the obtained synthetic English and Sinhala corpora were tagged.

Tagged synthetic sentences were obtained by adding the tag < 𝐵𝑇 > before each

sentence in the synthetic corpus. An example of a tagged synthetic sentence is

shown in Table 3.1.

Synthetic source sentence Tagged Synthetic source sentence
survey for lease agreement plan <BT> survey for lease agreement plan

Table 3.1: Tagged synthetic sentence

3.6.1 Iterative Tagged Back-Translation

Iterative Tagged Back-Translation is, iteratively executing the Tagged BT pro-

cess until no improvements can be observed in both translation directions. We

tagged synthetic Sinhala and English sentences after they were back-translated

from monolingual English and Sinhala sentences. Then, when the tagging was

complete, the tagged synthetic source sentences and their respective monolingual

target sentences were added to the authentic parallel corpus to construct an aug-

mented parallel corpus. These newly formed parallel data were then used to train

new Sinhala → English and English → Sinhala NMT models.

It can be described that the Iteration-n Tagged-BT model is trained on Back-

Translated data generated by the Iteration-(n-1) Tagged-BT model. This entire
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process was executed iteratively till no improvements were observed in the per-

formance of the Sinhala → English and English → Sinhala NMT models.

3.6.2 Tagged BT with Filtering

After back-translating the monolingual Sinhala corpus, we filtered the generated

synthetic parallel corpus before tagging the synthetic English sentences. Then,

we added the tagged synthetic English sentences and their respective monolingual

Sinhala sentences to the authentic parallel corpus. Finally, we trained the En-

glish → Sinhala NMT model with the augmented parallel corpus. For the opposite

translation direction, after back-translating the monolingual English corpus we

filtered the generated synthetic parallel sentences before tagging the synthetic

Sinhala sentences. Next, we added the tagged synthetic Sinhala sentences and

their respective monolingual English sentences to the authentic parallel corpus

which was used to train the NMT model in Sinhala → English translation di-

rection. We used LASER embeddings as the sentence embedding technique with

different threshold values.

3.6.3 Iterative Tagged BT with Filtering

The main difference between this method and Iterative Tagged BT is, filtering

the generated synthetic parallel corpus before adding the tags to the synthetic

source sentences.

First, we pick the threshold value which gave the best model for Tagged BT

with Filtering for each translation direction. We used it as the threshold value

in our proceeding experiments. At each iteration after monolingual target sen-

tences were back-translated to the source language, we filtered the generated

synthetic parallel corpus using the picked threshold and tagged the filtered syn-

thetic source sentences. Then the generated tagged synthetic source sentences

and their respective monolingual target sentences were added to the original par-

allel corpus. This augmented parallel corpus was used to train a model in source

→ target translation direction.
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The above-mentioned process was executed on both monolingual Sinhala and

English data where at each iteration, monolingual Sinhala sentences were trans-

lated by the Sinhala → English NMT model in the previous iteration and vice

versa. This iteration process was carried out until no improvement could be ob-

served in both Sinhala → English and English → Sinhala translation directions.
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Chapter 4

EXPERIMENTS

4.1 Setup

We used OpenNMT-py1 for our experiments on Google colab pro with T4 and

P100 GPUs with access to high-memory VMs. We used the BLEU score as our

evaluation metric.

4.2 Baseline NMT model

We used an encoder-decoder network with a 2-layer bi-directional Long-Short

Memory Network (LSTM) as the encoder and an LSTM as the decoder. For

each experiment, we pre-processed both the source and target side training data

following the pre-processing steps in OpenNMT-py to create word dictionaries.

Then, using the generated dictionaries, serialized files were created for training

and development sets. In addition to that, we tuned the hyper-parameters with

the development set. The script we used for pre-processing in English → Sinhala

translation direction is depicted in Figure 4.1.

Figure 4.1: Pre-processing script

After that, we trained the network with an early stopping criteria with a

patience of 5 valid steps. During the inference phase, we used a beam search

of 5 beams. For ensembling, we used both checkpoint ensembling and model

ensembling by training 4 models; saving checkpoints for each model. A part of
1https://github.com/OpenNMT/OpenNMT-py
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the script we used for training (for only one model saving checkpoints) is depicted

in Figure 4.2. Then, we selected the top 4 models from the saved checkpoints

based on their results on the validation set; which were used as the Ensemble

model.

Figure 4.2: Training script

The Baseline NMT models in English → Sinhala and Sinhala → English

translation directions are trained as mentioned above. Since Back-Translation

does not require the existing model architecture to change, all the other models

were trained and evaluated the same way. The only difference was the training

data used to train each model since the synthetic parallel data changed with each

technique and the translation direction.

We used three sentence embedding techniques for Filtered Back-Translation.

1. The first sentence embedding technique we used was FastText+VecMap.

The first step in generating sentence embeddings was to generate word

embeddings using FastText. We trained new FastText models using our

Sinhala and English monolingual corpora. To train the models, we picked

the skip-gram model over CBOW since it is better at capturing semantic

relationships [47]. Moreover, we used hierarchical softmax for model train-

ing as it speeds up the training process. We set the dimensionality to 300

because it captures more information rather than setting it to a smaller

value. We used 12 worker threads with 5 iterations through each corpus to
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train each model.

(a) To map the sentence embeddings to the same vector space since Fast-

Text is not a multilingual embedding model, we used the VecMap

model. We used the Unsupervised mode since we did not have a seed

dictionary and did not want to rely on identical words.

2. The second sentence embedding technique we used was LASER. We used

’laserembeddings’ to generate sentence embeddings for English and Sin-

hala languages. We directly used the pre-trained embedding model since

it has been trained on both Sinhala and English data and the model has

performed very well in multilingual similarity search for high-resource and

low-resource languages alike. To generate sentence embeddings, we fed Sin-

hala and English sentences which were translations of each other to the

LASER embedding model along with their language tags ’si’ and ’en’, and

it generated the sentence embedding pair as the output.

3. The third and the last sentence embedding technique we used was LaBSE.

We used the pretrained LaBSE embedding model because it has been trained

on both English and Sinhala corpora and it has outperformed LASER on

certain NLP tasks such as cross-lingual text retrieval. The sentence embed-

dings for Sinhala and English languages were generated separately.

