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Abstract
Unmanned aerial vehicles (UAVs)-assisted communication systems are considered

a promising technology in diverse verticals. The objective of this research is to

study on demand deployment of UAVs in special applications. We analyze the

multi-UAV deployment in two different scenarios.

First, we analyze the deployment of UAVs as an aerial base stations (ABSs) to

provide cellular coverage to isolated users. The main contributions of this study

includes a less complex approach to optimally position the UAVs and assigning

user equipment (UE) to each ABS, such that the total spectral efficiency (TSE)

of the network is maximized, while maintaining a minimum QoS requirement for

the UEs. The main advantage of the proposed approach is that it only requires

the knowledge of UE and ABS locations and statistical channel state informa-

tion. We propose two approaches with common and diverse altitude selection.

Both approaches lead up to approximately 8-fold energy savings compared to

ABS placement using a naive exhaustive search.

Second, we have investigated the deployment of UAVs in wireless sensor net-

work (WSN) systems. Considering the energy-constrained nature of the WSN, we

have proposed a multi-UAV deployment algorithm that minimizes the maximum

power transmitted among the sensor nodes (SN) for given data rate and altitude

constraints. The problem is divided into three subproblems in order to reduce

the complexity. Each subproblem is optimized by fixing other parameters as con-

stant. Finally, we proposed a joint optimization algorithm that combines the

approaches of all three subproblems. In the joint optimization, the first and sec-

ond subproblems are iteratively solved together while third subproblem is solved

independently for each UAV. Moreover, the joint optimization gives the minimum

number of UAVs required to serve all the SNs with the given constraints. The

results indicate a significant performance gain compared to the benchmark meth-

ods in terms of the number of iterations for convergence, maximum transmission

power requirement and the minimum number of UAV requirements.
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Chapter 1

Introduction

1.1 UAV and wireless communication

Unmanned aerial vehicles (UAVs), generally referred to as drones, have a diverse

range of use cases. The usage of UAVs is exponentially growing and has become

an inevitable technology in various fields [1, 2]. UAVs’ initial research and exper-

imentation date back to the interwar period, when the British army developed

radio-controlled planes to serve as targets in military exercises. However, UAV

applications have been underutilized for a long time due to various problems with

cost-effective design, accurate and sensitive control, energy-efficient processing

and durable batteries [3]. Continuous advancements in payload capacity, com-

plex control mechanisms, energy-efficient processing, and increment in flight-time

endurance have paved the way for many other promising UAV-assisted applica-

tions. The applications include but are not limited to agriculture, patrolling,

mapping & surveying, search & rescue, disaster management and entertainment.

The current trend portrays increasing interest in UAV-assisted applications

in diverse verticals. This growth is expected to be the key enabler of accomplish-

ing the milestones of a smart environment [1, 2]. In all of the above-discussed

applications, the UAVs are deployed as cellular-connected UAVs, where they act

as an aerial user equipment, which is controlled by the respective cellular infras-

tructure. Therefore, a smooth, stable, and reliable communication infrastructure

is essential to make these applications feasible. The wireless communication sec-

tor is constantly improving the factors that allow UAVs to capitalize on their

potential as a smart environment enabler. The control commands and overhead
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requirements by UAVs require reliable and low latency communication and are

fulfilled by ultra-reliable low latency communications (URLLC), which is one of

the primary use cases of fifth-generation (5G) new radio (NR) [4]. On the other

hand, data payload delivery requirements are jointly fulfilled by the other two

use cases of 5G NR; namely, enhanced mobile broadband (eMBB) and massive

machine type communication (mMTC) [5].

Fig. 1.1: Requirements of UAV-assisted applications and the relevant use case of 5G and beyond
networks that aid the demand

On the other hand, wireless communications have drastically evolved over the

past decades, from pure voice transmissions to rich multimedia content and other

data. Along with this, the popularity of cloud computing and smartphone usage

creates tremendous data traffic in wireless communication networks. Currently,

the 5G cellular networks are being deployed globally. Similar to wireless stan-

dards support cellular-connected UAV applications, the UAVs are deployed to

support and enhance various applications in wireless networks, which is generally

referred to as UAV-assisted communication

1.2 UAV-assisted wireless communication

UAV-assisted wireless communication is generally studied for two cases, where

the UAV acts as an aerial base station [6], or an aerial relay station [7]. Potential
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applications of aerial base stations are supporting the overloaded terrestrial base

stations (BSs), providing on-demand coverage in no coverage areas for special

occasions, and reconstructing temporary coverage in a natural disaster or an

emergency situation [1, 2, 8]. The UAVs are deployed as aerial relay stations

where the channel link between the source and the destination is unavailable or

too weak for successful communication [7, 9, 10]. On the other hand, there is an

increasing interest in utilizing UAVs for data gathering applications where they

collect the data from diverse geographic regions around a city or a remote area

and deliver it to a central station for analysis [1]. Notably, data collection of

UAVs is getting more attention in wireless sensor network (WSN) systems. In

conclusion, UAV-assisted communication can be divided into three general areas,

namely,

1. UAV-assisted ubiquitous coverage,

2. UAV-assisted relaying, and

3. UAV-assisted data dissemination/collection.

1.2.1 UAV-assisted ubiquitous coverage.

UAVs can be deployed as aerial base stations that improve wireless connectivity

and provide multi-access edge computing (MEC) services. Providing uninter-

rupted and reliable coverage is a key feature of future wireless communications.

UAVs can be deployed in diverse network systems to address this requirement.

Remote controllability and the mobility of a UAV make it possible to deploy any-

where, irrespective of the terrain conditions. Moreover, UAVs are a promising

candidate for on-demand deployment due to the low cost of deployment and sim-

ple infrastructure requirements. Furthermore, it can improve the signal quality

due to the ability to hover at appropriate altitudes to establish a strong line of

sight (LoS) links with the ground users.

Profited from these benefits, UAV-assisted systems have great potential to

provide edge computing services and ubiquitous coverage associated with ground

or satellite systems. Application scenario of UAV as aerial base station can be

categorized as,

• Emergency scenarios

Natural disasters, such as volcanic eruptions, typhoons, floods, cyclones,
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earthquakes and tsunamis, can destroy terrestrial infrastructure. It is vital

to have a communication system enabled to gather and process data from

sensors and emergency workers for conducting emergency rescues. Here, the

UAV is capable of temporarily enabling the communication infrastructure.

• Hotspot events

It is difficult to maintain the quality of experience (QoE) standards for a

massive number of users in hotspot areas like athletic events, football fields,

political rallies and traffic jams solely through the terrestrial network. The

integration of UAVs has enormous potential for addressing the vital increase

in communication and processing requirements. As a result, UAV-assisted

networks could help improve user experiences in hotspot locations.

• Remote areas

Establishing a fully-fledged terrestrial communication infrastructure in re-

mote areas is not cost-effective. However, there could be requirements to

provide coverage for rural areas or areas that do not have terrestrial infras-

tructure due to special temporary events or data collection requirements.

In these situations, UAVs can be deployed to provide on-demand coverage.

Fig. 1.2: Application scenarios of UAV as aerial base station

1.2.2 UAV-assisted relaying.

Extending or strengthening the wireless coverage is a key application of relay

nodes. The UAVs also can be used as aerial relays in an instance where the ob-
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stacle completely blocks the propagation path between the source to destination

or the path experiences a deep fade. UAVs can act as a relay to establish the

obstructed link or minimize the fading by strong LoS propagation. Aerial relay-

ing has numerous advantages over a standard fixed relay system thanks to the

flexible and on-demand nature of UAVs.

1.2.3 UAV-assisted data dissemination/collection.

On the other hand, there is an increasing interest in utilizing UAVs for data

gathering applications where they collect the data from diverse geographic re-

gions around a city or remote area and deliver it to a central station for analysis

[1]. Notably, data collection of UAVs is getting more attention in wireless sensor

network (WSN) systems.

The wireless sensors enabled broad and diverse utilization in locations where

wired sensors are not feasible to be deployed. As WSN can be remotely con-

trolled, it can cover a vast geographical area. It can be deployed to accumulate

information from large agricultural fields, forests, heritage lands, etc. There are

several UAV applications in WSN systems, but not limited to, as follows. First,

It can help to collect data from remote areas where deploying a ground station

(GS) is not feasible and cost-effective [10]. Second, as these WSNs are deployed

in a huge geographical area in large quantities, it is not feasible to recharge them

individually. Thus, it can be recharged through wireless power transfer (WPT)

enabled UAV, which is a feasible and promising solution as the battery capacity

of WSNs is not too high [7]. Third, it can be deployed as a temporary data

collector where the dedicated GS malfunctions due to a disaster or other techni-

cal problems. Our proposed model is applicable in collecting data from remote

areas and as well as it can be utilized as a temporary data collector in emergencies.

Utilizing UAVs for data collection tasks can bring several benefits but is not

limited to as follows. First, the ability to adjust the altitude allows enabling

strong LoS propagation that will strengthen the channel. Second, UAVs not

only possess data transmission but data computation, caching, and processing

capacities. They can directly receive the data from the nodes, do the respective

operation, carry stored data, and offload it to the GS. This ability to store and
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forward the data creates a new cooperative communication protocol as store-and-

forward (SF) relaying [12]. Third, simple infrastructure requirements and ease

of deployment make it suitable for on-demand deployment. Fourth, UAVs are

maneuverable. They can freely adjust their aerial stopping locations to improve

the system’s performance. Fifth, it can utilize simultaneous wireless information

and power transfer (SWIPT) techniques to recharge the SNs while collecting data.

1.3 Challenges in UAV-assisted communication

Compared to terrestrial communication, several challenges are involved in fa-

cilitating the UAV-assisted communication network. The higher mobility de-

mands complex control mechanisms [1] and effective trajectory planning, while

on-demand deployment requires self-organizing network (SON) capability [13].

Furthermore, the higher probability of LoS links increases the co-channel inter-

ference (CCI). Thus, the control algorithm plays a crucial role in such a network,

as it should focus on several aspects that ensure the system’s proper function-

ing. These include radio resource management, interference management, channel

estimation and prediction, placement, user association, energy efficiency, and tra-

jectory planning. Therefore, significant research has recently been focused on the

intelligent planning of UAV networks. Below we have mentioned some of the

challenges involved in UAV-assisted communication.

• UAV placement and path planning

Maneuverability is an essential advantage that UAVs provide when using

UAV-assisted communication systems. In terrestrial infrastructure, deploy-

ment and planning are done through a long-term behavior of data demand

and the area’s geological structure. However, deployment and path planning

of UAV aerial devices should be done considering the real-time information.

Initially, the objective of the network should be identified with the relevant

constraints. Then the appropriate algorithm should be adopted, or a cus-

tomized algorithm should be developed to decide the deployment and path

planning. In the literature, both centralized and disseminated algorithms

are considered for deployment. Considering the wing type, the path plan-

ning of the UAV differs. Those are discrete and continuous trajectories

6



in the spatial realm. It is necessary to have a continuous trajectory for

fixed-wing UAVs as it is essential to keep a minimum speed to maintain

the respective altitude. On the other hand, Rotary-wing UAVs can have

both discrete and continuous trajectories as they can standstill in the air.

In a disaster scenario or an emergency application, rotary-wing UAVs have

more benefits than fixed-wing UAVs.

• Energy efficiency

Energy efficiency is a crucial factor in extending the UAVs’ battery life or

hovering time as UAVs are powered by energy-constrained power resources.

In a UAV-assisted communication system, the energy is consumed for mo-

bility and data transferring. Comparably, mobility needs more power than

transmission. Thus, it significantly impacts the energy efficiency of the sys-

tem. Therefore, a fundamental trade-off exists between energy consumption

and the quality of service, which is most of the time measured in relation

to data rates provided.

• User association and moving cells

In a terrestrial system, user association is done by defining the cell bound-

aries by analyzing the RF footprint. The cell boundaries are defined through

a long-term statistical interpretation of data request trends and the area’s

geological structure. However, the UAV aerial base station can not have a

determined cell structure. It has the notion of a moving cell. In the moving

cell concept, the user association decision should be based on the instanta-

neous or predicted value. Matching algorithms are the ones mostly used to

tackle User association. Initially, the cost weight of the system should be

identified. Cost features can be energy consumption, latency, data rate, etc.

After that, the cost value will be weighted for each UAV-user link, where

the respective matching algorithm can be used to solve the user association

problem.
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• Air-to-ground channel modelling

The data collection link represents the communication between the user

and the UAV. It is often referred to as ground-to-air (GTA) link, which

almost has the same characteristics as its reciprocal air-to-ground (ATG)

link. The ATG channel could experience both LoS and non-LoS (NLoS)

propagation depending on the position of the aerial device, ground device

and environmental parameters. To exactly calculate the contribution of LoS

and NLoS propagation in ATG channel gain, we should have accurate and

precise information related to the geometrical structure of that particular

environment. As we do not have access to such information, we have to

think of an effective alternative method to characterize the LoS and the

NLoS contribution in the ATG channel.

There are no universally affirmed channel models to characterize the ATG

channel. However, there are four kinds of models that have been used to

characterize the GTA channels in the current literature. First, the channel

model, which utilizes the exact geometrical structure of the environment

and the reflective nature of the wavefront. Second, the empirical mea-

surements based channel models. Third, pure LoS propagation which is

often modeled using the free-space path loss model. Finally, probabilistic

information-based LoS characterization is used to model the contribution

of LoS and NLoS propagation.

1.4 Objectives and Scope

The objective of this research is to study the challenges involved in UAV deploy-

ment for diverse applications, and propose effective algorithms for UAV place-

ment. The study is divided into two phases.

Phase-I- Study the deployment of UAVs as ABSs, which provide ubiquitous

coverage to the ground users, and propose an effective algorithm for UAV ABS

placement. This phase mainly deals with the following tasks.

• Study the challenges involved in deploying UAVs as ABSs.
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• Identify the crucial performance and the constraints of ABS which should

be ensured through the deployment.

• Investigate the drawbacks of the approaches proposed in the current liter-

ature.

• Propose an algorithm that addresses the identified constraints and draw-

backs in existing work.

Phase-II- Study the deployment of UAVs as a data collector, which collects

data from the sensor nodes and forward it to a ground station. For this scenario,

propose an effective algorithm for deploying UAVs as data collectors.

• Study the challenges involved in deploying UAVs as data collectors.

• Identify the crucial performance and the constraints in the WSN system

and deployment of UAV as a data collector

• Investigate the drawbacks of the approaches proposed in the current liter-

ature.

• Propose a UAV placement algorithm that addresses the identified con-

straints and drawbacks of existing work.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 discusses the

related works and provides the motivation for both works that we have addressed

in this thesis. Chapter 3 discusses our initial work, which focuses on deploying

UAVs as ABS to maximize the system’s spectral efficiency. Similarly, chapter

4 discusses our second work, which is focused on UAV deployment for energy-

efficient WSN systems. Finally, the thesis is wrapped by providing some future

directions.

1.6 Publications

Below are the publications that arose through this work,
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• H. Hydher, D. N. K. Jayakody, K. T. Hemachandra, and T. Samarasinghe,

”Intelligent UAV deployment for a disaster-resilient wireless network,” Sen-

sors, vol. 20, no. 21, p. 6140, Oct. 2020.

