On Demand Deployment of UAV Base Stations in Wireless Communication Networks

Mohamed Hydher Mohamed Hassaan

 $198134\mathrm{K}$

Thesis submitted in partial fulfilment of the requirements for the degree Master of Science by research.

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

April 2022

Declaration

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis/dissertation under my supervision.

Signature of the supervisors:

1.	Date:
2.	Date:
3.	Date:

Abstract

Unmanned aerial vehicles (UAVs)-assisted communication systems are considered a promising technology in diverse verticals. The objective of this research is to study on demand deployment of UAVs in special applications. We analyze the multi-UAV deployment in two different scenarios.

First, we analyze the deployment of UAVs as an aerial base stations (ABSs) to provide cellular coverage to isolated users. The main contributions of this study includes a less complex approach to optimally position the UAVs and assigning user equipment (UE) to each ABS, such that the total spectral efficiency (TSE) of the network is maximized, while maintaining a minimum QoS requirement for the UEs. The main advantage of the proposed approach is that it only requires the knowledge of UE and ABS locations and statistical channel state information. We propose two approaches with common and diverse altitude selection. Both approaches lead up to approximately 8-fold energy savings compared to ABS placement using a naive exhaustive search.

Second, we have investigated the deployment of UAVs in wireless sensor network (WSN) systems. Considering the energy-constrained nature of the WSN, we have proposed a multi-UAV deployment algorithm that minimizes the maximum power transmitted among the sensor nodes (SN) for given data rate and altitude constraints. The problem is divided into three subproblems in order to reduce the complexity. Each subproblem is optimized by fixing other parameters as constant. Finally, we proposed a joint optimization algorithm that combines the approaches of all three subproblems. In the joint optimization, the first and second subproblems are iteratively solved together while third subproblem is solved independently for each UAV. Moreover, the joint optimization gives the minimum number of UAVs required to serve all the SNs with the given constraints. The results indicate a significant performance gain compared to the benchmark methods in terms of the number of iterations for convergence, maximum transmission power requirement and the minimum number of UAV requirements.

Acknowledgements

First and foremost, I would like to acknowledge and give my warmest thanks to my supervisors Dr. K.T. Hemachandra, Dr. T.N. Samarasinghe and Prof. D.N.K. Jayakody who made this work possible. Their guidance and advice carried me through all the stages of my project. This journey help me to shape my technical approaches in several angles.

I would like to extend my thanks to all the colleagues who worked with me at centre for telecommunication research (CTR) for providing your support in various ways. Also, I would like to give a special thank to my family as a whole for their continuous support and understanding when undertaking my research and writing my project.

Contents

1	Inti	roducti	lon	1
	1.1	UAV a	and wireless communication	1
	1.2	UAV-a	assisted wireless communication	2
		1.2.1	UAV-assisted ubiquitous coverage	3
		1.2.2	UAV-assisted relaying	4
		1.2.3	UAV-assisted data dissemination/collection	5
	1.3	Challe	enges in UAV-assisted communication	6
	1.4	Object	tives and Scope	8
	1.5	Organ	ization of the Thesis	9
	1.6	Public	ations	9
2	Rel	ated W	Vorks and Motivation	11
	2.1	Deplo	yment Approaches Proposed for UAV-Assisted Communica-	
		tion		11
		2.1.1	UAV as an aerial base station	11
		2.1.2	Energy efficiency in UAV-assisted communication system .	16
3	Inte	elligent	UAV Deployment for a Disaster-Resilient Wireless	3
	Net	work		23
	3.1	Overv	iew	23
	3.2	System	n Model	27
		3.2.1	Spatial Model	27
		3.2.2	Channel Model	29
		3.2.3	Signal-to-Interference-plus-Noise Ratio (SINR)	29
	3.3	Optim	al ABS Placement and User Association	31
		3.3.1	2D Deployment of the ABSs and the UE Assignment	33
		3.3.2	ABS Altitude Selection	34
	3.4	Simula	ation Results and Discussion	39

4	UA	V Deple	oyment in WSN System for Emergency/Remote Area	L
	App	olicatio	ns	4
	4.1	Introdu	action	
	4.2	System	Model	
		4.2.1	Spatial Model	
		4.2.2	Channel Model	
		4.2.3	Problem Formulation	
	4.3	Propos	ed Solution	
		4.3.1	UAV-SN association subproblem	
		4.3.2	2D positioning subproblem	
		4.3.3	Altitude selection subproblem	
		4.3.4	Overall Optimization Process	
		4.3.5	Complexity Analysis	
	4.4	Simula	tion Results and Discussion	
	4.5	Conclu	sion	