4.3 Data

The data we used for the experiments demonstrate extremely low-resource (i.e.

parallel data in Sinhala-English languages are very scarce) and domain-specific

settings. We used parallel training, validation and test data in the ’official gov-

ernment documents’ domain [48].

We constructed a monolingual English corpus and a monolingual Sinhala cor-

pus in the same domain as parallel corpora. After back-translating these mono-

lingual corpora, we pre-processed them by removing pairs that contain text in

the same language on both the source and target sides, as well as pairs where
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Size
Train 74,468

Validation 1,623
Test 1,603

Table 4.1: Parallel Data for Si-En

the same sentence was present on both the source and target sides. Sentences

with empty translations were also removed. Moreover, sentences containing only

special characters or numbers were removed as well. After pre-processing, we ob-

tained new synthetic parallel corpora (Synthetic Sinhala - Monolingual English

and Synthetic English - Monolingual Sinhala) for both translation directions. We

used the monolingual sentences in the target languages from the obtained parallel

corpora to construct a new monolingual English corpus and a new monolingual

Sinhala corpus which we used in all our experiments.

Language Condition Domain Size
Sinhala Raw in-domain 53,735
English Raw in-domain 53,093
Sinhala Pre-Processed in-domain 44,115
English Pre-Processed in-domain 42,773

Table 4.2: Monolingual Data

In addition to the in-domain monolingual corpora, we also constructed out-

of-domain monolingual corpora from the News data crawled from the web. The

English and Sinhala monolingual corpora generated from these crawled docu-

ments were comparable. We used these monolingual corpora to investigate the

impact of the authentic to synthetic data ratio on Back-Translation. Hence, the

size of the monolingual Sinhala and English corpora changed according to the

ratio values.

4.4 Experimental details

The vanilla BT models were obtained by first back-translating the monolingual

English and Sinhala data into source languages. Then we combined the obtained
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Language Ratio Domain Size
Sinhala / English 1:1 out-of-domain 74,468
Sinhala / English 1:2 out-of-domain 148,936
Sinhala / English 1:3 out-of-domain 223,404
Sinhala / English 1:4 out-of-domain 297,872

Table 4.3: Monolingual Data for different ratios in the News domain

synthetic parallel corpora with the authentic parallel data and trained the NMT

models in Sinhala → English and English → Sinhala translation directions with

the generated augmented parallel corpora.

To evaluate the effectiveness of Iterative BT, we iterated the entire Back-

Translation process in both Sinhala → English and English → Sinhala translation

directions until no improvements were observed in the BLEU scores for both the

translation directions.

For data selection, we used FDA and INR algorithms with a threshold value

of 0.7 for both algorithms. The threshold was picked after observing the scores

of all the sentences in the monolingual corpora for both FDA and INR algo-

rithms. To combine Data Selection with Iterative BT, the selected data were

back-translated by the best model obtained so far with Iterative BT. Finally, we

trained NMT models on the obtained synthetic parallel corpora combined with

authentic parallel data.

We used filtering using LASER embeddings, LaBSE embeddings and FastText

embeddings combined with VecMap model for different threshold values: 0.1, 0.3,

0.4, 0.45, 0.5, and 0.7. To combine filtering with Iterative BT, we performed

Iterative Filtered BT with the threshold value which gave the best results in the

previous experiment. To combine Iterative Filtered BT with Data Selection, first,

we ran FDA and INR algorithms on monolingual Sinhala and English corpora.

Then the selected sentences were back-translated by the best model obtained so

far with Iterative Filtered BT.

We conducted experiments on the ratio between authentic to synthetic data;

1:1, 1:2, 1:3, and 1:4 for the data extracted from the News data sets. Then we

38



picked the models which performed the best for Sinhala → English and English →

Sinhala translation directions. We pick the Sinhala and English monolingual cor-

pora which were used to train the best models obtained in these experiments for

future experiments. We conducted filtering using LASER embeddings for differ-

ent threshold values: 0.1, 0.3, 0.4, 0.45, 0.5, and 0.7 on the synthetic parallel data

obtained by back-translating the monolingual data picked based on the results of

the previous experiments. To combine Iterative BT, filtering, and Data selection,

we used FDA and INR algorithms with a threshold of 0.7 on monolingual News

data.
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Chapter 5

RESULTS AND DISCUSSION

5.1 In-domain data

5.1.1 Vanilla BT

Sinhala → English

As evident in Table 5.1, vanilla Back-Translation improves over the Baseline

NMT system proving that Back-Translation enhances the performance of NMT

systems in low-resource domain-specific (since we use in-domain monolingual En-

glish data) settings. An improvement of +1.07 BLEU was observed over the

Baseline NMT model. One of the main reasons for the vanilla BT model to out-

perform the Baseline NMT model is the monolingual English corpus we used.

These sentences were neither too long nor too short. Hence the translations of

these sentences were of higher quality.

Model Size BLEU
Baseline Ensemble 74468 24.42

Back-Translation Ensemble 42773 + 74468 25.49

Table 5.1: Si→En Vanilla BT

English → Sinhala

As we can see in Table 5.2, vanilla BT did not improve over the performance of

the Baseline NMT model. It was lagging by -1.67 BLEU points contradicting our

claim that Back-Translation improves the performance of Machine Translation

models.

The reason for this performance drop was the monolingual Sinhala corpus

used. Compared to the English monolingual corpus, the Sinhala monolingual

corpus consisted of longer sentences that did not get translated correctly from the
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Baseline NMT model. Thus, generating low-quality synthetic sentences. These

synthetic sentences contained several repetitions of a correctly translated phrase

of a long sentence.

Model Size BLEU
Baseline Ensemble 74468 22.85

Back-Translation Ensemble 44115 + 74468 21.18

Table 5.2: En→Si Vanilla BT

For an example consider the following translated synthetic sentences: "the

accounting liabilities of the supreme court court of appeal high court complex high

court complex 25 high court complex 25 high court complex 25 high court complex

high court complex magistrate apos s court complex magistrate apos s court com-

plex magistrate apos s court nuwara eliya magistrate apos s court etc ." and "the

total cost of the people living in the areas of lives and property of the people living

in the areas of lives living in the areas of lives and property of the people living

in the areas of lives living in the dry season of the people living in the district is

rs 413.9 million ."