• H. Hydher, D. Jayakody, K. Hemachandra and T. Samarasinghe, ” UAV

Deployment for Data Collection in Energy Constrained WSN System” in

Proc. IEEE International Conference on Computer Communications (IN-

FOCOM), Workshop on Artificial Intelligence (AI) and Blockchain-Enabled

Secure and Privacy-Preserving Air and Ground Smart Vehicular Networks,

2022.
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Chapter 2

Related Works and Motivation

One of the key advantages of UAVs in the application of wireless communication

is mobility. It arises the challenges related to UAV deployment. Several factors

must be considered in UAV deployment in UAV-assisted communication to en-

sure the system’s performance. Such as resource management, coverage region,

interference management, channel prediction, deployment, user assignment, path

planning, energy efficiency, etc.

2.1 Deployment Approaches Proposed for UAV-

Assisted Communication

2.1.1 UAV as an aerial base station

Several works in the literature address the various challenges related to UAV

deployment. Initially, we did a background study to analyze the deployment

approaches proposed in the current literature to provide ubiquitous coverage. It

is summarized in Table 2.1.1.
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Table 2.1: Some general deployment approaches proposed in the current literature.

Reference Objective Methodology/ Algo-

rithm

Remarks

[14] Optimal alti-

tude for maxi-

mum coverage

region

Model the signal loss

as a function of alti-

tude and find the crit-

ical point to minimize

the function

Simplified probability of

LoS calculation

[15] Optimal posi-

tion of BS to

fit the area of

interest consid-

ering coverage

circles.

Circle packing theory LoS effect on small scale

fading is not considered

[16] Optimal

placement

for Energy-

Efficient Maxi-

mal Coverage

Circle packing theory Interference is totally

neglected

[17] Optimal place-

ment for higher

data rate

Genetic algorithm Interference is totally

neglected

[18] Cognitive adap-

tation network

to provide

connectivity

between IoT

devices with

minimal ABS

Feedback based iterative

algorithm

LoS is not considered in

any cases and leads un-

realistic channel model

for an ABS

Continued on next page
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Table 2.1 – Continued from previous page

Reference Objective Methodology/ Algo-

rithm

Remarks

[19] Adjusting the

UAV heading to

maximize the

approximate er-

godic sum rate

of the uplink

channel

Centralized algorithm

which guarantees opti-

mal solution

Interference is totally

neglected

[20] Maximize the

system through-

put

Develop an algorithm

for dynamically adjust

the movement

Absolute LoS assump-

tion, Interference is not

considered.

[21] Improve trans-

mission ef-

ficiency and

maximize sys-

tem throughput

Adaptive weighted coor-

dinate axes algorithm

Interference is totally

neglected

[22] Minimum

number of

drone-BSs and

their 3D place-

ment so that all

the users are

served

Particle swarm opti-

mization

Requires high computa-

tional power

After the initial background study, we identified some drawbacks in the current

literature. Given those, we further analyzed the similar works in the literature

and sculptured our system model and our approach such that it overcomes the

identified drawbacks. Table 2.2 briefly describes the drawbacks that we identified

in the current literature and also how it is addressed through our proposed system

model.
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Table 2.2: Limitation in the existing works and the proposed way to overcome

Reference

Limitation in their system

model

The way our system

model overcomes the

limitation

[16, 20, 23,

24, 25]

In these approaches, they have

not considered the interference

between the UAVs when consid-

ering the signal quality.

In our approach, we have

considered the interference

from each and every other

UAVs (co-channel interfer-

ence).

[20, 24, 25,

26]

These approaches do not con-

sider the combined effect of LoS

and NLoS on signal quality.

In our approach, we consider

the effect of LoS and NLoS

on signal quality.

[16, 20, 23,

24, 25, 26]

These approaches do consider

the effect of LoS and NLoS in

large-scale path loss effect, but

it does not consider the effect in

small-scale fading.

In our approach, we consider

the LoS and NLoS effect in

small scale fading.

[15, 16, 24] These approaches use a cover-

age disc-based approach to de-

cide which UE will be covered

by which UAV (user assign-

ment). It is not feasible if we

take interference into account.

In [15], they have an assump-

tion of equal average interfer-

ence throughout the circumfer-

ence. It is not feasible in practi-

cal scenarios. Also, the disc as-

sumption is valid if we only con-

sider average pathloss. If we in-

clude shadowing and small-scale

fading, the shape will not be pre-

dictable.

In our approach, user assign-

ment is done through the

calculated channel link qual-

ity using statistical channel

state information (CSI).

Continued on next page
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Table 2.2 – Continued from previous page

Reference Limitation in their system

model

The way our system

model overcomes the

limitation

[24, 25, 26] These works have not considered

the impact of altitude in the per-

formance analysis.

In our works, we have set

a minimum and maximum

altitude for the UAV where

the UAV can take any alti-

tude in between them. Also,

we have considered the im-

pact of altitude on the

probability of LoS and the

pathloss.

[15, 20] Moreover, these works have con-

sidered a fixed altitude for the

performance analysis.

[27] They have included most of the

aspects. However, they have

not considered the effect of LoS

in small-scale fading. They

have assumed Rayleigh fading

assumption for both LoS and

NLoS propagation.

In our approach, we consider

the effect of LoS in small-

scale fading as well. For LoS

we consider the rician fading

assumption and for NLoS

rayleigh fading assumption.

[15, 17, 19,

20, 27]

These approaches require knowl-

edge of perfect channel state in-

formation of all users in each and

every ABS. Also, in some ap-

proaches, it takes a time average

of CSI on the UE’s end prior to

feedback to the ABSs. This will

also be time-consuming. This is

one of the major drawbacks in

the current literature.

We are proposing an ap-

proach to utilize statistical

CSI of the channel to over-

come this drawback. The

detailed discussion of this

concern is in section 3.3.

Continued on next page
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Table 2.2 – Continued from previous page

Reference Limitation in their system

model

The way our system

model overcomes the

limitation

[15, 16, 17,

18, 19, 20,

21, 22, 23,

25, 26, 27]

In these works, they have not

included the energy constraint

for maneuvering. The energy re-

quired for maneuvering is rela-

tively high, which can not be ne-

glected. This is also a major

drawback in the constraints of

current literature.

We have included the con-

straints on the energy re-

quired for UAV maneuver-

ing in our system model.

All things considered, our initial work is focused on the problem of optimal

placement of the UAVs as ABSs to enable network connectivity for the users in

an emergency. It is thoroughly discussed in chapter 3.

2.1.2 Energy efficiency in UAV-assisted communication

system

In the initial work, we focused on positioning the UAV to maximize the total

spectral efficiency of the system. At the same time, it consumes less energy

for mobility than the sequential approaches proposed in the existing literature.

However, considering the limited energy nature of the UAV-assisted systems,

overall energy efficiency is crucial for such a system. Therefore, in the next

phase, we focus on energy efficiency in a UAV-assisted communication system.

We did a background study to analyze the deployment approaches proposed

in the current literature, which focus on energy efficiency in UAV-assisted com-

munication. It is summarized in Table 2.3.
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Table 2.3: Works Related to Energy Efficient UAV-assisted Communication System

Work

Objective Constraints Methodology/ Algo-

rithm

[28] Energy efficiency for

the secrecy capacity

is maximized by op-

timizing the transmit

powers and the tra-

jectory of the UAV

through a joint opti-

mization.

Maximum transmit

power, Maximum UAV

Speed, Completion of

the complete cycle of

the trajectory

Block coordinate

descent (BCD) and

Dinkelbach method

is used in a recursive

algorithm to obtain a

suboptimal solution by

combining successive

convex approximation

(SCA) techniques.

[29] Deployment of access

point (AP) and fusion

centers such that the

total power consump-

tion of sensor node is

decreased.

Maximum transmit

power

Modified Lloyd algo-

rithm

[30] Maximize the UAV’s

energy efficiency for

secrecy communica-

tion by optimizing

UAV’s trajectory,

flight velocity design,

User scheduling and

power allocation.

Maximum tolerable

signal-to-noise ra-

tio (SNR) leakage,

minimum data rate

requirement

Two subsequent opti-

mization approaches.

First, for feasible

UAV’s trajectory and

flight velocity, optimize

the user scheduling

and the transmit power

allocation. Then, for

feasible user scheduling

and transmit power

allocation optimize the

UAV’s trajectory and

flight velocity.

Continued on next page
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Table 2.3 – Continued from previous page

Work Objective Constraints Methodology/ Algo-

rithm

[31] Energy efficiency of

the UAV is maxi-

mized by optimizing

its trajectory.

Mobility constraints of

the UAV.

Iterative approach that

follows SCA technique

and Dinkelbach’s algo-

rithm

[32] Minimizing the to-

tal energy consump-

tion of a UAV de-

ployment in a straight

road.

Minimum data rate,

maximum delay.

BCD

[33] Maximize the energy-

efficient of UAV re-

laying by jointly opti-

mizing UAV’s acceler-

ation, trajectory and

flying speed and also

the transmit power of

UAV and BS.

UAV mobility con-

straints, UAV and

BS transmit power

constraint.

First, solve the trans-

mit power of BS and

UAV, and speed for

a given UAV loca-

tion and acceleration.

Second, using the sub-

optimal UAV location

and acceleration in the

previous subproblem,

optimize the transmit

power of BS and UAV

and speed. Iterate it

until the convergence.

[34] Optimal deployment

considering minimiz-

ing the number of

UAVs per hour of ser-

vice.

Coverage and QoS con-

straints.

Genetic Algorithm and

Particle Swarm Opti-

mization.

Continued on next page
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Table 2.3 – Continued from previous page

Work Objective Constraints Methodology/ Algo-

rithm

[35] Maximizing energy

efficiency in UAV

communication via

optimizing UAV and

BS transmit power;

UAV trajectory, ac-

celeration, and flying

speed.

UAV mobility and

maximum transmit

power constraints

SCA techniques and

Dinkelbach’s algo-

rithm.

[36] Maximizing the sum

of logarithmic rates

by optimizing the po-

sition of the UAV.

Maximum coverage ra-

dius and minimum and

maximum UAV alti-

tude

Particle Swarm Opti-

mization.

[37] Maximize energy

efficiency by design-

ing the transmit

power allocation, user

scheduling, UAV’s

flight velocity and

trajectory.

Maximum tolerable

leakage signal-to-

interference plus-

noise ratio (SINR)

to eavesdroppers and

the minimum indi-

vidual user data rate

requirement.

SCA and the Dinkel-

bach’s method.

[38] Minimize the sum en-

ergy consumption of

IoT nodes by optimiz-

ing UAV position and

the user association.

Node association con-

straints.

K-means clustering and

cutting plane method

Continued on next page
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Table 2.3 – Continued from previous page

Work Objective Constraints Methodology/ Algo-

rithm

[39] Scenario 1: mini-

mize the time that

is needed to complete

data transmission;

Scenario 2: power

allocation and the

UAV’s position are

jointly optimized to

maximize the size

of data that can be

transmitted.

Total power constraint Customized Algorithm

which includes bisec-

tion method, Newton-

Raphson method

and Golden-section

method.

[40] Optimal trade-off

between the ground

transmitter and UAV

power consumption.

Minimum transmit

power constraint on

ground and UAV

transmitter

Analytical approach

given the probability

density function of

the position of ground

transmitter and ground

receiver.

[41] Maximize the secrecy

energy efficiency (ra-

tio between secrecy

capacity and energy

efficiency) by optimiz-

ing the communica-

tion schedule, power

allocation, and UAV

trajectory

Minimum transmit

power constraint on

ground and UAV

transmitter

Iteratively solving the

subproblem through

convex optimization

and SCA.

Below we mention some extracted points after analyzing the above works,

• No works have included transmitting power allocation considering the sys-

tem’s energy efficiency.
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• In general, the energy efficiency of a UAV network is defined as

Energy Efficiency(EE) = Spectral Efficiency or Capacity
Energy Consumption(Mechanical Movement)

• Considering the above definition of EE, transmit power is treated as an

optimization variable to achieve higher spectral efficiency and increase EE in

most works. However, the energy consumption for transmission is neglected.

• Considering the non-convexity of the EE maximization problem concerning

user scheduling, trajectory and transmit power, most of the works pro-

pose dividing them into subproblems and solving them using iterative ap-

proaches.

• Most of the works assume pure LoS propagation is always possible in the

air-to-ground channel link to avoid the complexity of altitude adjustment.

Also, the simple free-space path loss is adopted to calculate the channel

gain related to each link.

Although the transmit power is negligible compared to the power required

for propeller movement. it significantly affects the energy efficiency of the uplink

communication. Therefore, we further analyzed the works that focus on uplink

communication. It is summarized in Table 2.4.

Table 2.4: Works Related to Energy Efficiency in uplink perspective in a UAV-assisted com-
munication System

Work

Objective Constraints Methodology/

Algorithm

[42] Maximize the sys-

tem throughput by

jointly optimizing the

3D UAV trajectory,

communication schedul-

ing, and UAV access

point/sensor node

transmit power.

Transmit power

and UAV

trajectory

constraint.

Polyblock outer ap-

proximation (POA)

and SCA

Continued on next page
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Table 2.4 – Continued from previous page

Work Objective Constraints Methodology/

Algorithm

[43] UAV’s uplink cell asso-

ciations and power allo-

cations over multiple re-

source blocks are jointly

optimized to maximize

the weighted sum rate.

Maximum

transmit power

constraint, One

resource block

can be used

only for one

link in a given

time.

Centralized ap-

proach through

SCA, Decentralized

approach through

applying SCA for

individual clusters

[44] Studies the energy

tradeoff between the

UAV and its served

sensor.

Maximum

transmit power

constraint.

Analytical approach

as the path is sim-

plified.

[45] Maximize the energy ef-

ficiency of the system.

Maximum

transmit power

constraint.

Dinkelbach’s algo-

rithm and SCA.

After analyzing the above works, we identified that transmit power plays a

significant role in uplink communication in terms of energy efficiency, especially

for data collection from sensors. As wireless sensor arrays have minimal energy,

the energy consumption for transmission of data via the uplink is a crucial factor

to be efficiently handled. Moreover, the existing works do not consider transmit

power fairness among the wireless sensor nodes (WSNs).

All things considered, our second work focuses on the problem of UAV deploy-

ment in the WSN system, increasing energy efficiency while maintaining transmit

power fairness among the nodes. It is thoroughly discussed in chapter 4.
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Chapter 3

Intelligent UAV Deployment for

a Disaster-Resilient Wireless

Network

3.1 Overview

In general, three main UAVs’ applications in wireless communications have been

recognized: A UAV may be used as an aerial base station (ABS), an aerial relay,

or an aerial mobile station (MS). From these applications, deploying UAVs as

ABSs to enhance the coverage and capacity of terrestrial wireless systems has

attracted significant research attention. Potential applications include supple-

menting the overloaded terrestrial network due to large crowds and providing

temporary coverage in areas where the terrestrial network is unavailable due to a

natural disaster or an emergency situation [2, 8]. Here, we propose a scheme to

optimally position a set of ABSs to provide network coverage to users who have

lost connectivity to the terrestrial base station (BS) due to a disaster situation.

The quick deployment capability, high mobility, and low capital expenditure of

UAV ABSs make them effective solutions in the above scenarios [1]. Furthermore,

UAV ABSs increase the probability of line of sight (LoS) links, which enhance

the received signal quality compared to non-line of sight (NLoS) links available

in terrestrial BS networks. However, the successful deployment of UAVs as ABSs

demands overcoming several challenges. Complex control mechanisms is essential

for higher mobility [1] and effective trajectory planning, while self-organization is

required for on-demand deployment [13]. Also, the higher probability of LoS links
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increases the co-channel interference (CCI). Hence, the control algorithm plays a

vital part in these types of networks, as it should focus on several aspects that

ensure the system’s proper functioning. These include spectrum management,

interference mitigation, channel prediction, deployment, user association, energy

efficiency, and trajectory planning. Therefore, significant research attention has

been focused on intelligent planning of UAV networks recently.