List of Figures

1.1	Requirements of UAV-assisted applications and the relevant use case of 5G and beyond networks that aid the demand	2
1.2	Application scenarios of UAV as aerial base station	4
3.1	(a) User equipment (UE) distribution in $\mathbb A$ and (b) UE distribution	
	in \mathbb{B} (disaster region)	28
3.2	System model illustration of the information and interference sig-	
	nals for $N_{\text{UAV}} = 3$ and $N_{\text{UE}} = 3$	30
3.3	Illustration of ABS placement and UE association obtained using	
	the approach in [27], where $R_B = 2000$ m, $\alpha_N = 2.5$, $\alpha_L = 2$,	
	$\lambda_U = 2 \times 10^{-4} / \text{m}^2, \ \delta = 0, \ N_{\text{UAV}} = 3, \ H^* = 300 \text{ m}, \ N_T = 70.$	
	The position of the ABS is represented using \mathbf{X} . The three colors	
	differentiate the UE clusters at a particular stage. $(\mathbf{a}-\mathbf{h})$ illustrate	
	the 1st,,5th, 7th, 9th and 11th adaptive stages, respectively $\ . \ .$	32
3.4	(a) Global best, local best, position, and the velocity in the $(n - $	
	1)th iteration. (b) Velocity in the n th iteration as a weighted	
	vector addition of previous velocity components and the position	
	in the <i>n</i> th iteration	36
3.5	Illustration of the movement of the aerial base stations (ABSs) in	
	the 2D plane for suburban environment. The position of the ABS is	
	represented using \mathbf{x} . The three colors differentiate the UE clusters	
	of the respective ABSs. (\mathbf{a}) Initial 2D position of the ABSS. (\mathbf{b})	
	Movement of the ABSs to the computed position. The solid arrow	
	represents the actual ABS movement. The doted lines represent	
	the adaptive process (does not represent the movement) performed	
	at the CC. $R_B = 2000 \text{ m}, \alpha_N = 2.5, \alpha_L = 2, \lambda_U = 2 \times 10^{-4}/\text{m}^2,$	
	$\delta = 0, N_{\text{UAV}} = 3, H^* = 300 \text{ m}, N_T = 70. \dots \dots \dots \dots \dots$	39
3.6	Total spectral efficiency vs. altitude of the ABS (comparison be-	
		10

3.7	Total spectral efficiency vs. altitude of the ABS (comparing Algo-	
	rithm 1-based deployment, random deployment, and equidistant	
	deployment). \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	43
3.8	Average coverage probability vs. Signal-to-Interference-Plus-Noise	
	Ratio (SINR) threshold (comparison between Algorithm 1-based	
	deployment and random deployment)	44
3.9	Energy consumption of Algorithms 1 and 2 compared to naive	
	exhaustive search	44
3.10	(a) Maximum achievable total spectral efficiency (TSE) vs. user	
	intensity (b). Energy consumption for maneuvering vs. user in-	
	tensity	45
41	The data gathering and data transforming links and the anatial	
4.1	The data gathering and data transferring links and the spatial distribution of SN_3 UAVs, and the CS	59
4.9	Elewebert of our proposed algorithm Dashed line boyes differen	52
4.2	tists the approaches related to the subproblems	57
19	UAV SN aggigsment through conventional gale shapely algorithm	57 60
4.5	UAV SN assignment through Algorithm 2	60 60
4.4	UAV SN assignment through Algorithm 2 h	00 61
4.0	The maximum transmit power required emong all the SNs for years	01
4.0	ing number of SNa $N_{\rm e} = 8$	79
47	The maximum transmit power required emong all the SNs for very	12
4.1	ing number of SNs and the respective gain achieved compared to	
	ing number of SNs and the respective gain achieved compared to	
	conventional Gale-Shapery algorithm in dense urban environment. M = -8	79
1.9	$N_{max} = 0.$	15
4.0	The number of iterations taken to convergence for different ap-	75
4.0	The maximum transmit power required emong all the SNs for very	75
4.9	ing number of of CNa in different environmenta (a). Suburban and	
	Ing number of of SNS in different environments. (a)- Suburban and	76
1 10	The minimum number of UAVa required to come all the CNL with	10
4.10	The minimum number of UAVs required to serve all the SNs with	
	varying number of SNs in different environments for $P_0 = 25 \mu \text{W}$.	- (-)

List of Tables

2.1	Some general deployment approaches proposed in the current lit-	
	erature	12
2.2	Limitation in the existing works and the proposed way to overcome	14
2.3	Works Related to Energy Efficient UAV-assisted Communication	
	System	17
2.4	Works Related to Energy Efficiency in uplink perspective in a	
	UAV-assisted communication System	21
3.1	Table of notations.	38
3.2	Simulation settings	41
4.1	Simulation settings	71
4.2	Probabilistic performance comparison of Algorithm 3 and Algo-	
	rithm 3-b	74
4.3	The number of iterations required to solve the 3D deployment	
	problem for a given cluster with $K = 8$	75
4.4	The maximum transmit power resulted from the exhaustive search	
	and the proposed approach. $K = 8. \ldots \ldots \ldots \ldots \ldots$	76