5.1.2 Iterative BT

Sinhala → English

As we can observe in Table 5.3, Iterative BT improves over vanilla BT slightly

by a BLEU score of +0.14 in the first iteration itself. But then it drops in the

next 2 iterations and picks up again slightly. Since the results kept fluctuating

(no gradual improvement), we terminated the iteration process after 4 iterations.

As presented in Table 5.3, FDA and INR algorithms combined with Iterative

BT improved over the best Iterative BT model. FDA algorithm combined with

Iterative BT improved over vanilla BT by +1.0 BLEU points and the Back-

Translated model at Iteration-1 by +0.86 BLEU points whereas only a slight

gain of +0.19 BLEU points from vanilla BT was observed by INR algorithm

combined with Iterative BT.
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Model Initial Itr-1 Itr-2 Itr-3 Itr-4 FDA INR
Baseline Ensemble 24.42

Back-Translation Ensemble 25.49 25.63 23.6 23.62 25.01 26.49 25.82

Table 5.3: Iterative BT with Data selection for Si → En

English → Sinhala

As evident in Table 5.4, Iterative BT improved over both the Baseline NMT

and vanilla BT models in the 2𝑛𝑑 iteration with a slight gain of +0.18 BLEU

points from the Baseline NMT model. After the 2𝑛𝑑 iteration, the performance

dropped again. Hence, Iterative BT was conducted only for 4 iterations. When

the Transductive data selection algorithm FDA was combined with Iterative BT,

an improvement of +0.27 BLEU points over the Baseline NMT model and a

significant rise of +1.94 BLEU points over the vanilla BT model was observed.

However, as visible in Table 5.4, INR combined with the Back-Translated model

at iteration-2 (the best model obtained through Iterative BT) failed to improve

over the performance of the same model(at iteration-2).

Model Initial Itr-1 Itr-2 Itr-3 Itr-4 FDA INR
Baseline Ensemble 22.85

Back-Translation Ensemble 21.18 21.82 23.03 22.31 22.53 23.12 22.89

Table 5.4: Iterative BT with Data selection for En → Si

5.1.3 Filtered Back-Translation

Sinhala → English

As visible in Table 5.5, filtering with LASER embeddings did not improve over

the vanilla BT model. It was a very slight drop of -0.07 BLEU points which

was almost negligible. But the reason for this drop could be the quality of the

synthetic parallel corpus. The sentence embeddings for the Sinhala language

generated by LASER embeddings might not be as accurate as one expected them

to be, since Sinhala is a low-resource language and they have trained their models

with a smaller Sinhala dataset compared to languages like English, German,

French, and Spanish.
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LASER FastText LaBSE
+ VecMap

Model Thre- Size BLEU Size BLEU Size BLEU
shold

Baseline Ensemble 24.42
Back- Ensemble 25.49

Translation
Filtering Ensemble 0.7 14864 24.95 15342 24.82 7137 24.24

+ + +
74468 74468 74468

Ensemble 0.5 25503 24.91 23040 25.47 25214 25.3
+ + +

74468 74468 74468
Ensemble 0.45 25767 25.42 23794 27.66 25432 26.11

+ + +
74468 74468 74468

Ensemble 0.4 25868 23.87 24354 25.7 25555 24.25
+ + +

74468 74468 74468
Ensemble 0.3 25929 25.17 25076 25.65 25831 23.09

+ + +
74468 74468 74468

Ensemble 0.1 25941 24.82 25667 27.52 25941 25.34
+ + +

74468 74468 74468

Table 5.5: Si→En Filtered BT with different threshold values and embedding
techniques
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As shown in Table 5.5, using FastText embeddings combined with the VecMap

model for filtering has enhanced the performance of the NMT system significantly.

A +2.17 gain in BLEU score from the vanilla BT model and a +3.24 BLEU

gain over the Baseline NMT model were observed when the threshold value was

0.45 which was the highest score obtained through Filtered BT out of all the

embedding techniques. A threshold of 0.1 also gave a +2.03 BLEU increment

over the vanilla BT model.

Filtered BT using LaBSE embeddings also slightly improved over the perfor-

mance of the vanilla BT model as evident in Table 5.5. A +0.62 gain in the BLEU

score was observed over the vanilla BT model for a threshold value of 0.45. Other

models with different threshold values failed to perform better than the vanilla

BT model.

When we observe Figure 5.1, we can see that the highest BLEU score was

obtained by the model trained on parallel data filtered using FastText embed-

dings combined with the VecMap model. Averaging FastText word embeddings

to get the sentence embedding and then using the VecMap model to map them

to the same vector space generated more accurate English and Sinhala sentence

embeddings than the other two techniques. The Filtered BT model using LaBSE

embeddings also performed better than the vanilla BT model and LASER, indi-

cating that the generated sentence embeddings were more accurate than LASER

and less accurate than the combined method of FastText and VecMap.

Figure 5.1: Si→En vanilla BT model and the best Filtered BT models from each
embedding technique
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Furthermore, as evident in Figure 5.2, different embedding techniques perform

distinctly with each threshold value. For FastText + VecMap embeddings, the

threshold value to give the highest BLEU score was 0.45 and the lowest was

0.7. This makes perfect sense since a threshold value of 0.7 filterers out the

majority of sentences in the corpus and outputs 1/4𝑡ℎ of the entire original corpus.

For LaBSE embeddings, the highest BLEU score was obtained with a threshold

value of 0.45 and the lowest was obtained with a threshold value of 0.3. For

LASER embeddings, the best performance was observed when the threshold value

was 0.45 and the worst performance was observed at 0.4. Figure 5.2 makes

one understand that there isn’t a perfect threshold value and it varies with the

embedding technique as well as the monolingual corpora we use. Hence, the

performance of these models does not vary according to a certain pattern with

different threshold values.