The recent works on UAV networks mainly focus on network coverage [15, 47,

16, 46, 18], quality of connectivity [48], network topology [49], target tracking [50],

and utilizing the UAVs as ABSs to serve the user equipments (UEs). In general,

all UAV ABSs are connected to each other and to a central control station [51, 15,

16, 46, 18, 48, 49, 50, 27, 52]. The works in the literature consider both centralized

[53, 15, 16, 19, 54, 25, 55] and decentralized approaches [18, 56, 57, 58] for the

deployment and control of UAV networks. Centralized algorithms are capable

of providing highly accurate decisions compared to the decentralized approaches.

However, the requirement of having global information at a central location may

lead to significant overhead and delay, depending on the application. In contrast,

distributed algorithms share limited information and make intelligent decisions

through locally available data, resulting in lower overhead and delay in the system.

However, as distributed algorithms completely rely on device intelligence and

local information, limitations on device intelligence and inaccurate information

may lead to system failure. In our work, we propose two low complexity ABS

positioning algorithms and a UE assignment scheme, which deems a centralized

approach more feasible.

Energy efficiency is paramount for ABSs as the power supply is restricted.

There are several techniques introduced to alleviate this issue such as radio fre-

quency energy harvesting, wireless power transfer [59], simultaneous information

and power transfer, and self-interference exploitation [7]. However, it is well

known that the energy spent in maneuvering the UAVs dominates the energy

efficiency, thus UAV deployment and trajectory optimization are crucial for the

success of such a network. There are algorithmic approaches [16] that study the

deployment problem, with a focus on increasing the energy efficiency without sac-

rificing the quality of service (QoS) requirements. To this end, machine learning

(ML)-based deployment approaches facilitate comparatively quick responses and

lower data overheads. In [17], genetic algorithm (GA) and reinforcement learning

are used for optimal deployment and user assignment. Similarly, GA with the hill
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climbing algorithm (HCA) is used in [24] to enable the communication services

and explore the unidentified victims. In [24], initial deployment is done through

GA and then the HCA is used to adapt the system to the conditions.

Apart from machine learning algorithms, heuristic algorithms have also been

used to solve the UAV placement problem. Although heuristic approaches do

not always guarantee the global optimum, can be useful in many applications.

Heuristic approaches find an optimal solution without searching over the entire

problem space. Therefore, it outperforms typical exhaustive approaches in terms

of number of iterations or latency. However, the computational intensity increases

exponentially with the number of dimensions of the problem space in heuristic

approaches. One example for a heuristic approach is particle swarm optimization

(PSO). This optimization approach is originally proposed by J. Kennedy and R.

Eberhart in 1995 [60]. The inspiration of this algorithm is the behavior of a

bird flock. The PSO-based 3D placement of ABSs is studied in [61]. Although

PSO provides superior average performance, the performance for a given instance

cannot be guaranteed as it follows a heuristic approach. Therefore, completely

relying on PSO may result in severe performance degradation.

A significant contribution is made in [27] with regards to UAV deployment,

and this can be considered to be the most related reference to our work. In [27],

the authors have used a matching algorithm and a clustering algorithm to find

the best 2D position and the UE assignment for a given altitude. Then, a game

theoretic approach is used to find the optimal altitudes of the ABSs. Initially,

the ABSs are randomly placed in the area of interest, and the ABSs continuously

move in the 2D plane until they reach the best 2D position. Subsequently, the

altitudes of the ABSs are changed based on the aforementioned game theoretic

approach, and the 2D positions and the UE assignments are further fine tuned

taking the adjusted altitudes into consideration. This iterative process continues

such that the ABSs repetitively change their locations until they reach the optimal

positions. A main drawback of this approach is the time and the energy spent

in continuously moving the ABSs. It is important to note that the time spent

for UAV maneuvering is significantly large compared to the channel coherence

time. Therefore, in a practical scenario, the estimated channel state information

(CSI) can be less accurate and cause performance degradation. Furthermore, the

energy limitations of ABSs have not been taken into account in [27]. There are

several other limitations and assumptions found in the literature that do not fully
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reflect realistic attributes of UAV ABSs. For example, in [17], an interference-

free environment is assumed and CCI is neglected. However, due to the higher

probability of LoS propagation in the ABS to UE links, CCI from other ABSs is

inevitable.

Considering the limitations of the previous work, in this section we propose a

centralized and less complex approach that relies on the average statistics of the

channel and eliminates the necessity to continuously move the ABSs. The only

information required at the central controller (CC) is the locations of the UEs

and the initial locations of the ABSs. With the available location data, we find

the optimal locations of the ABSs and the UE assignment for each ABS at the

CC, where there is sufficient computational power to provide a rapid solution.

According to the decision of the CC, the ABSs can directly change their position

from the initial position to the optimal position in one step, making it a quick

and energy efficient approach.

The deployment problem is divided into three phases, which are 2D deploy-

ment, UE assignment, and the altitude selection. The approach taken for 2D

deployment and the UE assignment has similarities to [27] as they stem on a

clustering algorithm and a matching algorithm, respectively. The approaches sig-

nificantly differ in the third step, which is the altitude selection. We propose two

methods for altitude selection. The first method performs an exhaustive search

among a discrete set of altitude values, without allowing altitude diversity among

ABSs. This means all ABSs operate at a common altitude. We effectively trun-

cate the search space by using properties of our objective function. On the other

hand, the second method facilitates altitude diversity, and the altitudes of the

ABSs are decided through a PSO algorithm. Our proposed algorithms keep track

of the available energy in the batteries of the ABSs, and take them into con-

sideration in making the decision on the ABS deployment, making them further

different from the schemes proposed in [27].

Our work considers the impact of CCI in the ABS deployment process. Fur-

thermore,we focus on fully utilizing the spatial diversity by deploying omnidirec-

tional antennas. In addition, being different to our work, the impact of LoS is

not considered in [7, 47, 17, 62] for small-scale fading, which can significantly af-

fect the performance in dense urban environments. Moreover, the altitude of the

UAVs are not taken into account in [24, 25], and a fixed UAV altitude assump-

tion is considered in [15]. It is well known that the altitude of the UAV plays a
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major role in the performance of the network, due to its impact on the path loss,

coverage radius, and the probability of line of sight (PLoS). In our work, we have

considered a feasible altitude range to exploit the gain from altitude diversity.

The novelty and the key contributions of the work that is proposed in this

section can be summarized as follows.

• A multi-UAV and multi-UE system, where UEs are randomly distributed

in a disaster struck area is considered.

• Algorithms are proposed to position the UAV ABSs and allocate UEs for

each ABS, to maximize the sum spectral efficiency of the network, while

maintaining a minimum QoS level for all UEs.

• The proposed scheme is centralized and has a low level of complexity, as

only the statistical CSI, locations of the UEs, and the initialized locations

of the ABSs are required as inputs.

• The proposed scheme allows the ABSs to directly move from their initial

position to the optimal position with a single maneuver, making it a quick

and energy efficient approach.

• The available energy levels in the batteries of the ABSs are taken into

consideration in the deployment.

The remainder of this chapter is organized as follows. In Section 3.2, we

present our system model. Section 3.3 describes the proposed ABS placement

and UE association schemes. Section 3.4 presents numerical results and insights,

while Section 3.5 concludes this chapter.

3.2 System Model

3.2.1 Spatial Model

Consider an area A where the UEs are distributed following a homogeneous Pois-

son point process (PPP) with intensity of λU in the 2-dimensional Euclidean

space R2. Due to a disaster, the UEs located inside the circular region of radius

RB denoted by B (centered at the origin of A) have lost connectivity with the

terrestrial network. Figure 3.1 illustrates a sample UE distribution. Hereafter,

we only focus on the UEs in region B. The average number of UEs in B is NUE.
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To serve these UEs, NUAV UAVs are deployed as ABSs. It is assumed that the

maximum number of UEs supported by an ABS is NT . Therefore, on the average,

we have

NUAV =

⌈
NUE

NT

⌉
, (3.1)

where the operator d.e represents the ceiling function.

Initially, the ABSs are deployed randomly in the 3-dimensional space above

B. Let Sj denote the coordinates of the jth ABS. Sj takes the form of (xj, yj, Hj),

where xj and yj represent the location of the jth ABS in R2 and Hj represents

the altitude of the jth ABS. We define S = {S1, . . . , SNUAV
}. Bi represents the

location of the ith UE. Let φj denote the set of UEs associated with the jth ABS.

We define the set Φ = {φ1, . . . , φNUAV
}, such that the sum of the cardinalities of

φj, j ∈ {1, 2, . . . , NUAV} is NUE, i.e.,
∑

j |φj| = NUE. Moreover we assume that

a UE cannot communicate with more than one ABS, thus the elements in Φ are

disjoint, i.e., φj ∩ φi = ∅ for ∀i 6= j ∈ {1, . . . , NUAV} .

B
A A

(b)(a)

Fig. 3.1: (a) User equipment (UE) distribution in A and (b) UE distribution in B (disaster
region).

The ABSs have limited battery resources, and it is assumed that they cannot

be recharged while in operation. For simplicity, we consider equal initial battery

life at all ABSs. The available energy in batteries is used for both ABS maneuver-

ing and data transmission. The total energy available for maneuvering is denoted

by ET . Although having equal battery power at initialization, the battery levels

among ABSs shall differ while in operation, as per the distance traveled. Thus,

each ABS keeps track of the available energy in the battery. The energy remain-

ing for the maneuvering of the jth ABS is denoted by Ej. Considering a single
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maneuver of the jth ABS, the energy required to move the ABS from the present

location (a0
j , b

0
j , c

0
j) to the new location (aj, bj, cj) is estimated using

Ej
mob = ηh[(a

0
j − aj)2 + (b0

j − bj)2]1/2 + ηv[c
0
j − cj)2]1/2, (3.2)

where ηh and ηv denote the energy consumption for movement per unit distance

in the horizontal and vertical directions, respectively.

3.2.2 Channel Model

As UEs are only served by ABSs, we only focus on the ABS-UE channel. This

channel experiences both LoS and NLoS propagation conditions depending on the

altitude of the ABSs. Therefore, it is essential to consider both LoS and NLoS

links in a realistic performance evaluation. The probability of communicating

through a LoS ABS-UE link can be calculated based on the elevation angle of an

ABS with respect to a UE using the following originally given in [14],

P (LOS, θij) =
1

1 + a exp(−b[θij − a])
, (3.3)

where θij is the elevation angle of the jth ABS with respect to the ith UE, and a

and b are environment dependent parameters.

By considering the effects of LoS and NLoS propagation, the channel gain

from the jth ABS to the ith UE is modeled as

hq(j, i) =
|gq|2√

(H2
j + d(j, i)2)αq

, (3.4)

where q ∈ {L,N} such that L and N refer to the LoS and NLoS conditions,

respectively, gq is the small-scale fading amplitude, d(j, i) is the distance between

the jth ABS and the ith UE, αq is the large-scale path loss exponent [63], and we

assume αL < αN . It is also assumed that gL follows a Rician fading distribution

with the Rice factor K, while gN follows the Rayleigh fading distribution.

3.2.3 Signal-to-Interference-plus-Noise Ratio (SINR)

Considering the interference from other co-channel ABSs is crucial when posi-

tioning an ABS[8]. In contrast to the works in [8, 47, 17], we consider the full

29



impact of CCI in the ABS placement and UE association problems. Figure 3.2

illustrates a sample scenario of our proposed system. The SINR of the ith UE

associated with the jth ABS is given by

SINR(j, i) =
Pr(j, i)

IAgg(i) +N0

, (3.5)

where Pr(j, i) is the signal power received at the ith UE from the jth ABS,

IAgg(i) is the aggregate interference experienced by the ith UE, and N0 is the

power spectral density of the Gaussian noise. In addition, the received signal

power Pr(j, i) can be expressed as

Pr(j, i) = pjt [P (LOS, θij)hL(j, i) + (1− P (LOS, θij))hN(j, i)] , (3.6)

where pjt is the transmit power of the jth ABS. The aggregate CCI is given by

IAgg(i) =

NUAV∑
l=1,l 6=j

plt[P (LOS, θij)hL(j, i) + (1− P (LOS, θij))hN(j, i)], (3.7)

where we have incorporated the effect of both LoS and NLoS propagation from

the interfering ABSs.

Fig. 3.2: System model illustration of the information and interference signals for NUAV = 3
and NUE = 3.
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3.3 Optimal ABS Placement and User Associa-

tion

In this section, we focus on inferring S, the position of each ABS, and Φ, the

assigned UE list for each ABS such that the total spectral efficiency (TSE) of

the network is maximized. The TSE is given by

TSE =

NUAV∑
j=1

∑
i∈φj

log2 [1 + SINR(j, i)] . (3.8)

The optimization problem of interest can be formulated as follows:

max
S,Φ

TSE

s.t. Ej
mob ≤ Ej,

SINR(j, i) ≥ SINRmin, i ∈ φj, j ∈ {1, . . . , NUAV},
NUAV∑
j=1

|φj| = NUE,

φj ∩ φi = ∅, ∀i 6= j ∈ {1, . . . , NUAV},

|φj| ≤ NT j ∈ {1, . . . , NUAV},

(3.9)

where SINRmin is the SINR threshold set to ensure the minimum QoS require-

ment.

It is clear that the objective function and the constraints of (3.9) are non-

convex and it is challenging to obtain an optimal solution with polynomial com-

plexity. A problem very similar to (3.9) has been solved in [27] using game

theory combined with an iterative algorithm. Figure 3.3 illustrates an example

ABS placement and UE association obtained using the approach in [27]. To reach

this solution, in [27], it has been assumed that the small-scale fading process is

stationary and the UEs and the ABSs have full knowledge of the CSI. However,

it is important to note that the time it takes to move an ABS can be signifi-

cantly larger than the coherence time of the channel, leading to decisions based

on outdated CSI. Furthermore, it is important to note that the ABSs have to

execute multiple maneuvers to reach the optimal 2D position, resulting in high

energy consumption. Therefore, we consider a novel approach where only the

statistical CSI and the locations of the UEs and the ABSs are used to determine
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the optimal 2D position and the UE assignment. In addition, we use a central-

ized approach to solve the placement and UE association problem, and move the

ABSs to their optimal positions using a single maneuver to reduce the overall

energy consumption.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.3: Illustration of ABS placement and UE association obtained using the approach in [27],
where RB = 2000 m, αN = 2.5, αL = 2, λU = 2 × 10−4/m2, δ = 0, NUAV = 3, H∗= 300 m,
NT = 70. The position of the ABS is represented using X. The three colors differentiate the
UE clusters at a particular stage. (a–h) illustrate the 1st,. . .,5th, 7th, 9th and 11th adaptive
stages, respectively

To this end, this work defines a new SINR parameter based on statistical CSI

and we refer to it as the statistical SINR (SSINR). The SSINR of the ith UE

associated with the jth ABS is given by

SSINR(j, i) =
E[Pr(j, i)]

E[IAgg(i)] +N0

, (3.10)

where E[·] denotes the expectation. From (3.4), (3.6), and (3.7), it can be iden-

tified that SSINR(j, i) can be computed using the knowledge of UE and ABS

positions and the statistics of Rayleigh and Rician fading. Therefore, compared

to instantaneous CSI, a significantly lower overhead is required to make these

information available at the CC. Using SSINR, we reformulate the optimization

problem as

max
S,Φ

STSE

s.t. SSINR(j, i) ≥ SINRmin, i ∈ φj, j ∈ {1, . . . , NUAV},
(3.11)
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where the constraints not shown remain unchanged from (3.9), and STSE is

defined as

STSE =

NUAV∑
j=1

∑
i∈φj

log2 [1 + SSINR(j, i)] , (3.12)

which can be interpreted as the achievable TSE when SINR(j, i) is approximated

by SSINR(j, i), and we refer to STSE as statistical total spectral efficiency. It

is not hard to recognize that (3.11) is also non-convex and cannot be solved

using algorithms with polynomial complexity. Therefore, we propose to solve

(3.11) using a 3-step approach, namely, the 2D deployment of the ABSs, UE

assignment, and altitude selection of the ABSs. This chapter first presents a

methodology for the 2D deployment of the ABSs and the UE assignment.