Figure 5.2: Si→En Filtered BT for different threshold values

English → Sinhala

As we can see in Table 5.6, Filtered BT with LASER embeddings improved over

vanilla BT for all the threshold values. The best performance was observed for

a threshold value of 0.45 which obtained a significant gain of +2.0 BLEU points

over the vanilla BT model and a very slight improvement of +0.33 BLEU points

over the Baseline NMT model.
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LASER FastText LaBSE
+ VecMap

Model Thre- Size BLEU Size BLEU Size BLEU
shold

Baseline Ensemble 22.85
Back- Ensemble 21.18

Translation
Filtering Ensemble 0.7 15243 21.91 17182 23.19 8246 23.46

+ + +
74468 74468 74468

Ensemble 0.5 29279 22.76 26559 23.18 29413 22.9
+ + +

74468 74468 74468
Ensemble 0.45 29743 23.18 27493 22.75 29632 22.59

+ + +
74468 74468 74468

Ensemble 0.4 29966 22.81 28152 21.86 29734 23.13
+ + +

74468 74468 74468
Ensemble 0.3 30083 22.64 29046 22.76 29991 23.7

+ + +
74468 74468 74468

Ensemble 0.1 30109 22.63 29734 23.27 30109 23.39
+ + +

74468 74468 74468

Table 5.6: En→Si Filtered BT with different threshold values and embedding
techniques
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Furthermore, as evident in Table 5.6, using FastText embeddings combined

with the VecMap model for Filtered BT improved the performance of NMT mod-

els significantly. A gain of +2.09 BLEU points from the vanilla BT model was ob-

served when the threshold value was 0.1 which was the highest gain obtained out

of all the threshold values with FastText + VecMap embeddings. Furthermore,

this model outperformed the Baseline NMT model by +0.42 BLEU points. All

the other Filtered BT models with different threshold values also outperformed

the vanilla BT model.

In addition to Filtered BT with LASER and FastText + VecMap embeddings,

Filtered BT with LaBSE embeddings also improved over the vanilla BT model

significantly as presented in Table 5.6. A gain of +2.52 BLEU points over the

vanilla BT model was observed for a threshold of 0.3 which was the highest gain

obtained out of all the threshold values and embedding techniques. The best

Filtered BT model also outperformed the Baseline NMT model by +0.85 BLEU

points.

As we can see in Figure 5.3, Filtered BT outperformed the vanilla BT as well

as Baseline NMT (Table 5.6) for the English → Sinhala translation direction. As

evident in the chart, the highest gain was obtained using LaBSE whereas FastText

+ VecMap and LASER have lagged slightly behind. However, we observe that

FastText + VecMap and LaBSE have performed better than LASER which we

observed in Sinhala → English translation direction as well.

Figure 5.3: En→Si vanilla BT model and the best Filtered BT models from each
embedding technique
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As we mentioned previously, the synthetic parallel data we form for the En-

glish → Sinhala translation direction is of poor quality compared to the synthetic

parallel data formed for the other translation direction. For Sinhala → English

translation direction, the best Filtered BT model was obtained for a threshold

value of 0.45 for all three embedding techniques. However, for the English → Sin-

hala translation direction, it doesn’t hold. For FastText + VecMap the threshold

value was 0.1, for LaBSE it was 0.3 and for LASER it was 0.45. Hence, these

results are not as comparable to making a constructive decision on the perfor-

mance. Also, the results only showed slight differences between each embedding

technique.

As shown in Figure 5.4, the performance of the Filtered BT models change ac-

cording to the threshold and the sentence embedding technique. For the approach

of FastText combined with VecMap, the highest BLEU score was obtained at the

0.1 threshold value and the lowest at 0.4. For LASER, the best performance was

achieved when the threshold value was 0.45 and the worst performance was at

the threshold value of 0.7. With LABSE embeddings, the highest was at 0.3 and

the lowest at 0.45. The threshold value of the best model depends on both the

embedding technique and the monolingual corpora we use.

Figure 5.4: En→Si Filtered BT for different thresholds

Even the way different embedding techniques change with different threshold

values is very distinct. This is evident in Figure 5.4. By observing the chart we

can see how different the lines representing each embedding model are. However,
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LABSE has performed better than the other two, since not at any threshold value,

has a model that obtained a BLEU score of less than 22.5.

A few examples of sentence pairs picked and filtered out through filtering by

different sentence embedding techniques are presented in Figure 5.5 and Figure 5.6

respectively.

Figure 5.5: Sentence pairs picked by different embedding techniques

Figure 5.6: Sentence pairs filtered-out by different embedding techniques
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5.1.4 Iterative Filtered BT with Data Selection

Sinhala → English

As evident in Table 5.7, Iterative Filtered BT (with LASER) using 0.45 as the

threshold value improved over vanilla BT with the best model at Iteration-1 giving

a gain of +1.4 BLEU points. We observe that the results drop in the 2𝑛𝑑 and

the 3𝑟𝑑 iterations and rise again in the 4𝑡ℎ iteration; a pattern we also observed

in Iterative BT. When Transductive data selection algorithms FDA and INR

were combined with Iterative Filtered BT (using LASER embeddings) further

enhancements in the performance were observed. When the FDA algorithm was

combined with iterative filtering, we observed a +3 BLEU score improvement

(the highest gain) over the Baseline NMT model and a significant gain of +1.93

BLEU points over the vanilla BT model. However, INR combined with the best

Iterative Filtered BT model failed to improve the performance of the latter.

Model Embe- Thre- Ini- Itr-1 Itr-2 Itr-3 Itr-4 FDA INR
ddings shold tial

Baseline Ensemble 24.42
Back- Ensemble 25.49 25.63 23.6 23.62 25.01 26.49 25.82

Translation
Filtering Ensemble LASER 0.45 25.42 26.89 26.01 25.79 26.34 27.42 26.89

Ensemble FastText 0.45 27.66 24.88 25.97 26.32 24.76 25.71 25
+ VecMap

Ensemble LaBSE 0.45 26.11 24.43 25.97 25.07 24.71 24.91 25.72

Table 5.7: Iterative Filtered BT (different embedding techniques) with Data se-
lection for Si → En

Contrary to our expectations, Iterative Filtered BT (with FastText + VecMap)

failed to improve Filtered BT with a threshold value of 0.45 (which was chosen

since it gave the best results out of all the threshold values). We can observe in

Table 5.7, Transductive data selection algorithms FDA and INR combined with

Iterative Filtered BT failed to improve over the initial Filtered BT model with a

threshold value of 0.45.

Iterative Filtered BT (with LaBSE) started dropping from the 1𝑠𝑡 iteration

for the threshold value of 0.45 and failed to rise to the performance of the initial
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Filtered BT model with the same threshold value. Furthermore, as we can see

in Table 5.7, FDA and INR algorithms when combined with Iterative Filtered

BT, failed to improve over the initial Filtered BT model with a threshold value

of 0.45.

As evident in Figure 5.7, Iterative Filtered BT with different embedding tech-

niques displays the fluctuating patterns we observe with Iterative BT. Hence, we

stopped at the 4𝑡ℎ iteration. We can observe that with LASER embeddings, per-

formance improves with iterations and keeps fluctuating. Iterative Filtered BT

has performed better than Filtered BT with LASER embeddings. However, with

FastText + VecMap and LaBSE embeddings, it has been quite the opposite.

Figure 5.7: Si→En Iterative BT and Iterative Filtered BT

As seen in Figure 5.8, FDA combined with Iterative Filtered BT with LASER

embeddings outperforms all the other models. The chart shows that this com-

bination performs better than other approaches. However, as we can see in the

chart, Iterative Filtered BT with FastText + VecMap and LaBSE combined with

FDA and INR failed to improve over the initial Filtered BT model.
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Figure 5.8: Si→En FDA and INR combined with Iterative BT and Iterative
Filtered BT

English → Sinhala

As shown in Table 5.8, Iterative Filtered BT with LASER embeddings (with a

0.45 threshold value) improved the performance slightly over the Baseline NMT

model. A gain of +2.15 BLEU points over the vanilla BT model was observed

at Iteration-3. Using the FDA algorithm along with Iterative Filtered BT (with

LASER), improved over the vanilla BT model with a gain of +2.22 BLEU points

(the highest gain). However, the other Transductive data selection algorithm

INR combined with Iterative Filtered BT failed to improve over the best model

at Iteration-3.

Model Embe- Thre- Ini- Itr-1 Itr-2 Itr-3 Itr-4 FDA INR
ddings shold tial

Baseline Ensemble 22.85
Back- Ensemble 21.18 21.82 23.03 22.31 22.53 23.12 22.89

Translation
Filtering Ensemble LASER 0.45 23.18 23.08 22.7 23.33 22.15 23.4 22.9

Ensemble FastText 0.1 23.27 22.79 22.98 23.14 22.78 22.6 23.02
+ VecMap

Ensemble LaBSE 0.3 23.7 22.78 23.12 22.56 23.47 21.96 22.4

Table 5.8: Iterative Filtered BT (different embedding techniques) with Data se-
lection for En → Si
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Contrary to our expectations, Iterative Filtered BT with FastText + VecMap

failed to improve over the initial Filtered BT with the same threshold value. Fur-

thermore, as we can see in Table 5.8 when we combined FDA and INR algorithms

with Iterative Filtered BT (with FastText + VecMap), they failed to improve over

the Filtered BT model with a threshold value of 0.1.

As we can see in Table 5.8, Iterative Filtered BT with LaBSE embeddings,

started dropping from the 1𝑠𝑡 iteration for the threshold value of 0.3 and failed

to pick up to the performance of the initial Filtered BT model with the same

threshold. Moreover, both the FDA and INR algorithms combined with Iterative

Filtered BT (with LaBSE) failed to improve the performance of the initial Filtered

BT model with a threshold value of 0.3.

As it can be seen in Figure 5.9, Iterative Filtered Back-Translation has only

been effective with LASER as the sentence embedding technique. FastText +

VecMap and LaBSE had strong initial models and iterating the same process a

few times failed to beat these initial models. However, LASER has outperformed

its initial model at the 3𝑟𝑑 iteration since the model at iteration-2 in Sinhala →

English translation direction was strong. As visible in the chart, the performance

of the models kept fluctuating with each iteration.

Figure 5.9: En→Si Iterative BT and Iterative Filtered BT
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Out of all the models, the best one so far has been the initial Filtered BT model

with the LaBSE embedding technique. But these differences between Filtered

BT and Iterative Filtered BT were very slight. Hence, the reasons for the slight

changes can not be interpreted.

Figure 5.10 shows that Iterative Filtered BT with LASER embedding tech-

nique achieved the highest BLEU combined with FDA. Even though the Iterative

Filtered BT model with FastText + VecMap gave the best results when combined

with INR, it did not perform better than the initial Filtered BT model (with Fast-

Text + VecMap). Hence, by comparing the charts we can say that LASER is the

only sentence embedding technique used in Iterative Filtered BT, combined with

Transductive data selection algorithms which performed better than its initial

Filtered BT model.

Figure 5.10: En→Si FDA and INR combined with Iterative BT and Iterative
Filtered BT

Iterative BT also combined with FDA and INR outperformed the vanilla BT

by a significant margin. Transductive Data Selection algorithms combined with

Iterative Filtered BT models constructed using LaBSE and FastText + VecMap

embedding techniques failed to outperform their initial models because they were

very strong to beat. LaBSE and FastText + VecMap embedding techniques with

only Iterative Filtered BT, failed to improve over the initial model. Since we

combined a weaker Iterative Filtered BT model with FDA and INR, the models
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obtained through the combination were also weaker than the initial Filtered BT

model.

A few examples of monolingual target sentences selected and rejected by

Transductive data selection algorithms (FDA and INR) are demonstrated in Fig-

ure 5.11 and Figure 5.12 respectively.

Figure 5.11: Monolingual target sentences selected by FDA and INR algorithms

Figure 5.12: Monolingual target sentences rejected by FDA and INR algorithms

5.1.5 Tagged Back-Translation

Sinhala → English

As shown in Table 5.9, Tagged BT failed to improve over the vanilla BT model

by lagging by -1.92 BLEU points. However, Iterative Tagged BT managed to

enhance the performance with each iteration giving the best results at iteration-

3. A slight gain of +0.39 BLEU points from the vanilla BT model was observed

by the best model.
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Model Initial Itr-1 Itr-2 Itr-3 Itr-4 Itr-5 Itr-6 Itr-7 Itr-8
Baseline Ensemble 24.42
Back- Ensemble 25.49 25.63 23.6 23.62 25.01

Translation
Tagged BT Ensemble 23.57 24.46 24.41 25.88 25.72 24.21 24.81 25.62 25.31

Table 5.9: Tagged BT and Iterative Tagged BT for Si → En

As evident in Table 5.10, Tagged BT combined with filtering (with LASER

embeddings) exceeds the performance of the vanilla BT model by +0.87 BLEU

points and the Baseline NMT model by +1.94 BLEU points.