3.3.1 2D Deployment of the ABSs and the UE Assign-

ment

Initially, all ABSs are randomly and uniformly placed above the disaster zone.

The ABSs then estimate the locations of the UEs in its region of coverage from

the uplink signals. These locations are sent to a centralized location, together

with the locations of the ABSs, such that the centralized location is fully aware

of the network topology. Using this knowledge, the user assignment and the 2D

positioning follows an iterative three step process. Note that all of these iter-

ations take place at the centralized location. First, the received SSINR values

at each UE from the ABSs providing coverage are calculated. Second, using the

calculated SSINRs, the UE assignment to the ABSs is performed through a stable

marriage approach. The goal is to assign the UEs to the ABS providing the best

SSINR such that the constraint on the maximum UEs per ABS is not violated.

Therefore, in the stable marriage approach, the UE assignment is done such that

both these parties (UEs and ABSs) are jointly satisfied with a particular as-

signment, and there is no other UE assignment that the two parties would rather

prefer having than the current assignment. If there are no such other assignments,

the matches are deemed stable. Once each UE is assigned to an ABS, the third

step of the 2D deployment of the ABSs is done through a clustering algorithm.

The clustering algorithm proposed in this chapter closely follows the principles

of K-means clustering. However, in contrast to conventional K-means clustering,

our algorithm uses multiple weighting parameters in the decision phase. Essen-
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tially, the locations of the ABSs are updated such that they coincide with the

centroid of the locations of their assigned UEs in the 2-dimensional Euclidean

space, denoted by (xc, yc, 0). This three step process continues until the exit con-

dition is satisfied. The statistical total spectral efficiency gain denoted by GL is

used as the metric to determine the algorithm convergence. To this end,

GL = ψn − ψn−1 , (3.13)

where ψn is the STSE in the nth iteration. The iterative process continues as long

as GL is greater than δ, which is the least expected gain from an iteration. Note

that the physical locations of the ABSs do not change iteratively, thus they can

hover at the initialized location until a decision is made on the optimal location.

Figure 3.5 illustrates the movement of the ABSs in the 2D plane after finding the

best 2D position through CC.

3.3.2 ABS Altitude Selection

We present two approaches for the altitude selection. In the first approach, the

altitude diversity is not considered and all ABSs are assumed to be at the same

optimal altitude, denoted by H∗. Once the initial optimal 2D positions are de-

termined, an exhaustive search over a discrete set of altitudes is used to find

the optimal altitude for the ABSs. For each altitude, the 2D locations and UE

assignments are further fine-tuned, using the same three-step iterative process

described earlier. To limit the search space in the exhaustive search, we make

the following observations regarding the received SSINR of a UE. Considering

the impact of the ABS altitude in the downlink, it is shown in [14] that when

CCI is not present, the received signal power increases in the beginning and

decreases after a certain point, indicating the existence of an optimal altitude

where the received power is maximum. This behavior can be explained using the

combined effect of path loss and the probability of line of sight. The path loss

increases with the ABS altitude, resulting in the degradation of the signal qual-

ity. However, increasing the altitude also leads to higher P (LOS, θ), which in

turn results in better signal quality. Once the altitude increases beyond a critical

point, the improvement in P (LOS, θ) becomes negligible compared to the signal

power degradation due to path loss. Therefore, the received signal power in-

creases in the beginning and decreases after a certain point, when the altitude of
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the ABSs hovering at ground level is increased. However, the reasoning is slightly

different when CCI is considered. For a typical UE, the interfering ABSs have

larger link lengths compared to the connected ABS, when the ABSs are at lower

altitudes. Therefore, the interference power is smaller compared to the desired

signal power at lower altitudes. Thus, the SSINR will behave similarly to the case

with no CCI. In higher altitudes, the SSINR degrades due to two factors. First,

the path loss increases and starts to dominate the desired signal power compared

to the effect from P (LOS, θ). Second, the increased elevation angles with the

interfering ABSs further increase the interference power. Therefore, the SSINR

decreases continuously after a critical altitude. This means the STSE increases

with the common altitude of the ABSs up to a certain altitude level, and then

decreases monotonically. This intuition is used to limit the search space of the

exhaustive search, as there is no advantage searching if the objective function

is in the decreasing trend. Therefore, in the first approach, the common ABS

altitude is increased until the STSE begins to decrease, and an optimal altitude

is found accordingly. These ideas are formally stated in Algorithm 1. Notations

used in the algorithms are tabulated in Table 3.1.

The second approach, which we present as Algorithm 2, resorts to the same

approach for 2D positioning of the ABSs and for user association as in Algorithm

1. However, Algorithm 2 uses particle swarm optimization (PSO) to set the

altitude values of the ABSs. The approach facilitates altitude diversity. PSO is

an intelligent algorithm that stems on the approach used by a group of birds for

searching food or for traveling long distances. Essentially, this algorithm keeps

track on two positions, namely the local best (LB) and the global best (GB).

W Lb
k (n) denotes the LB of the kth particle in the nth iteration, and WGb(n) is

the GB in the nth iteration. The LB gives us the optimal solution (position)

for a particular particle where as the GB gives us the optimal solution (position)

among all the particles. The velocity vector of a particle is calculated based on

the LB, the GB and the inertia of the particle. To this end, the velocity of the

kth particle during the nth iteration is given by

Vk(n) = ξVk(n−1)+c1ϕ1(W Lb
k (n−1)−Wk(n−1))+c2ϕ2(WGb

k (n−1)−Wk(n−1)),

(3.14)

where ξ is the inertia weight that controls the exploration ability, ϕ1 and ϕ2 are

positive random numbers, and c1 and c2 denote the local learning coefficient and

the swarm learning coefficient, respectively. Moreover, the position of the kth
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particle in the nth iteration is updated according to

Wk(n) = Wk(n− 1) + Vk(n). (3.15)

The movement of the kth particle in the PSO problem space is illustrated in

Figure 3.4. The next position of each particle in the PSO space will be decided

upon three vectors, which are the GB vector, the LB vector, and the previous

velocity vector.

Fig. 3.4: (a) Global best, local best, position, and the velocity in the (n − 1)th iteration. (b)
Velocity in the nth iteration as a weighted vector addition of previous velocity components and
the position in the nth iteration.

With regards to our problem, Algorithm 2 initializes the PSO population

with their positions. Each particle is a vector of size of NUAV, such that its jth

element represents the altitude of the jth ABS. Initially, the altitude values in all

particles, i.e., each element in the vector, are set randomly and uniformly between

the minimum and the maximum allowable altitudes. These values are used to

initialize the LB of each particle, and the initial velocity of each particle is set to

one. For each particle, i.e., for each altitude vector, the corresponding optimal UE

assignment and the optimal 2D position allocation are obtained through Block-

A of Algorithm 1. Then, the objective function, which is the STSE, is evaluated

for each particle considering the current UE and the position assignments. Their

initial position is the LB for all the particles and is also based on these calculated

values; the GB position vector of the swarm will be updated. This ends the

initialization stage.

Then, the iterative process of finding the best set of locations begins. The

velocity and the altitude of each particle are updated as per (3.14) and (3.15),

respectively. For each particle, i.e., for each altitude vector, the corresponding op-

timal UE assignment and the optimal 2D position allocation are obtained through
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Algorithm 1: Clustering and matching algorithm with exhaustive
search.
Data: Sj , Bi i ∈{1,. . . ,NUE} and j ∈{1,. . . ,NUAV}

hl ⇐ common altitude of the ABS. l ∈{1,. . . ,NH}
Result: S∗ and Φ∗

begin
for l = 1, . . . , NH do

Block-A
n = 1 ⇐ Iteration index
ψ0 = 0
while n ≥ 0 do

for j = 1, . . . , NUAV and i = 1, . . . , NUE do
SSINR calculation

SSINR(j, i) = E[Pr(j,i)]
E[IAgg(j)]+N0

User Assignment
LUE
i ⇐ Ordered preference vector of the ith UE
LUAV
j ⇐ Ordered preference vector of the jth ABS

NC
j ⇐ Number of UEs connected to jth ABS

for k = 1, . . . , NUAV do
for i = 1, . . . , NUE do

for j = 1, . . . , NUAV do
e = LUAV

j (i) ⇐ ith UE preference of jthABS

if LUE
e (k) = j) and NC

j ≤ NT then

i ∈ φj
NC
j = NC

j + 1

Φ∗ = {φj}NUAV
j=1

ψn =
∑NUAV

j=1

∑
i∈φj log2 [1 + SSINR(j, i)]

GL = ψn − ψn-1

if GL ≤ δ then
break

for j = 1, . . . , NUAV do
2D Postioning
(xj , yj) = Dj ⇐ centroid of the 2D locations of the UEs in
φj

Calculate the energy needed for the maneuvering Ejmob as
per (3.2)

if Ej ≤ Ejmob then
break

n = n+ 1

STSE (l) =
∑NUAV

j=1

∑
i∈φj log2 [1 + SSINR(j, i)]

if STSE (l) ≤ STSE (l − 1) then
break

Calculate the energy needed for the maneuvering Ejmob as per (3.2)

if Ej ≤ Ejmob then
break

H* = hk | k = arg maxl STSE(l)

S∗ = {(xj , yj , H∗)}NUAV
j=1
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Table 3.1: Table of notations.

Notation Description

xj, yj 2D- Coordinates of the jth ABS
Bi 2D- Coordinates of the ith UE
λU Intensity of the UE distribution
RB Radius of the isolated region
NUAV Required Number of UAVs
NUE Number of UEs in the isolated region
NT Maximum number of UE that can be supported by an ABS
d(j, i) 2D euclidean distance from jth ABS to ith UE
αq Large-scale path loss exponent
gq Small-scale fading amplitude

pjt Transmission power of the jth ABS
Pr(j, i) Received signal power at ith UE from the jth ABS
IAgg(i) Aggregated interference experienced by the ith UE

Ej
mob Required energy for mobility of the jth ABS

Ej Available energy for mobility at the jth ABS
ηh , ηv Energy consumption per unit distance to horizontal

and vertical movement respectively
φj Assigned user list of the jth ABS
P (LOS, θij) probability of line of sight from jth ABS to the ith UE
a , b Constants which reflects environmental characteristics
hq(j, i) Channel gain from the jth ABS to the ith UE
SINRmin Minimum SINR threshold which reflects the minimum QoS requirement
GL Gain achieved comparing to the previous step
Hj Altitude of the jth ABS
H∗ Common optimal altitude
NH Number of discrete altitude levels considered in Algorithm 1
H∗j Optimal altitude of the jth ABS

δ, δ̃ Minimum gain expected in Algorithm 1 and Algorithm 2
hmin,hmax Minimum and maximum altitude allowed to hover an ABS
Wk(n) Position of the kth particle at nth iteration in PSO space
WGb(n) Global best position at the nth iteration in PSO space
W Lb
k (n) Local best position of the kth particle at nth iteration in PSO space

Vk(n) Velocity of kth particle at nth iteration in PSO space
Jk(n) Objective function value of the kth particle at nth iteration in PSO space
c1, c2 Local learning coefficient and swarm learning coefficient respectively
ξ Inertia weight of the swarm particle
Npop Number of particles in the swarm population
GP Spectral efficiency gain achieved comparing to the previous iteration in PSO
NG Number of continuous iterations without a gain in the spectral efficiency
Γ Threshold to exit the PSO algorithm
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Block-A of Algorithm 1. The objective function is computed again for the newly

updated positions, and the LB and GB positions are updated consequently.

The iterative process continues until the STSE gain between two subsequent

iterations, denoted by GP , is below a certain predefined threshold. More precisely,

if there are Γ subsequent iterations where the GP is less than a predetermined

threshold value δ̃, the iterative process stops and the PSO is assumed to have

reached convergence. At convergence, GB contains the altitude vector for the

ABSs that maximizes the TSE as per Algorithm 2. These ideas are formally

stated in Algorithm 2.

(a) (b)

Fig. 3.5: Illustration of the movement of the aerial base stations (ABSs) in the 2D plane for
suburban environment. The position of the ABS is represented using x. The three colors
differentiate the UE clusters of the respective ABSs. (a) Initial 2D position of the ABSS. (b)
Movement of the ABSs to the computed position. The solid arrow represents the actual ABS
movement. The doted lines represent the adaptive process (does not represent the movement)
performed at the CC. RB = 2000 m, αN = 2.5, αL = 2, λU = 2 × 10−4/m2, δ = 0, NUAV = 3,
H∗ = 300 m, NT = 70.

3.4 Simulation Results and Discussion

In this section, the performance of the proposed algorithms is evaluated through

extensive simulation results. The results are averaged through 50 000 iteration.

The parameters used in the simulations are given in Table 3.2. The algorithms

are compared in terms of TSE, energy consumption, and the average coverage
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Algorithm 2: Clustering and matching algorithm with PSO

Data: Sj, Bi i ∈{1,. . . ,NUE} and j ∈{1,. . . ,NUAV}
Result: S∗ and Φ∗

begin
n = 1 ⇐ Iteration index
Initialization

for k = 1, . . . , Npop do
Wk(n) = {H1, . . . , HNUAV

} | Hj ∼ U(hmin, hmax) ,
j ∈{1,. . . ,NUAV}
Vk(n) = 1
W Lb
k (n) = Wk(n)

Run Block-A Algorithm 1 with Wk(n) as an input
Get Φ∗ and (xj, yj) for j ∈ {1, . . . , NUAV}
Jk(n) =

∑NUAV

j=1

∑
i∈φj log2 [1 + SSINR(j, i)]

WGb(n) = Wr(n) | r = arg maxk Jk(n)

while NG < Γ do
for k = 1, . . . , Npop do

Vk(n+ 1) =
ξVk(n) + c1ϕ1(W Lb

k (n)−Wk(n)) + c2ϕ2(WGb
k (n)−Wk(n))

Wk(n+ 1) = Wk(n) + Vk(n+ 1)
Run Block-A Algorithm 1 with Wk(n) as an input
Update Φ∗ and (xj, yj) for j ∈ {1, . . . , NUAV}
;
Jk(n+ 1) =

∑NUAV

j=1

∑
i∈φj log2 [1 + SSINR(j, i)]

if Jk(n+ 1) > Jk(n) then
W Lb
k (n+ 1) = Wk(n+ 1)

else
W Lb
k (n+ 1) = W Lb

k (n)

WGb(n+ 1) = W Lb
r (n+ 1) | r = arg maxk Jk(n+ 1)

Calculate the energy needed (Ej
mob) to move the ABSs from

WGb(n) to WGb(n+ 1) as per (3.2)

if Ej ≤ Ej
mob then

break
GP = Jr(n+ 1) - Jq(n) | r = arg maxk Jk(n+ 1),
q = arg maxk Jk(n)

if GP ≤ δ̃ then
NG = NG + 1

else
NG = 0

n = n+ 1

{H∗1 , . . . , H∗NUAV
} = WGb(n+ 1)

S∗ = {(xj, yj, H∗j )}NUAV
j=1
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probability, which is computed as

PCOV =
Nγth

NUE

, (3.16)

where Nγth is the number of users experiencing SINR greater than a threshold

value SINRmin. In simulations, we consider A to be a 6× 6 km2 square. To be

compatible with the literature, other parameters are set as in Table 3.2. Moreover,

the gain thresholds, δ and δ̃, are set to 0 as we assume static UEs.