Model Thre- Initial Itr-1 Itr-2 Itr-3 Itr-4 Itr-5 Itr-6
shold

Baseline Ensemble 24.42
Back- Ensemble 25.49 25.63 23.6 23.62 25.01

Translation
Filtering Ensemble 0.7 26.35

Ensemble 0.5 26.36 26.21 24.83 25.19 26.18 23.05 25.65
Ensemble 0.45 23.85
Ensemble 0.4 24.01
Ensemble 0.3 25.74
Ensemble 0.1 24.43

Table 5.10: Tagged BT with filtering and Iterative Tagged BT with filtering
(LASER) for Si → En

However, when we iterated the process up to 6 iterations, no improvements

were observed over the initial Filtered model at any iteration. The performance

kept fluctuating but never picked up to the performance of the initial Filtered

model with a threshold value of 0.5. The reason could be that the initial Tagged

BT + Filtering model was too strong. Thus, iterating the process deteriorated

the performance.

English → Sinhala

As evident in Table 5.11, Tagged BT outperformed the vanilla BT model by

+1.29 BLEU points. This proves Caswell et al. [16]’ s claim that Tagged BT

improves BT. However, it has failed to outperform the Baseline NMT model

which can be justified on the grounds; that Tagged BT improved the vanilla BT
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model by a significant amount and it was bouncing back from the fall the system

took with vanilla BT. Furthermore, Iterative Tagged BT managed to improve

the performance with each iteration giving a gain of +1.91 BLEU points over the

vanilla BT model and a slight gain of +0.24 BLEU points over the Baseline NMT

model at iteration-4.

Model Initial Itr-1 Itr-2 Itr-3 Itr-4 Itr-5 Itr-6 Itr-7 Itr-8
Baseline Ensemble 22.85
Back- Ensemble 21.18 21.82 23.03 22.31 22.53

Translation
Tagged BT Ensemble 22.47 22.48 23.01 23.07 23.09 22.32 22.6 22.77 22.88

Table 5.11: Tagged BT and Iterative Tagged BT for En → Si

The Iterative Tagged BT model in Sinhala → English translation direction at

the 3𝑟𝑑 iteration obtained the best results. This caused the monolingual Sinhala

sentences to be Back-Translated properly generating a fine synthetic parallel cor-

pus which was used to train the NMT model at the 4𝑡ℎ iteration in the English

→ Sinhala direction. Hence, the best model was obtained at iteration-4.

As we can see in Table 5.12, Tagged BT with filtering outperformed both the

Tagged BT model and the vanilla BT model by +0.34 BLEU points and +1.63

BLEU points respectively.

Model Thre- Initial Itr-1 Itr-2 Itr-3 Itr-4 Itr-5 Itr-6
shold

Baseline Ensemble 22.85
Back- Ensemble 21.18 21.82 23.03 22.31 22.53

Translation
Filtering Ensemble 0.7 22.58

Ensemble 0.5 22.27
Ensemble 0.45 22.81 23 22.38 22.81 23.04 22.36 22.64
Ensemble 0.4 22.79
Ensemble 0.3 22.57
Ensemble 0.1 22.29

Table 5.12: Tagged BT with filtering and Iterative Tagged BT with filtering
(LASER) for En → Si

However, it failed to improve over the Baseline NMT model. When we iter-

ated the process (Tagged BT + Filtering), the performance fluctuated with each
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iteration. Even though there was no steady rise or drop in the performance with

each iteration, the best performance was observed at the 4𝑡ℎ iteration. A gain of

+0.19 BLEU points was observed over the Baseline NMT model and a gain of

+1.86 BLEU points was observed over the vanilla BT model.

5.2 Out-of-domain data

5.2.1 Selecting the best authentic to synthetic data ratio

As evident in Table 5.13 the best performances for both Sinhala → English and

English → Sinhala translation directions were observed by the models trained

with a ratio of 1:2. For Sinhala → English direction, a gain of +0.93 BLEU

points over the Baseline NMT model was observed. However, the model lagged

behind the in-domain vanilla BT model by a slight drop of -0.14 BLEU points.

For English → Sinhala translation direction, a slight gain of +0.57 BLEU points

was observed over the Baseline NMT model and a significant gain of +2.24 BLEU

points was observed over the in-domain vanilla BT model.

Ratio Sinhala → English English → Sinhala
BLEU BLEU

1:1 24.13 22.61
1:2 25.35 23.42
1:3 23.81 21.51
1:4 23.17 20.89

Table 5.13: Performance with different authentic to synthetic data ratios

As evident in Figure 5.13, the performance of Back-Translated NMT mod-

els change based on the size of the synthetic parallel corpus for both Sinhala

→ English and English → Sinhala translation directions. This experiment was

conducted using out-of-domain News data since we did not have large in-domain

monolingual corpora. As we can see in the chart, the best performance was ob-

tained when the ratio between authentic to synthetic parallel sentences was 1:2 for

both the translation directions. Then, when the ratio was 1:3, the performance

took a drastic drop which further went down when the ratio was 1:4.
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Figure 5.13: Different authentic to synthetic parallel data ratio (News data)

5.2.2 Filtered BT and Iterative Filtered BT with Data Selection

As evident in Table 5.14, the best result for Filtered BT was given by the threshold

value of 0.4 for both Sinhala → English translation direction and English →

Sinhala translation direction. For Sinhala → English translation direction, a

gain of +0.36 BLEU points was observed over the Basic BT model whereas for

English → Sinhala translation direction, the best model lagged behind the Basic

BT model by -0.05 BLEU points. The reason could be the decrease in the size of

the synthetic parallel corpus after filtering.

As we can see in Table 5.15, Iterative Filtered BT improved over Filtered BT

with each iteration for both Sinhala → English and English → Sinhala translation

directions. A gain of +1.04 BLEU points over the initial Filtered BT model and a

gain of +1.40 BLEU points over the Basic BT model was observed in the Sinhala

→ English translation direction at the 6𝑡ℎ iteration. For the English → Sinhala

translation direction, a gain of +0.74 BLEU points over the initial Filtered BT

model and a gain of +0.69 BLEU points over the Basic BT model were observed

at the 6𝑡ℎ iteration. For all the experiments LASER embedding technique was

used to generate sentence embeddings for filtering.

However, as we saw in Table 5.15, Transductive Data selection algorithms

FDA and INR combined with Iterative Filtered BT failed to outperform the best

models obtained by Iterative Filtered BT for both Sinhala → English and English

→ Sinhala translation directions.
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Si → En En → Si
Model Thre- Size BLEU Size BLEU

shold
Baseline Ensemble 74468 24.42 74468 22.85
Back- Ensemble 148936 25.35 148936 23.42

Translation + +
74468 74468

Filtering Ensemble 0.7 66387 24.32 69077 22.72
+ +

74468 74468
Ensemble 0.5 145111 25.08 143443 22.82

+ +
74468 74468

Ensemble 0.45 145331 24.93 143537 22.71
+ +

74468 74468
Ensemble 0.4 145410 25.71 143608 23.37

+ +
74468 74468

Ensemble 0.3 145467 25.41 143680 22.99
+ +

74468 74468
Ensemble 0.1 145485 25.14 143714 23.07

+ +
74468 74468

Table 5.14: Filtering with different thresholds with LASER as the sen-
tence embedding technique.

Si → En
Thre- Initial Itr-1 Itr-2 Itr-3 Itr-4 Itr-5 Itr-6 Itr-7 FDA INR
shold

Baseline 24.42
Back- 25.35

Translation
Filtering 0.4 25.71 25.35 25.42 25.82 25.8 26.32 26.75 26.34 25.13 25.72

En → Si
Thre- Initial Itr-1 Itr-2 Itr-3 Itr-4 Itr-5 Itr-6 Itr-7 FDA INR
shold

Baseline 22.85
Back- 23.42

Translation
Filtering 0.4 23.37 23.41 23.4 23.94 23.65 23.27 24.11 23.59 22.87 23.32

Table 5.15: Iterative Filtered BT with Data selection (All the models
are Ensemble models)
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5.3 Discussion

5.3.1 In-domain data

The effectiveness of Back-Translation depends on the target-side monolingual

corpus used. We observed that the drop in performance in the English → Sinhala

Back-Translated model was due to the poor quality of the Sinhala monolingual

corpus we used. Due to the lack of quality in the monolingual corpus used,

the synthetic corpus generated after Back-Translation transpired to be of rather

poorer quality. This resulted in a below-par synthetic parallel corpus which was

then combined with the authentic parallel corpus to train the NMT model. Thus,

we could state that the quality of the monolingual corpus affects the performance

of Back-Translation systems strongly.

We observed in Iterative BT, that the performance of the NMT model does

not gradually improve or decline with each iteration. Rather the performance

fluctuates. Since Iteration is done in Sinhala → English and English → Sinhala

translation directions simultaneously the performance of the NMT model at a

particular iteration depends on the condition of the NMT model in the opposite

translation direction in the previous iteration. For example, if the NMT model at

2𝑛𝑑 iteration in the English → Sinhala translation direction performed poorly, the

performance of the NMT model at 3𝑟𝑑 iteration in Sinhala → English translation

direction may deteriorate and vice versa. This is the reason for the performance

of the NMT models at each iteration to fluctuate without gradually increasing or

decreasing.

In Filtered BT, we observed that FastText + VecMap performed better than

LASER and LaBSE sentence embedding techniques. The main reason for this

is the VecMap model. We can presume that VecMap maps the sentence em-

beddings into the same vector space more accurately than LASER and LaBSE

since VecMap is specifically implemented for that purpose. Hence, VecMap is

better than LASER and LaBSE at mapping embeddings of sentences which are

translations of each other, to points in the same neighborhood.
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Contrary to our expectations, for both translation directions, the Iterative

Filtered BT models with LaBSE and FastText+VecMap failed to beat their ini-

tial Filtered BT models. The reason could be that both these techniques have

generated two strong initial Filtered BT models which can not be exceeded by

iteratively training NMT models. Artetxe et al. [19] also observed that the final

NMT system learned through Iterative BT has performed weaker than the initial

system used for warmup. Hence, they also claimed that iterative BT can even

degrade the performance when the initial system is very strong.

In addition to the previous observation, we also noticed that the performance

of the Iterative Filtered BT models didn’t improve when combined with FDA and

INR algorithms. Since Iterative BT can degrade the performance of the NMT

model when the initial system is strong, the weaker Iterative Filtered BT model

could generate low-quality synthetic data. Sentences picked by FDA and INR

were Back-Translated by these weak models. Hence, the NMT models generated

by training on these low-quality synthetic data perform poorly than the initial

Filtered BT models.

With Tagged BT, contrary to our expectations, the performance dropped

from the baseline NMT model and the vanilla BT model (only for Sinhala →

English direction). The tag is used to signal the model that the synthetic par-

allel sentences are different from authentic parallel sentences. Caswell et al. [16]

claimed that the word-for-word translation bias in BT data is usually incorpo-

rated into the BT model after training with synthetic parallel data. However, by

Tagged BT, the model has learned how to decode parallel text without having

to manually break this translation bias. The reason for the Tagged BT model

falling behind the vanilla BT model could be the unacquainted tag preceding ev-

ery synthetic sentence. Nevertheless, with Iterative Tagged BT, the performance

improved. Although the tag was unfamiliar to the model initially, with each iter-

ation, it helps the model to distinguish between authentic and synthetic parallel

data. Hence, the performances of the Iterative Tagged BT models outperform

the initial Tagged BT model.
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5.3.2 Out-of-domain data

We observed that the performance started to drop when the ratio between syn-

thetic to authentic parallel corpora grew. The reason could be the models favor-

ing out-of-domain parallel data since they were way larger than the in-domain

parallel data. So, when in-domain validation and test data were used to evalu-

ate the models, the performance dropped as the balance between in-domain and

out-of-domain data was leaning more toward out-of-domain data.