Table 3.2: Simulation settings

Parameter Value Parameter Value

λu 4× 10−4/m2 RB 2000 m

NT 40 ET 1 kJ

αL 2 αN 2.5

pjt 30 dBm δ,δ̃ 0

Γ 4 N0 −80 dBm
r 15 Mbps ηh 0.1 J/m

ηv 1 J/m Npop 20

ϕ1, ϕ2 random [0,1] SINRmin −30 dB

hmin 50 m hmax 3000 m

ξ 0.5175

4.8800 (Suburban) 0.4290 (Suburban)
a 9.6117 (Urban) b 0.1581 (Urban)

12.0810 (Dense urban) 0.1140 (Dense urban)
24.5960 (High-rise urban) 0.1248 (High-rise urban)

Figures 3.6 and 3.7 compare the achievable TSE of Algorithm 1 for different

ABS altitudes, with naive random ABS deployment and the equidistant deploy-

ment. In naive random deployment, the 2D locations of the ABSs above B are

chosen randomly. The UEs are assigned to the nearest ABS such that each UE

is assigned to only one ABS, in a manner that all UEs meet the minimum QoS

requirement (SINRmin). In equidistant deployment, the ABSs are placed along

radial lines that equally partition a circle above B. The ABSs move outwards or

inwards radially, until all the UEs meet the minimum QoS requirement SINRmin.

It can be observed that Algorithm 1 outperforms the random and equidistant de-
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ployments. Furthermore, one can note that even though we have used SSINR and

STSE in obtaining the solution, the optimal altitude obtained by our algorithm

is actually the altitude which provides the maximum TSE for the considered

propagation environments.
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Fig. 3.6: Total spectral efficiency vs. altitude of the ABS (comparison between Algorithm
1-based deployment and random deployment).

Moreover, the optimal altitudes for the considered propagation environments

in the ascending order are suburban, urban, dense urban, and high-rise urban. As

explained in Section 3.3, the impact of P (LOS, θ) on the signal quality is domi-

nant until it starts to saturate. It is important to note that the elevation angles

at which P (LOS, θ) begins to saturate also follow the same order. Therefore,

the optimal altitude is smallest for suburban environments while it is largest for

high-rise urban environments. This is a valuable insight when designing ABSs for

different environments, as ABSs must be designed with sufficient energy to reach

the optimal altitude. Furthermore, it can be observed that TSE in all scenarios

converge to the same value for higher ABS altitudes regardless of the propaga-

tion environment. This is because for higher altitudes, regardless of the propaga-

tion environment, θ approaches 90◦, leading to P (LOS, θ) ≈ 1. Therefore, TSE

solely depends on path loss, which is almost the same in all environments.

To compare Algorithm 1 with naive random deployment in terms of coverage

probability, we evaluate the average coverage probability for each propagation

environment, when the ABSs are placed at their optimal altitudes. From Figure
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Fig. 3.7: Total spectral efficiency vs. altitude of the ABS (comparing Algorithm 1-based de-
ployment, random deployment, and equidistant deployment).

3.6, the optimal altitudes of the ABSs are considered as 300 m, 650 m, 800 m

and 1250 m for suburban, urban, dense urban and high-rise urban, respectively.

Figure 3.8 shows how the coverage probability behaves with the SINR threshold.

It is conspicuous that the average coverage probability of Algorithm 1 is superior

to random deployment.

Figure 3.9 presents the total consumed energy for ABS movements using Algo-

rithm 1, Algorithm 2, and naive exhaustive search, where the search is performed

over all possible altitudes. Both proposed algorithms have almost similar energy

consumption, while being significantly lower (9-fold saving) than the naive ex-

haustive search. This is due to the reduced number of ABS movements we need

to perform with the proposed centralized approach. It is interesting to note that

energy saving decreases from suburban to high rise urban due to the increase in

the optimal altitude.

Figure 3.10 compares Algorithms 1 and 2 in terms of the maximum achiev-

able TSE and the total consumed energy for ABS movements with different user

densities in four propagation environments. One can observe that for dense net-

works, Algorithm 2 results in higher TSE compared to Algorithm 1. This clearly

shows the advantage of altitude diversity for dense networks. Almost equal en-

ergy consumption can be observed for both algorithms. Furthermore, it can be
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Fig. 3.10: (a) Maximum achievable total spectral efficiency (TSE) vs. user intensity (b). Energy
consumption for maneuvering vs. user intensity.

observed that the total energy consumption decreases with UE density. It is clear

that ABSs have to move only a small distance from the initial position to the

optimal position, as in dense UE scenarios, the optimal 2D placement can be

closely approximated by the uniform placement.

3.5 Conclusions

This chapter investigated the problem of ABS placement and UE assignment

to maximize the sum spectral efficiency of a disaster affected wireless network.

K-means clustering combined with a stable marriage problem has been used to

determine the 2D placement of the ABSs and the UE assignment, while two ap-

proaches based on exhaustive search and particle swarm optimization have been

proposed to determine the optimal ABS altitude. The proposed algorithms use

only the statistical channel state information and the location information of the

UEs and ABSs. Useful design insights such as the optimal ABS altitude, total

required energy for ABS movement have been presented for different propagation

environments. The proposed algorithms result in up to 8-fold saving in the en-

ergy required to maneuver the ABSs, compared to ABS deployment using naive

exhaustive search.

45



Chapter 4

UAV Deployment in WSN

System for Emergency/Remote

Area Applications

4.1 Introduction

Applications of unmanned aerial vehicles (UAVs) are exponentially growing which

has become an inevitable technology in various fields [1, 2]. Continuous advance-

ment in payload capacity, complex control mechanism, energy-efficient processing

and increment in flight time endurance paved the way for many other promising

UAV-assisted applications. The current trend witness that the increasing inter-

est in UAV-assisted applications in diverse verticals leads to exponential growth

which is expected to be the key enabler of accomplishing the milestones of smart

environment [1, 2]. UAV-assisted communication is generally divided into two

categories, where the UAV acts as an aerial base station [6], or an aerial relay

[7]. Potential applications of aerial base stations are supporting the overloaded

terrestrial base station, providing on-demand coverage in no coverage area for

special occasions and reconstructing temporary coverage in a natural disaster or

an emergency situation [1, 2, 8]. They are deployed as aerial relay stations when

the direct link between the source and the destination is not available or too

degraded for successful communication [7, 9, 10]. On the other hand, there is

an increasing interest in utilizing UAVs for data gathering applications, where

they collect the data from diverse geographic regions around a city or a remote

area and deliver them to a central station for analysis [1]. Notably, data collec-
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tion of UAVs is getting more attention in wireless sensor network (WSN) systems.

Several applications of UAVs in WSN systems can be identified. UAVs can

be used as aerial relays to collect data from the SNs deployed in remote areas,

where the SNs are not able to communicate directly with the ground station (GS)

[10]. Also, UAVs can be utilized to recharge SNs deployed over a large geograph-

ical area through wireless power transfer (WPT) [7]. Furthermore, UAVs can

be deployed as temporary data collectors from SNs, where the dedicated GS is

malfunctioning due to a natural disaster or a technical fault. In this chapter, we

use UAVs as aerial relays for collecting data from remote areas. Moreover, it also

can be utilized as a temporary data collector in emergencies.

Utilizing UAVs for data collection tasks can lead to several benefits. First,

adjusting the altitude allows establishing strong line of sight (LoS) links to im-

prove the channel quality. Second, UAVs’ data storing and processing capabilities

can be used to improve the reliability and usefulness of the collected data. This

enables new cooperative communication protocols such as store-and-forward (SF)

relaying [12]. Third, simple infrastructure requirements and ease of deployment

make it a suitable candidate for on-demand deployment. Additionally, UAVs are

maneuverable and can freely adjust their aerial positions to improve the system’s

performance. Also, they can utilize simultaneous wireless information and power

transfer (SWIPT) techniques to recharge the SNs while collecting data.

Considering these benefits, recent research works studies the deployment of

UAV in WSN systems [7, 21, 65, 66, 67, 68, 69, 64, 70, 72]. In [64], a deep reinforce-

ment learning based mechanism is proposed such that it maximizes the amount

of data collected constrained to total completion time and mobility limitations.

A 3D trajectory with optimal transmit power allocation of UAV is studied in [21]

such that it maximizes the system throughput. Considering the energy budget of

the UAV, a unified energy management framework with wireless power transfer

(WPT) and SWIPT is proposed in [7], where the UAV work in a full-duplex mode

such that it minimizes the end-to-end cooperative outage probability by optimiz-

ing the UAV’s power allocation parameters and the 3D trajectory. The energy

efficiency of UAV in terms of propeller movement is investigated in [65, 69]. In
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[65], trajectory and the sensor clustering are optimized such that it minimizes

the energy consumption and maximizes the lifetime of the flying relay. The same

problem as in [65] is analyzed in [69]. In contrast, they have solved in a two-step

approach. Initially, a minimum number of UAVs are identified then the trajec-

tory is optimized to minimize the overall energy consumption of the UAV. The

total mission time of the UAV is considered in [67, 68, 70, 66]. In [66, 68], they

have optimized the UAV’s trajectory such that it minimizes the total mission

time. The authors in [67] also analyze the same problem as the latter. Addi-

tionally, they have optimized sensors’ transmit power such that it minimizes the

overall completion time of the mission. In [72], obstacle avoiding trajectory is

investigated, where the trajectory is planned such that the total mission time is

minimized. The freshness of the data is investigated in [70] by introducing a new

parameter called the age of information (AoI), where the trajectory of the UAV

is optimized such that it minimizes the AoI of the data collected. In [71], authors

have proposed a closed-form expression for the average AoI (AAoI) to estimate

the optimal altitude and other parameters such that it minimizes the AAoI.

Despite the considerable contributions of the above works, there are some

drawbacks considering the UAV-assisted data collection system. One of the ma-

jor advantages of utilizing UAV in data collection is that it supports improving

the channel strength by increasing the probability of LoS (PLOS) propagation.

However, we can not always guarantee absolute LoS propagation as the LoS com-

ponent’s contribution depends on the UAV’s position and various other environ-

mental parameters. In contrast, authors in [64, 70, 7, 21] have considered absolute

LoS propagation despite the position of the UAV and other environmental pa-

rameters, which is not feasible to achieve in actual implementation. In our work,

we have considered probabilistic measure-based LoS propagation that calculates

the strength of the LoS propagation based on the environmental parameters and

the elevation angle. Although some of the works consider the probabilistic LoS

based channel model [68, 67, 69, 72], they have failed to optimize the altitude of

the UAV, which yields the trade-off between increasing LoS propagation and the

pathloss. However, our work contemplates altitude optimization such that it in-

creases system performance. Moreover, authors in [64, 70] have considered neither

the probabilistic LoS model nor the altitude optimization. In [64, 70, 72, 7, 21],

they have only considered a single UAV deployment which fails to analyze the

on-demand and robust nature of UAV-assisted application. In contrast, we have
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considered multi-UAV deployment with the relevant constraints associated with

it.

Considering the air-to ground (ATG) channel model, there are no universally

affirmed channel models to characterize the ATG channel. However, there are

four kinds of models that have been used to characterize the GTA channels in

the current literature. First, the channel model, which utilizes the exact geo-

metrical structure of the environment and the reflective nature of the wavefront

[73, 74]. Second, the empirical measurements based channel models [75, 76].

Third, pure LoS propagation which is often modeled using the free-space path

loss model [64, 70, 7, 21, 77, 78]. Finally, probabilistic information-based LoS

characterization is used to model the contribution of LoS and NLoS propagation

[68, 69, 72, 14, 79, 63].

In our work, it is not possible to utilize geometry-based channel model as we

do not have the precise geometrical structure of the environment and the reflec-

tive nature of the materials. The empirical model is also impossible because it

requires access to a substantial empirical measurement database. The pure LoS

propagation is often modeled as free space pathloss, where the distance is the

only parameter that determines the channel strength. Thus, UAVs always try

to reduce the effective distance by hovering at the minimum possible altitude.

However, this is not the case in the real world deployment, where we would be

able to adjust the contribution of LoS propagation by adjusting the altitude and

the position of the UAV given the structure of the environment. Therefore, Con-

sidering pure LoS propagation will not help to utilize and study the benefits of

altitude diversity which is one of the main advantages in UAV-assisted commu-

nication compared to terrestrial communication. The channel model that uses

probabilistic information-based LoS characterization is also not exactly accurate.

However, it helps to study the altitude diversity and the positioning of the UAV.

All these points considered, we have utilized the probabilistic model proposed by

the international telecommunication union (ITU) [80].

On the other hand, although the advanced wireless sensors are energy efficient

and generally have longer battery life than conventional sensors, they should also

be recharged at the appropriate period. Therefore, energy efficiency in mod-

ern WSN systems is also a critical factor. However, the energy efficiency of the
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wireless sensors is not considered in the recent works [64, 70, 7, 21, 68, 69, 72].

The major reason for neglecting the energy consumption of wireless sensors in

UAV-assisted data collection is that they assume the energy needed for data

transmission is negligible compared to the energy needed for propeller movement.

Therefore, it is considered negligible considering the system’s overall energy con-

sumption. However, this is not a fair assumption as a device’s energy consumption

should be compared with its own energy budget to decide its significance. Al-

though the energy needed for transmission is negligible compared to the energy

for the propeller movement, it is significant compared to the minimal energy bud-

get of the wireless sensors. Therefore, it is crucial to consider the energy needed

for the transmission and the energy efficiency of the wireless sensors.

Moreover, it is essential to realize that in WSN systems, transmit power fair-

ness among the sensor nodes (SNs) is essential rather than the overall energy

efficiency. As discussed earlier, wireless sensors are employed in larger geograph-

ical areas, where it is not feasible to recharge them often. If we only consider

the overall energy efficiency of the system, there is a high chance that the energy

consumption of the sensors widely varies among them. Therefore, the battery

of the sensor will run out in widely varying time intervals which will create a

requirement for frequent recharge operation [10]. In that case, it will not be

energy efficient in terms of recharging operation as it is generally done through

WPT-enabled UAVs. Considering energy efficiency with transmit power fairness

will maintain the energy consumption of the sensors among them, which will help

to recharge the wireless sensors roughly at the same time.

Considering all these, in this work, we are investigating a multi-UAV multi-SN

system, where the SNs are randomly distributed in an area. The UAVs facilitate

the collection of data from the SNs. We focus on UAV deployment with the

goal of increasing the energy efficiency in the network while maintaining transmit

power fairness among the SNs. The main contributions can be summarized as

follows.