Not only the domain mismatch but also the quality of the synthetic parallel

data caused the drop in the results when the synthetic parallel corpus was in-

creased in size. Since we used the Baseline NMT models to Back-Translate the

monolingual Sinhala and English corpora, some words and phrases foreign to the

NMT models might not have gotten translated accurately. When the synthetic

parallel corpus was too large, it would have contained these inaccurate transla-

tions in large amounts causing the quality of the corpus to be poor. Eventually,

these low-quality data affect the performance of the NMT system adversely.

The best model for English → Sinhala translation direction was obtained

by Iterative Filtered BT for out-of-domain monolingual data. The main reason

is the monolingual Sinhala corpus we used. Unlike for in-domain experiments,

the monolingual corpus we used for out-of-domain experiments contained proper

sentences. Both out-of-domain monolingual Sinhala and monolingual English

corpora were comparable unlike in the in-domain scenario. Hence, the synthetic

English sentences generated at each iteration leading up to the 4𝑡ℎ iteration pro-

gressed with each iteration. This contributed to the performance gain of the

NMT models at each iteration.

However, we observed that FDA and INR combined with the best models

obtained through Iterative Filtered BT failed to outperform the initial Filtered

BT models. The reason for the drop is the domain mismatch between the seed

(which was the original parallel data) and the monolingual News data. The

number of sentences picked from the monolingual corpora was low since the scores

assigned to each sentence were low (because common n-grams in the seed and
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monolingual corpus were sparse) with the threshold value being 0.7. Hence, the

size of the monolingual corpora was smaller compared to previous experiments;

causing the performance of the models to deteriorate. Even though Poncelas et

al. [15] claimed that FDA and INR help domain adaptation, it seems not to hold

in this case.

5.4 Best 5 models obtained for each translation direction

Table 5.16 presents the top 5 models we obtained for Sinhala → English transla-

tion direction with their gains over the Baseline NMT model.

Rank Model description BLEU
1 Filtered BT with FastText embeddings combined with VecMap 27.66

for in-domain data. Threshold value = 0.45 (+3.24)
2 Iterative Filtered BT + FDA with LASER embeddings 27.42

for in-domain data. Threshold value = 0.45 (+3)
3 Iterative Filtered BT with LASER embeddings for 26.89

in-domain data. Threshold value = 0.45 (2.47)
4 Iterative Filtered BT with LASER embeddings for 26.75

out-of-domain data. Ratio = 1:2 , Threshold value = 0.4 (+2.33)
5 Iterative BT + FDA for in-domain data. 26.49

(+2.07)

Table 5.16: Best models for Si → En

We present the top 5 models we obtained for English → Sinhala translation

direction in Table 5.17 with the gain of each model from the Baseline NMT model.
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Rank Model description BLEU
1 Iterative Filtered BT with LASER embeddings for 24.11

out-of-domain News data. Ratio = 1:2 , Threshold value = 0.4 (+1.26)
2 Filtered BT with LaBSE embeddings for 23.7

in-domain data. Threshold value = 0.3 (+0.85)
3 Iterative Filtered BT + FDA with LASER embeddings for 23.4

in-domain data. Threshold value = 0.45 (+0.55)
4 Iterative Filtered BT with LASER embeddings for 23.33

in-domain data. Threshold value = 0.45 (+0.48)
5 Filtered BT with FastText embeddings combined with VecMap 23.27

for in-domain data. Threshold value = 0.1 (+0.42)

Table 5.17: Best models for En → Si
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Chapter 6

CONCLUSION AND FUTURE WORK

It is evident that Back-Translation improves translation performance in extremely

low-resource domain-specific settings when a large monolingual corpus is used.

The generated synthetic sentences tend to contain errors due to the sub-optimal

nature of the NMT system used to translate the monolingual corpus. We have

identified iterative BT, data selection, filtering, and tagged BT as approaches to

alleviate this problem. A considerable gain in the BLEU score can be observed

when filtering and iterative BT are combined. Furthermore, combining filtering,

iterative BT, and data selection give the best results and a significant improve-

ment for both Sinhala → English translation direction and English → Sinhala

translation direction. In addition to these techniques, tagged BT combined with

filtering and Iterative Tagged BT improved over the vanilla BT model and the

Baseline NMT model. However, tagged BT alone failed to improve over both the

vanilla BT and Baseline NMT models for Sinhala → English translation direction

and also failed to improve over the Baseline NMT model for English → Sinhala

translation direction.

LASER and LaBSE are competent sentence embedding models out of which

LaBSE proved to be better at determining the semantic similarity for bilingual

sentence pairs which are translations of each other. FastText combined with the

VecMap model demonstrated to outperform both LaBSE and LASER for Sinhala

→ English translation direction. By comparatively analyzing these embedding

techniques, we identified that VecMap maps the sentence embeddings of differ-

ent languages into the same vector space better than LaBSE and LASER since

VacMap is specifically built for that purpose.

The size of the monolingual corpus depends on the domains of both the mono-

lingual and the parallel data and the language pairs involved. If both the mono-

lingual data and parallel data are in the same domain for a low-resource language
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pair, increasing the size of the monolingual data helps improve the performance.

However, even if the domains of the monolingual and parallel training data are

the same, for high-resource language pairs, increasing the size of the monolingual

corpus can degrade the performance of the NMT model. The reason is the sub-

optimal nature of the synthetic sentences which causes the models trained on large

amounts of parallel data to depreciate. When the domains of the monolingual

and parallel training data mismatch for low-resource language pairs, increasing

the ratio between the authentic to synthetic parallel data deteriorate the perfor-

mance of the NMT model. Hence, we have gathered that the size of the synthetic

parallel data depends on the domains of both the monolingual and the parallel

training data. In addition to that, it also depends on the language pair.

In the future, we plan to construct larger in-domain Sinhala and English

monolingual corpora to use for the BT experiments in Sinhala↔English trans-

lation directions. We plan to conduct experiments with Sinhala ↔Tamil and

English↔Tamil translations as well. We also plan to use other techniques such

as Sampling, and using both source side and target side monolingual data to

improve BT for Sinhala↔English, Sinhala ↔Tamil and English↔Tamil. In ad-

dition, we plan to publish a journal paper on a survey on Back-Translation.
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