The key contributions of this chapter can be summarized as follows.

• The multi-UAV 3D deployment problem is divided into three subproblems

such that it reduces the complexity involved in solving it as a single problem.

The subproblems are UAV-SN association, 2D positioning of the UAVs and

the altitude optimization of the UAVs. All three subproblems are optimized
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such that the maximum transmit power among the SNs is minimized with

respect to maximum power and minimum rate constraints of the SNs.

• The UAV-SN association subproblem is solved using a modified matching

algorithm that customizes the Gale-Shapely algorithm to address the min-

max objective problems effectively.

• A new modified pattern search (PS) algorithm is proposed for the 2D de-

ployment of the UAVs that will utilize the prediction of descent direction,

which will help for quicker convergence compared to the naive PS algorithm.

• By analyzing the nature of the altitude optimization subproblem, it is ad-

dressed through an inexact line search algorithm with Armijo and Wolfe

condition that guarantees a quicker convergence than other baseline nu-

merical optimization approaches.

• Finally, we present a combined optimization algorithm that places the ap-

proaches of all three subproblems in the suitable hierarchy such that it

provides optimal or near-optimal solutions with a fewer number of itera-

tions. At the same time, it gives the minimum number of UAVs required

to serve all the SNs with the given rate and power constraints.

The chapter is structured as follows. Section 4.2 introduces the system model

and the problem formulation. The proposed solution is described in Section

4.3. Section 4.4 presents the numerical results and discussion, and Section 4.5

concludes the chapter.

4.2 System Model

We consider a WSN, in which it is not feasible for the SNs to transmit directly

to the GS. Thus, multiple UAVs are deployed as aerial relays to collect data from

the SNs, and forward to the GS.

4.2.1 Spatial Model

As shown in Fig. 4.1, a set of K energy constrained wireless SNs (denotes as S)

is randomly distributed in the area of interest. A set of L UAVs (denoted as U)

is deployed to collect the data and forward it to the nearby GS. The UAVs are
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controlled by the GS. Initially, the GS deploys the minimum required number of

UAVs based on the maximum user capacity of a UAV. Therefore, we have

L =

⌈
K

Nmax

⌉
, (4.1)

where d.e denotes the ceiling function, and Nmax is the maximum number of nodes

a UAV can serve.

Fig. 4.1: The data gathering and data transferring links and the spatial distribution of SNs,
UAVs, and the GS.

The position of the lth UAV in the 3-dimensional (3D) space is denoted by

Wl, where Wl = (xl, yl, Hl), xl and yl are the ground coordinates, and Hl is the

altitude. The set of all UAV locations is denoted by W = {W1, . . . ,WL}. As

the SNs are deployed on the ground, the location of the kth SN is denoted as

Qk = (ak, bk, 0), where ak and bk are the ground coordinates of the kth SN. Also,

we define Q = {Q1, . . . , QK}, which is the set containing location information of

all SNs. The location of the GS is denoted as Xgs = (xgs, ygs, Hgs). xgs and ygs

are the ground coordinates, and Hgs is the height of GS. We denote the set of

SNs connected to the lth UAV with ψl. Also, the set Ψ = {ψ1, . . . , ψL} specifies

the complete user association. It is important to note that the elements of Ψ are

disjoint, thus a particular SN can be associated with only one UAV.
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4.2.2 Channel Model

Two types of wireless links are found in the system, namely, the data transferring

links (DTLs), and the data collection links (DCLs). The DTLs represent UAV-

GS communications. Considering the height of the GS antennas and the altitude

of the UAVs, the DTLs can be identified as air-to-air (ATA) links. Due to the

absence of scatterers in ATA links, the impact of multipath components on the

received signal power is negligible. Therefore, small-scale fading effect can be

neglected, and the ATA links can be accurately modeled using free-space path

loss model (FSPL). The power gain of the DTL channel between lth UAV and

the GS is given by

hl,gs =
G1

‖Hl −Hgs‖2 + ‖xl − xbs‖2 + ‖yl − ybs‖2 , (4.2)

where G1 = gtgr

(
λ

4πd0

)2

, λ is the wavelength of the carrier signal, d0 = 1 m, gt

and gr are the antenna gains of the UAV and the GS, respectively. The achievable

rate of the lth DTL is given by

Rl,gs = Bc log2

[
1 +

Pu,lhl,gs
BcN0

]
, (4.3)

where Bc is the allocated channel bandwidth, pul is the transmit power of the lth

UAV and N0 is the power spectral density of the Gaussian noise.

The DCLs represent the links between the SNs and the UAVs, which are often

referred to as ground-to-air (GTA) links. They exhibit similar characteristics as

their reciprocal ATG link. Generally, ATG links experience both LoS propagation

or NLoS propagation, depending on the position of the aerial device, ground

device, and the environmental parameters. To make our system model more

general, we refer to the probabilistic model for ATG links proposed by the ITU

[80]. For simplicity, without loss of generality, we use the simplified ITU model

proposed in [14]. The probability of having a LoS DCL between the kth SN and

the lth UAV is given by

pLoS(θl,k) =
1

1 + σe−β[θ(l,k)−σ]
, (4.4)

where θ(l, k) is the elevation angle between the kth SN and the lth UAV and β and

σ are the environmental parameters which represent the geometrical structure of

the environment. As the time taken to move a UAV is significantly larger than the
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typical coherence time of a wireless channel, it is not feasible to use instantaneous

channel state information (CSI) for the user association and UAV placement, as it

may lead to a solution based on outdated CSI. Therefore, we consider the average

channel power gain, where the effect of small-scale fading is averaged out. For

brevity, hereafter, we refer to it as the channel power gain. The channel power

gain between the kth SN and the lth UAV is modeled as [6, 82]

h̄w(l, k) =
Gw√

H2
l + ‖xl − ak‖2 + ‖yl − bk‖2

αw
, (4.5)

where the subscript w ∈ {LS,NS} such that LS and NS denote LoS and NLoS

scenarios, αw is the path loss exponent,

Gw = E
[
|νw|2

]
glgk

(
λ

4π

)αw

(4.6)

with gl and gk being the antenna gains of the UAV and the SN, νw is the small-

scale fading amplitude, and E [.] denotes the expectation, respectively. Note that

αLS < αNS. It is assumed that |νLS| follows a Rician distribution with K-factor

κ, while |νNS| follows a Rayleigh distribution. Using (4.4) and (4.5), the effective

channel power gain between the kth SN and the lth UAV is given as [63]

h̄l,k = pLoS(θl,k)h̄LS(l, k) + (1− pLoS(θl,k))h̄NS(l, k) . (4.7)

We assume that each UAV is equipped with directional antennas such that

the coverage region is limited to a cone with a fixed radius on the ground plane.

Furthermore, we assume that orthogonal channels are allocated to each UAV for

DCLs, eliminating inter-cluster interference. Within a cluster, each UAV adopts

a frequency division multiple access (FDMA) technique, and designates a dedi-

cated channel to each SN. Thus, intra-cluster interference also can be neglected.

Therefore, the average achievable rate of the DCL between the kth SN and the

lth UAV is given by

Rl,k = B0 log2

[
1 +

Ps,kh̄l,k
B0N0

]
, (4.8)

where B0 is the allocated channel bandwidth and Ps,k is the transmit power of

the kth SN.
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4.2.3 Problem Formulation

In this chapter, our aim is to improve the energy efficiency of the SNs by re-

ducing the transmit power required to achieve a given rate requirement, while

maintaining fair energy consumption among all SNs. Therefore, our objective is

to optimize the 3D location of the UAVs, and associate the SNs to UAVs such that

the maximum transmit power among the SNs to achieve a given rate threshold

is minimized. The transmit power at the kth SN is written using (4.8) as

Ps,k =
N0

h̄l,k

(
2

Rth
2

B0 − 1

)
. (4.9)

The optimization problem can be formally stated as

P :

minimize
W ,Ψ

P0 = max
k∈S

Ps,k (4.10a)

subject to P0 ≤ Ps,max, ∀k ∈ S, (4.10b)

Pu,l ≤ Pu,max, ∀l ∈ U , (4.10c)

Rl,gs ≥ Rth
1 ,∀l ∈ U , (4.10d)

Rl,k ≥ Rth
2 ,∀k ∈ S,∀l ∈ U , (4.10e)

Hl ≥ Hmin,∀l ∈ U , (4.10f)

ψj ∩ ψi = ∅, ∀i 6= j ∈ U , (4.10g)

|ψl| ≤ Nmax ∀l ∈ U , (4.10h)

where Rth
1 and Rth

2 are the minimum rate requirements of a DTL and a DCL,

respectively. Also, Pu,max and Ps,max are the maximum allowed transmit power

of the UAVs and the SNs respectively. The constraint (4.10b) ensures the trans-

mit powers of SNs do not exceed P0 at the same time P0 does not exceed the

maximum transmit power constraint, while (4.10c) incorporate the maximum

transmit power constraint of a UAV. Constraints (4.10d) and (4.10e) represent

the minimum rate requirements imposed on the links. The minimum altitude

constraint of a UAV is given as (4.10f), while (4.10g) reflects disjoint association

of SNs to UAVs. Furthermore, (4.10h) imposes a constraint on the maximum

number of SNs that can be associated to a single UAV.
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Given the channel bandwidth B0, and the minimum rate requirement Rth
2 , the ob-

jective function and (4.10b) can be re-written as maxk∈S
C0

h̄l,k
, and Ps,max≥ Ps,k,∀k ∈ S

respectively, where C0 = N0

(
2

Rth
2

B0 − 1

)
.

Since C0 is a constant, it is interesting to note that the original problem can

be transformed to a problem of maximizing the channel power gain of the worst

channel power gain user. Therefore, we can rewrite the the problem as

Pmod :

maximize
W ,Ψ

min
k∈S

h̄l,k , (4.11a)

subject to Ps,max ≥ Ps,k,∀k ∈ S (4.11b)

where the other constraints remain unchanged from the original problem P . Here-

after, we consider solving the transformed problem Pmod.

4.3 Proposed Solution

In this section, we present our proposed algorithm to solve the problem Pmod.

One can observe that Pmod is a non-convex problem. Moreover, it is an NP-

hard problem, as finding Ψ can be reduced to a well known Boolean satisfiability

problem, which cannot be solved with polynomial complexity. This makes joint

optimization overW and Ψ computationally intensive. To obtain a solution with

a reasonable computational effort, we divide the problem into three subproblems,

and apply alternative optimization to each subproblem, iteratively. We consider

three subproblems, namely, UAV-SN association (P1), UAV 2D positioning(P2),

and UAV altitude selection (P3) subproblems. The overall concept of the pro-

posed algorithm is illustrated as flowchart in Fig. 4.2. The sections related to the

respective subproblem is highlighted with dashed line boxes with the respective

label of the subproblem.

4.3.1 UAV-SN association subproblem

In this subproblem, we fix the locations of the UAVs, and associate the SNs with

the UAVs such that the minimum channel power gain experienced by an SN is
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Fig. 4.2: Flowchart of our proposed algorithm . Dashed line boxes differentiate the approaches
related to the subproblems

maximized, as per Pmod. The optimization problem can be written as

P1 :

maximize
Ψ

min
k∈S

h̄l,k (4.12a)

subject to P0 ≤ Ps,max,∀k ∈ S, (4.12b)

ψj ∩ ψi = ∅, ∀i 6= j ∈ U , (4.12c)

|ψl| ≤ Nmax ∀l ∈ U (4.12d)

User association problems can be reduced to the well-known knapsack prob-

lem, an NP-hard problem which can not be solved in polynomial time. There-

fore, the problems of this nature are generally addressed by matching algorithms

[27, 81, 87]. We model P1 as a stable marriage problem, and propose a modified

Gale–Shapley algorithm to obtain a SN-UAV association which ensures transmit

power fairness. Initially, a priority list is created using the achievable channel
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power gains as the weights. Since conventional Gale–Shapley algorithm fails to

establish fairness among the connections, we propose a novel SN association al-

gorithm to ensure transmit power fairness.

In the modified user association algorithm, the first connection priority will

be assessed considering the weights of the first preference level. For that, it

will create a matrix that represents the connection priority of the non-connected

SNs considering the average achievable rate as the weights (PSN). In PSN, each

column will represent a SN. In the first round of connection, we consider the first

row (highest priority of the SNs) of PSN and order them in ascending manner

assessing the weights denoted as P1. As our objective is max-min in nature

we do the connection as per P1 where the SN with lower weights will be given

the higher priority. The main motivation for the proposed approach is if we

connect the SNs through the typical connection order, there is a high probability

that the SN which has the worst weight will not be able to connect to its first

priority UAV. Therefore, it should connect to its next priority UAV, which leads

to higher transmit power usage. This results in an unfair situation in terms

of the life time of the SNs. This can be prevented by allowing the SNs which

Algorithm 3: UAV-SN assignment algorithm
Data: W, Q
Result: Ψ
begin

Block-A
NC
l ⇐ Number of SNs connected to lth UAV

[PSN]L×K ⇐ Priority matrix of non-connected SNs
l = 1
while

∣∣PSN
∣∣ 6= 0 do

Pl ⇐ Ascending Ordered vector of SNs as per lth priority (row) of
PSN

for i = 1, . . . , |Pl| do
e = Pl(i) ⇐ (k + 1)th UAV preference of ith SN
if NC

e ≤ Nmax and i /∈ Ψ then
i ∈ ψe
NC
e = NC

e + 1

PSN ⇐ Remove the rows respective to the connected SNs and
recreate the matrix only with non-connected SNs.
l = l + 1

Ψ∗ = {ψl}Ll=1
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have smaller weights, to connect to their respective preference UAV. For better

clarity, we have compared the proposed algorithm with the conventional matching

algorithm through an example scenario given below.

Once priority list is created as per UAV’s and SN’s preference, the conven-

tional Gale–Shapley algorithm will associate SNs, starting from the SN which has

the highest weight in its first priority , while cross checking with UAV’s prefer-

ence, and proceed in the descending order until all the SNs are associated, such

that the SN with the lowest weight in the first priority will be connected last.

It is clear that this approach fails to establish fairness among the SNs, as the

SN with the worst channel is associated last, and the transmit power required to

maintain the rate threshold will be higher compared to the other SNs. Therefore,

we propose a novel SN association algorithm to ensure transmit power fairness.

For better clarity, we have compared the proposed algorithm with the conven-

tional matching algorithm through an example scenario.

Consider a network with K = 9 SNs and Nmax = 3. The link weights of each

SN to the available UAVs are given in List 1, where the ith column represents

the ordered channel power gains of the ith SN to each UAV. List 2 shows the

corresponding UAV that provides the weights in List 1. In here, the high-rise

urban environment is considered.

If the conventional Gale–Shapley algorithm is applied, it will consider the first
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row of List 1 and give the connection priority to the SN, which has the highest

weight, and proceed in the descending order of the weights. If all the SNs are not

connected in the first phase based on first preference, it will consider the second

preference in the descending order for the second phase. This will be repeated

until all the SNs are associated. Therefore, the order of association of the SNs

will be 7, 2, 1, 3, 8, 9, 5, 4 and 6. The resulting channel power gains are shown

in Fig. 4.3.

Fig. 4.3: UAV-SN assignment through conventional gale-shapely algorithm

In Algorithm 3, the first connection phase also considers the first row of List 1.

However, the priority will be given to the SN which has the smallest weight, and

proceed in the ascending order of the weights. If all the SNs are not associated

in the first phase, it will consider the second row for the second phase. This

will be repeated until all the SNs are associated. If it reaches the last phase, the

remaining SNs will be connected to the respective UAVs. The order of association

for the SNs will be 6, 9, 8, 3, 5, 4, 7, 1 and 2. The resulting channel power gains

are shown in Fig. 4.4.

Fig. 4.4: UAV-SN assignment through Algorithm 3
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In Algorithm 3-b (discussed in section 4.4), the first connection phase consid-

ers the second row of List 1. The priority will be given to the SN which has the

smallest weight, and proceed in the ascending order of the weights. If all the SNs

are not associated in the first phase, it will consider the third row weights for the

second phase priority. This will be repeated until all the SNs are associated. In

any case, if it reaches the last phase with remaining assignments it will connects

the SNs to its last priority where order does not matter.The order of association

for the SNs will be 8, 6, 3, 7, 1, 9, 2, 4 and 5. The resulting channel power gains

are shown in Fig. 4.5.

Fig. 4.5: UAV-SN assignment through Algorithm 3-b

The utilities of the worst user with the conventional Gale–Shapley algorithm,

Algorithm 3 and Algorithm 3-b are 13×10−7, 19×10−7 and 27×10−7 respectively.

It is clear that for this example, Algorithm 3 and Algorithm 3-b results in a 46%

and 107% better channel compared to the conventional approach.

4.3.2 2D positioning subproblem

In this subproblem, we fix the altitudes of the UAVs and the UAV-SN association,

then find the 2D positions of the UAVs such that the minimum channel power

gain experienced by an SN is maximized, as per Pmod. The optimization problem

can be written as
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P2 :

maximize
xl, yl : ∀l ∈ U

min
k∈S

h̄l,k (4.13a)

subject to P0 ≤ Ps,max,∀k ∈ S, (4.13b)

Pu,l ≤ Pu,max,∀l ∈ U ., (4.13c)

Rl,gs ≥ Rth
1 , ∀l ∈ U , (4.13d)

Rl,k ≥ Rth
2 , ∀k ∈ S (4.13e)

As our objective is maintaining transmit power fairness, we aim to maxi-

mize the minimum average channel gain among the SNs. Therefore, we propose

a modified PS algorithm that achieves faster convergence in max-min objective

problems, compared to the naive PS algorithm.

In the proposed modified PS algorithm, as it is mentioned in the flowchart in

Fig. 4.2, the initial position of a UAV is set to the horizontal centroid of SN clus-

ter associated in P1, projected to the plane of the UAV. Each UAV then identifies

the SN which has the minimum channel power gain (referred to as the “worst

SN”) in the respective cluster kl0. Then move the UAVs towards the direction

of the SN worst SN, until an increase in the channel power gain is observed for

the worst SN (δG0 > 0), or any other SN achieves a lower channel power gain

than the current worst SN. Next, a naive PS will be conducted in the vicinity of

the final position to find whether there exist a new worst SN within the cluster.

These two processes will iteratively run until the PS cannot find a new worst SN

inside the cluster (δG0 = 0). The converging positions of the UAVs are considered

as the best 2D positions for the given UAV-SN association identified in P1, and

the current altitudes of the UAVs. These ideas are formally stated in Algorithm

4 as well as in the flowchart. Since the PS is performed only in the vicinity of

the worst SN, faster convergence is achieved compared to the naive PS approach

used in [81].

The problem similar to P2 in a multi-UAV system is generally addressed

through a clustering algorithm along with a matching algorithm, where both

the algorithms will be used iteratively, until the convergence condition is met

[6, 81, 27]. These approaches are mainly used when the objective is sum utility
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Algorithm 4: 2D positioning of the UAVs - Modified Pattern Search
(MPS)

Data: Q, Ψ, Hl ∀l ∈ U
Result: q∗l = (x∗l , y

∗
l ) ∀l ∈ U , gs

begin
for l = 1, . . . , L do

i = 1 ⇐ Iteration index
ql(1) ⇐ UAV’s initial 2D position is set as the

centroid of nodes coordinate
Initialize ∆ value,

kl0 = arg mink∈ψl
h̄l,k

r(kl0) ⇐ 2D position of kl0 SN

G0(q) ⇐ Returns the channel power gain of the kl0
node in the lth UAV’s position ql(i)

δG0 ⇐ gain achieved comparing to the previous
position

Set δG0 to a postive value
qtem = ql(1)
γ ⇐ Number of iteration defined for convergence
j = 1 ⇐ Iteration index to check the data

transferring rate constraint
while i < γ do

while δG0 > 0 do
qlv(j) = qtem
ηl(j) = logical(Rl,gs ≥ Rth1 )× h̄l,k
qtem = qtem +

qtem−r(kl0)

‖qtem−r(kl0)‖∆

Calculate δG0

if δG0 > 0 then
j = j + 1

Block-B : naive pattern search
q1 = xu + ∆, yu, q2 = xu −∆, yu, yu, q3 = xu, yu + ∆, yu,
q4 = xu, yu −∆

G1
0 = G0(q1), G2

0 = G0(q2),, G3
0 = G0(q3), G4

0 = G0(q4) G = [G1
0, G

2
0, G

3
0, G

4
0]

Calculate δG0 for max {G}
if δG0 > 0 then

j = j + 1
Go to Block-A

Reduce ∆
i = i+ 1

f = arg maxj∈J l ηl(j)

gc(l) = maxj∈J l ηl(j)

J l ⇐ Set of iterations in the lth UAV positioning

q∗l = qlv(f)

gs = minr∈U gc(r)

63



maximization. In [81], the authors have considered UAV placement through naive

PS algorithm, which focuses on sum utility maximization objective. Therefore,

it fails to maintain fairness among the SNs (Users), which is crucial in systems

like UAV-assisted data collection.

4.3.3 Altitude selection subproblem

In this subproblem, we fix the 2D positions of the UAVs and the UAV-SN associ-

ation, then find the altitude of the UAVs such that the minimum channel power

gain experienced by an SN is maximized, as per Pmod. The optimization problem

can be written as

P3 :

maximize
Hl : ∀l ∈ U

min
k∈S

h̄l,k (4.14a)

subject to P0 ≤ Ps,max, ∀k ∈ S, (4.14b)

Pu,l ≤ Pu,max,∀l ∈ U , (4.14c)

Rl,gs ≥ Rth
1 ,∀l ∈ U , (4.14d)

Rl,k ≥ Rth
2 ,∀k ∈ S, (4.14e)

Hl ≥ Hmin, ∀l ∈ U . (4.14f)

In P2, the objective is to maximize the rate of the worst SN. When the 2D

positions of the UAVs change, the worst SN also changes within the optimization

process. However, as we have shown below, the worst SN within a cluster does not

change when we adjust the UAV altitudes. Furthermore, the objective function is

continuous and differentiable with respect to the elevation angle equivalently the

UAV altitude. Therefore, P3 can be solved with a different approach compared

to P2.

Consider the lth SN cluster, which is served by lth UAV. The worst SN is

denoted by kl0

kl0 = arg min
k∈ψl

h̄l,k. (4.15)

64



Given the 2D positions and the the UAV-SN associations are fixed, the below

conditions hold true

θ(l, kl0) ≤ θ(l, i) ;∀i ∈ ψl (4.16)

zd(l, kl0) ≥ d(l, i) ;∀i ∈ ψl , (4.17)

where d(l, i) represents the horizontal distance between the lth UAV and the ith

SN. Conditions (4.16) and (4.17) will remain true regardless of the altitude of the

lth UAV. This is valid for all clusters. Therefore, the worst SN will not change in

the altitude optimization process.

As per (4.14a), the objective function related to the altitude optimization

of the ith cluster is given in (4.18), where k = kl0. In (4.14a), the altitude of

the UAV Hl is represented by the elevation angle θ(l, k), as d(l, i) is constant

for a given cluster, since Hl = d(l, k) tan(θ(l, k)). The objective function con-

tains contributions of LoS and NLoS propagation. When the elevation angle is

increased, the probability of NLoS propagation decreases. Furthermore, since

the link length increases with θ(l, k), the path loss also increases. Therefore,

the contribution of the NLoS component always decreases with the elevation an-

gle, hence decreases with the UAV altitude. To this end, the NLoS component

can be neglected from the altitude optimization problem. On the other hand,

the LoS component exhibits both increasing and decreasing behaviors with the

elevation angle, accounting for the existence of maximas of the objective function.

The first derivative of the LoS component with respective to the elevation

angle is given in (4.19). Due to the complicated mathematical form of (4.19),

it is not feasible to find an analytical solution for ∂ hLoS(l,k)
∂ θ(l,k)

= 0, to obtain the

stationary points which leads to the optimal elevation angle. Although, the con-

straints (4.14b)-(4.14f) are convex, the objective function is neither convex nor

concave, as the second derivative of (4.14a) is not strictly negative nor positive.

Therefore, this optimization can not be addressed through general convex opti-

mization techniques.

We resolve to numerical optimization techniques to obtain a solution for P3.
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Generally, global optimality is not guaranteed with numerical optimization tech-

niques. However, a local optimum can be obtained with a reasonable compu-

tational complexity. Considering this, we analyze the behavior of the objective

function to gain insights to develop a numerical solution for P3.

Two factors determine the contribution of the LoS component to the channel

power gain. First is the PLOS, and the other is the pathloss. An increment PLoS

increases the channel power gain, while an increment in pathloss decreases the

channel power gain. The effective channel power gain will be determined by the

relative contribution of these two factors. The pathloss increases exponentially

with the elevation angle (4.18). On the other hand, PLoS displays a sigmoid be-

havior (4.4), where it remains almost constant with θ(l, k) initially, then a steep

increment, followed by a saturation region. Considering these two behaviors, if

pathloss dominates for smaller θ(l, k), it will dominate throughout the other angle

as it increases exponentially with the angle. In such a scenario, the lowest angle

is the one that gives better gain. However, if PLoS dominates initially, at some

point the pathloss will start to dominate, as PLoS strength will saturate. Once

the pathloss starts to dominate, LoS will not dominate again, as pathloss in-

creases exponentially with θ(l, k), while the contribution of the LoS component is

saturating. These intuitive analyses guarantee that although this is not a convex

function, it only has one stationary point (maxima) within the range. Therefore,

if one approach can guarantee the local maxima, it is sufficient for the altitude

optimization, as the solution is highly likely to be the global optimum.

h̄l,k =
1

1 + σe−β[θ(l,k)−σ]

GLS√
d(l, k)2 (1 + tan2 (θ(l, k)))

αLS︸ ︷︷ ︸
h̄LS(l,k)

+

(
1− 1

1 + σe−β[θ(l,k)−σ]

)
GNS√

d(l, k)2 (1 + tan2 (θ(l, k)))
αNS︸ ︷︷ ︸

h̄NS(l,k)

(4.18)

We employ line search optimization which is a widely used numerical optimiza-

tion method [83, 84], because with the selection of suitable line search method

and the parameters, convergence to a local optimal solution is guaranteed. There
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∂ h̄LS(l, k)

∂ θ(l, k)
=
σβGLSe

−β(θ(l,k)−σ) (d(l, k)2 (tan2(θ(l, k)) + 1))
−αLS/2

(σe−β(θ(l,k)−σ) + 1)
2 −

αLSd(l, k)2GLS tan(θ(l, k)) sec2(θ(l, k)) (d(l, k)2 (tan2(θ(l, k)) + 1))
−1−αLS/2

σe−β(θ(l,k)−σ) + 1
(4.19)

are two main types of line search optimization, based on how the step sizes are

chosen, namely, exact line search, and inexact line search. In exact line search,

the step size is chosen by solving an optimization problem, such that it provides

the steepest descent in the selected descent direction. In our case, the optimiza-

tion problem that should be solved to find the optimal step size has the same

complexity as our original optimization problem P3. Therefore, we follow the

inexact line search which intelligently chooses the step size based on the available

information such as the value of the objective function, and the first derivative

of it at the current solution.

Two main challenges must be overcome in inexact line search to guarantee

the convergence to an optimal point. First, we should avoid decreases in the

function value which are smaller compared to the step length. Second, we should

ensure that the step size is not too small compared to the initial rate of decrease.

If either of the above happens, the optimization process oscillates without con-

verging to an optimal point. To tackle both the challenges, we apply Armijo’s

condition and Wolfe’s condition [85]. They are generally defined for minimization

problems. To maintain the consistency with previous subproblems, we keep P3

as a maximization problem. Therefore, we apply necessary modifications to the

Armijo’s condition and Wolfe’s conditions such that they can be utilized in a

maximization problem.

4.3.4 Overall Optimization Process

Let the value of the objective function in the ith iteration as

f(Θi) = hLoS(l, k) [i] , (4.20)
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Algorithm 5: Altitude Optimization
Data: xl, yl : l ∈ U ,Q,Ψ
Result: H∗l l ∈ U
ε0 = 0
i = 0 ⇐ Iteration index.
Set ε0 = θc
θc = arg maxθ∈{0,90} PLoS′(θ)

while f ′(Θi) > % and Θi ≥ θmin and η2 = true do
θmin ⇐ elevation angle for respective minimum altitude constraint.
% ⇐ Minimum rate of change defined for convergence
while [(4.22)and(4.23)] = false do

Θi+1 = Θi + εigi
εi = εic3; c3 ∈ {0, 1}
j = j + 1
if j ≥ jt then

jt ⇐ Iteration threshold to avoid indefinite loop. Increase the value
of εi compared to the initial value.
j = 0

η2 = logical(Rl,gs ≥ Rth1 )
i = i+ 1

H∗l = d(l, k) tan(Θi+1)

where Θi is the solution of ith iteration. The step size function is defined as

ϕ1(εi) = f (Θi) + c1εigi, c1 ∈ (0, 1) , (4.21)

where εi is the variable representing the step size in the ith iteration, gi is the

increment direction, and c1 ∈ (0, 1) is a constant . Armijo’s condition states that

the step size εi must be chosen such that

f (Θi + εigi) ≥ ϕ1(εi). (4.22)

Armijo’s condition ensures sufficient increment in the objective function value.

On the other hand, Wolfe’s condition states that step size must be chosen such

that

ϕ′1 (εi) ≤ c2ϕ
′
1(0), c2 ∈ (c1, 1) , (4.23)

where ϕ′1 (εi) is the rate of increment in the next solution, ϕ′1(0) is the rate of

increment in the current solution, and c2 ∈ (c1, 1) is a constant. Wolfe’s condition

ensures a lower rate of increment is achieved compared to the fraction of current

rate of increment in the given direction.
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Considering all of these, the altitude optimization will follow these steps as

illustrated in Fig. 4.2. The initial elevation angle will be set as the critical angle

of environment respect to the PLoS where The altitude optimization process for

the lth UAV is formally stated in Algorithm 5. As per (4.16) and (4.17), altitude

optimization can be independently performed for each UAV.

The overall optimization process involving all three subproblems is formally

stated in Algorithm 6.

Algorithm 6: Overall optimization
Data: Q
Result: W,Ψ, Lmin
Lmin ⇐ Minimum number of UAVs required. begin

while |Ψ| < K and L ≤ Nmax
UAV do

Block-A
Nmax
UAV ⇐ Maximum number of UAVs available

n = 0 ⇐ Iteration index.
Set G0 to a positive value
gs(0) = 0
while G0 > 0 do

n = n+ 1
Execute Algorithm 3 and obtain Ψn

Ψn ⇐ Optimal UAV-SN association in the

nth iteration
Using Ψn execute Algorithm 4 and obtain q∗n
q∗n ⇐ Optimal 2D position in the nth iteration
G0 = gs(n)− gs(n− 1)
gs(n) ⇐ gs value returned by algorithm 4 in

the nth iteration

for l = 1, . . . , L do
Execute Algorithm 5 and obtain H∗l

if |Ψ| Increases then
Goto Block-A

else if |Ψ| < K then
L = L+ 1

Lmin = L;

As we shown in section 4.3.3, altitude optimization can be done independently

of others. Therefore, in the overall optimization, we alternatively solve P1 and

P2 until convergence. Then, it will check whether all SNs are served with the

required rate and power constraints. If some SNs cannot be served as per the
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given QoS constraints, it will add another UAV and repeat P1 and P2. This

will continue until all the SNs are served, or the maximum number of UAVs is

reached. After that, the altitude of each UAV will be optimized.

4.3.5 Complexity Analysis

The time complexity of each iteration of modified pattern search is O(K) since

each SN will be accessed one time within a single iteration. Thus, the compu-

tation time for 2D positioning will linearly increase with the number of SNs. In

naive pattern search, all the users performance will be accessed m times within

each iteration where m is the resolution of the pattern search. Therefore, the

time complexity of naive pattern search is O(m × K). Since m is a constant,

the effective time complexity is O(K). Although the time complexities of the

modified PS and the naive PS are similar as per the standard analysis, the actual

time taken for each iteration in naive PS is higher than the modified PS since

m ≥ 4 for the 2D search space. The time complexity of the proposed altitude

optimization is O(1), as it does not depend on the number of SNs. On the other

hand, the altitude selection approach proposed in [81] has the time complexity of

O(K) as it assess all the SNs in each iterations.

In the worst case scenario, the number of weights Algorithm 3 need to check

is less than K × L. This is because in the nth connection phase, we do not need

to check the weights of the SNs which are already associated. Therefore, the

worst case time complexity of Algorithm 3 can be given as O(K × L). However,

the worst case time complexity of conventional Gale-Shapely algorithm can be as

large as O(K × L2), since it should satisfy mutual priorities.

4.4 Simulation Results and Discussion

This section presents numerical and simulation results to evaluate the proposed

algorithms’ performance and provide insights for system design. We compare the

performance of the proposed scheme with baseline approaches. A square area of

500 × 500 m2 is considered in numerical simulation. Unless otherwise specified,

the parameters used in numerical results are given in Table 4.1.
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Table 4.1: Simulation settings

G1 1× 10−2 Bc 1 MHz

hmin 20 m GLS 5× 10−3

GNS 2× 10−3 N0 −100 dBm

Bo 1 MHz αLS 2.0

αNS 2.5 κ 1.5

Rth
1 30 Mbps Rth

2 1 Mbps

Pu,max 10 W Ps,max 1 mW

Nmax 10 Nmax
UAV 15

c1 0.1 c2 0.9

c3 0.6 % 1× 10−15

4.8800, 0.4290 (Suburban)
σ, β 9.6117, 0.1581 (Urban)

12.0810, 0.1140 (Dense urban)
24.5960, 0.1248 (High-rise urban)

First, we study the effectiveness of the modified matching algorithm given

in Algorithm 3. Fig. 4.6 illustrates the maximum transmit power requirement

achieved through a conventional matching algorithm and our proposed approach

in Algorithm 3 for various numbers of SNs. For each number of SNs it is repeated

for 10000 random distribution and the results are averaged. Fig. 4.6 shows that

the proposed approach does the UAV-SN assignment such that it minimizes the

maximum transmit power requirement compared to the conventional matching

algorithm proposed in [27]. Although the proposed approach outperforms regard-

less of the number of SNs, it can be observed that the maximum transmit power

shows a zig-zag behavior with the number of SNs. It is related to the total num-

ber of resource blocks and the total number of SNs. If both are equal, it should

utilize all the UAVs’ resource blocks regardless of the worst channel conditions

it has for particular SNs. Thus, it results in a higher maximum transmit power

requirement. On the other hand, if resource blocks are higher than SNs it has

the flexibility of assigning the SN to UAVs, which helps avoid the worst UAV-SN

pairing and decreases the maximum transmit power requirement. In this exam-

ple, the number of resource blocks in a single UAV (Nmax) is 8. Thus, it shows

peaks in maximum transmit power requirement for multiples of 8 in terms of
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the number of SNs. Therefore, avoiding the worst UAV-SN assignment is crucial

when we consider the fairness among the SNs. Thus, we did a minor modification

to Algorithm 3 such that it helps to avoid the worst UAV-SN assignment. The

modified algorithm is referred to as Algorithm 3-b.
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Fig. 4.6: The maximum transmit power required among all the SNs for varying number of SNs.
Nmax = 8.

In Algorithm 3, in the nth connection phase, it gives the connection priority

as per the weight of SN’s nth preferred connection in the ascending order. In

Algorithm 3-b, in the nth connection phase, the connection priority is given as

per the weight of (n + 1)th preferred connection. Thus, it helps to avoid the

worst UAV-SN assignment in the next phase. Fig. 4.7 illustrates the maximum

transmit power requirement achieved through Algorithm 3 and Algorithm 3-b for

the same simulation setup adopted for the results showed in Fig. 4.6. Fig. 4.7
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shows that Algorithm 3-b does the UAV-SN assignment such that it minimizes

the maximum transmit power requirement compared to Algorithm 3 and the

conventional matching algorithm proposed in [27]. Also, it is observable that

Algorithm 3 and Algorithm 3-b gives higher gain when the number of SNs is equal

to multiples of the maximum number of SNs a single UAV can serve (Nmax). In

this scenario, it is 8. The results shown in Fig. 4.7 are averaged for 10000 random

distribution of SNs for each number of SNs.
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Fig. 4.7: The maximum transmit power required among all the SNs for varying number of SNs
and the respective gain achieved compared to conventional Gale-Shapely algorithm in dense
urban environment. Nmax = 8.

Although in average Algorithm 3-b performs better, in some instances Algo-

rithm 3 performs better than Algorithm 3-b. Therefore, we compared them as

per the frequentist probability. It is calculated through 1 000 000 trials repeated
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for various environments for varying number of SNs. Table 4.2 shows the com-

parison. P(A3<A3−b) refers to the probability where Algorithm 3-b performs better

than Algorithm 3. Similarly, P(A3<A3−b) and P(A3=A3−b) refers to the probability

lesser and equal performance respectively. It is observable that 92% of the times

Algorithm 3-b performs equally or better than Algorithm 3.

Table 4.2: Probabilistic performance comparison of Algorithm 3 and Algorithm 3-b

P(A3<A3−b) P(A3>A3−b) P(A3=A3−b)

0.4261 0.0802 0.4937

After that, we analyze the effectiveness of using the PS algorithm for intra-

cluster deployment and solving the 3D deployment problem by breaking it into

two separate problems. Table 4.3 illustrates the number of iterations it takes to

solve the intra-cluster 3D deployment through three different approaches. Ap-

proach 1 finds the optimal solution through an exhaustive search that checks

every possibility with the given precision. Approach 2 utilizes a 3D naive pattern

search to solve the 3D positioning problem. Approach 3 breaks the problem into

two subproblems, where it initially optimizes the 2D positioning through the 2D

PS algorithm and the altitude is optimized through the 1D PS algorithm. All

approaches result in nearly identical performance in terms of maximum transmit

power among the SNs. However, Approach 1 requires an exorbitant number of

iterations compared to the 3D PS. Also, breaking the 3D positioning into two sep-

arate subproblems (Approach 2), results in 2.3 times fewer iterations compared

to Approach 1. Moreover, the time complexity of a single iteration in all three

approaches is O(Nl), where Nl is the number of SNs in the respective cluster.

Therefore, the number of iterations is a measure of the total time required to

solve the problem using each approach.

Fig. 4.8 compares the number of iterations required for convergence with two

different approaches in different operating environments. We have compared three

approaches, including our proposed approach. Also, we have included Approach

3 for cross-comparison. Approach 4 uses naive pattern search for 2D optimization

and exact line search for altitude optimization. The Proposed approach uses a

modified pattern search for 2D optimization and a customized inexact line search
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Table 4.3: The number of iterations required to solve the 3D deployment problem for a given
cluster with K = 8.

Number of iterations

Approach 1 Approach 2 Approach 3
(Exhaustive (3D PS) (2D PS +

search) 1D PS)

Suburban 125000 1812 784

Urban 22250000 5346 3764

Dense urban 3625000 7392 4884

High-rise urban 6625000 11856 7444

for altitude optimization. One can clearly identify the effectiveness of the modified

pattern search algorithm and the inexact line search with the Armijo - Wolfe

condition used in “Proposed approach”. The number of iterations required for the

“Proposed approach” is 240% less than Approach 4, which requires a significantly

smaller number of iterations among all the other baseline approaches. Therefore,

it is clear that the proposed approach significantly simplifies the problem-solving

process.

Table 4.4 illustrates the maximum transmit power requirement among the

SNs, achieved through Approach 1 and the proposed approach. It can be ob-

served that the proposed approach achieves almost 99% of the performance of
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Approach 1, with 1650 times fewer iterations. Therefore, the Proposed approach

guarantees near-optimal solutions with very few number of iterations. Moreover,

as shown in section 4.3.5, the time complexity involved in each iteration of the

proposed approach is less than or equal to the comparative approaches. Given

that, the time required to execute one iteration of the proposed approach is less

than the respective time required for comparative approaches.

Table 4.4: The maximum transmit power resulted from the exhaustive search and the proposed
approach. K = 8.

Approach 1 proposed approach
(Max Tx power) (Max Achievement

Tx power)

Suburban 5.265 µW 5.280 µW 99.72 %

Urban 8.167 µW 8.176 µW 99.89 %

Dense urban 11.763 µW 11.880 µW 99.02 %

High-rise urban 21.764 µW 21.983 µW 99.50 %
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Fig. 4.9: The maximum transmit power required among all the SNs for varying number of of
SNs in different environments. (a)- Suburban and Urban; (b)- Dens urban and Highrise urban

Fig. 4.9 illustrates the maximum required transmit power in different en-

vironments. We compare the performance of the proposed approach with the

approach proposed in [27], referred to as LAYF algorithm. Here, the number of
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UAVs is set as per (4.1). The LAYF algorithm is based on accumulated util-

ity, which is a promising approach considering the system’s overall performance.

However, it does not consider fairness among the users. Fig. 4.9 clearly shows

the proposed approach reduces the maximum transmit power requirement by at

least 5 fold compared to the LAYF algorithm. It is because the LAYF approach

utilizes conventional approaches to solve their subproblems and does not have

intra-cluster placement, which is crucial considering the fairness among the SNs.

Considering the total transmit power requirement of the system, our proposed

approach and LAYF approach both require approximately equal transmit power.

In the LAYF approach, both the extremes are there; some SNs require very high

transmit power, whereas some require very low power. Thus, the power range
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is higher. In contrast, our approach maintains fairness among the SNs, which

reduces the range by a huge margin. Since the highs and lows of LAYF can-

cel out, our approach and LAYF has approximately equal total transmit power

requirement.

Also, it can be observed that the maximum required transmit power reduces

with the number of SNs, regardless of the approach or the environment. This is

because increasing the number of SNs increases the number of UAVs, reducing

the distance between the SN and the associated UAV. However, our proposed

approach shows a lesser reduction rate since it always tries to maintain the trans-

mit power fairness among the SNs, which reduces the gap between the best and

the worst SN. Thus, the maximum required transmit power remains almost con-

stant with the number of SNs. Furthermore, the maximum required transmit

power changes with the type of the environment, where it increases in the order,

suburban, urban, dense urban, and high-rise urban. This behavior is observed

because compared to the suburban environment, UAVs should climb to a higher

altitude to establish strong LoS connections in an urban environment, leading

to additional pathloss that results in a larger transmit power requirement. The

optimal altitude for UAVs increases in the order suburban, urban, dense urban

and high-rise urban.

In this work, we have not considered the energy requirement of the UAV

movement, as our focus is on the energy efficiency of the SNs. However, the pro-

posed approach will consume less energy for UAV movements, as the UAVs can

directly fly to the position identified through the solution, without any sequential

movements, as the final UAV position is determined through a centralized ap-

proach that utilizes only the SN locations, channel statistics, and environmental

parameters. Moreover, centralized and distributed (LAYF) both the approaches

should maintain minimum channel quality between the central station for control

operation and data forwarding. Given that, centralized approach does not require

additional maneuvering energy to forward the information to the central station

compared to the distributed approach. Therefore, the centralized approach can

significantly reduce the energy consumption of UAV movements compared to a

distributed solution, where UAVs have to adjust their locations iteratively [6].

Fig. 4.10 illustrates the minimum number of UAVs required to serve all the

SNs while satisfying the maximum power and minimum data rate constraints.
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It can be observed that our proposed approach requires fewer number of UAVs

compared to the LAYF approach. Since the LAYF algorithm does not include

transmit power fairness, a large number of UAVs are required to satisfy the min-

imum QoS requirements. This highlights the importance of considering transmit

power fairness among the SNs. Moreover, the proposed approach requires the

same number of UAVs regardless of the environment, as it can achieve a much

higher data rate than the threshold data rate with the given constraints in all the

environments.

4.5 Conclusion

This chapter investigated the problem of deploying multiple UAVs to collect data

from a WSN, considering the transmit power fairness among the SNs. A novel

algorithm was proposed by modifying the existing algorithms to ensure fairness

in the WSN. The multi-UAV deployment problem was divided into three sub-

problems to reduce the complexity involved in joint optimization. The three

subproblems are UAV-SN association, 2D positioning of the UAVs and the alti-

tude optimization of the UAVs. First, the UAV-SN association is addressed using

a customized Gale–Shapley algorithm. Second, the 2D positions of the UAVs are

optimized using a modified pattern search algorithm. Third, the altitude of the

UAVs are optimized through a customized inexact line search algorithm. Finally,

we have proposed the combined optimization algorithm that integrates altogether

and provides a single solution. The numerical results confirm the effectiveness of

breaking the 3D deployment problem into two subproblems, which reduces the re-

quired number of iterations by 2.3 times compared to solving as a single problem.

Also, it illustrates the performance improvement of our customized approach in

terms of the number of iterations compared to the baseline approaches. It takes

1000 % and 240 % times fewer number of iterations compared to Approach 3 and

Approach 4, respectively. Moreover, we have compared the performance of the

proposed approach in terms of the maximum transmit power requirement with

the baseline approach, which illustrates that the proposed approach consumes 4

times less maximum transmit power. Also, the minimum number of UAVs re-

quired to serve all the SNs through the proposed approach is at least 4 times less

compared to the baseline approach.
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Future Directions

One of the major features of future wireless communication is providing unin-

terrupted, reliable coverage services. UAVs can be deployed in various wireless

systems to accommodate the aforementioned requirement. In this content, many

issues appear to be worthwhile for future research. Our work is based on readily

available requirements/demands. Future work can focus on demand prediction

and pre-deployment, which help increase energy efficiency and other orchestra-

tion of the network. Moreover, we can study the user assignment policies given

the nature of the distribution, the spatiality of the preference weight matrix and

other system characteristics. Future wireless communication is more focused on

increasing the average rate rather than further increasing the peak rate. Thus,

UAV-assisted cell-free communication also would be a timely topic to analyze.
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