PERFORMANCE ANALYSIS OF THE POWER SPLITTING SIMULTANEOUS LIGHTWAVE INFORMATION AND POWER TRANSFER (PS-SLIPT) ARCHITECTURE

Sumali Saumya Morapitiya

(188111E)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

December 2021

Declaration

I declare that this is my own research proposal and this proposal does not incorporate without acknowledgement any material previously published submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Signature of the Student:.....

Date:.....

I have read the proposal and it is in accordance with the approved university proposal outline. I am willing to supervise the research work of the above candidate in the proposed area.

Signature of the

Date:....

Supervisor:..... Prof. Dushantha Nalin K.Jayakody, Sri Lanka Technological Campus (SLTC), Sri Lanka.

Signature of the

Date:....

Supervisor:..... Prof. L.W.P. R Udayanga, University of Moratuwa, Sri Lanka.

Abstract

Recent studies done on Simultaneous Lightwave Information and Power Transfer (SLIPT) has become a hot topic among the research community. The importance of the SLIPT is to harvest energy using light sources while decoding the information. In this thesis work, we present the mathematical framework for the Power Splitting (PS) based SLIPT system and study the performance of the PS-SLIPT and Time Splitting (TS)-SLIPT architectures. Moreover, we quantitatively study the harvested energy with different Field of View (FoV) angles of the Light Emitting Diode (LED) and the Photodiode (PD). In addition, analyze the important parameter of the Visible Light Communication (VLC) system to achieve maximum received power and we consider the amount of harvested energy for different Direct Current (DC) values. Overall, concludes that the Field of View (FoV) and DC bias signals are directly affected by SLIPT systems. Using numerical simulations, we demonstrate the performance of the both architectures to enhance the QoS of information decoding data rate, amount of harvested energy and trustworthiness of the information.

Further, our research work extend to Simultaneous Wireless Information and Power Transfer (SWIPT) technique is introduced in Radio Frequency (RF) communication to carry both information and power in same medium. In this approach, the energy can be harvested while decoding the information carries in an RF wave. Recently, the same concept apply in VLC namely SLIPT, which is highly recommended in an indoor applications to overcome the problem facing in RF communication. Thus, the SLIPT is introduce to transmit the power through a Light Emitting Diode (LED) luminaries. In this work, we compare both SWIPT and SLIPT technologies and realize SLIPT technology archives increase performance in terms of the amount of harvested energy, outage probability and error rate performance.

Index terms - Outage Probability, Simultaneous Lightwave Information and Power Transfer (SLIPT), Simultaneous Wireless Information and Power Transfer (SWIPT), Visible Light Communication (VLC), Energy Harvesting (EH), Light Emitting Diode (LED), Information Decoding (ID)

List of publications

1. Sumali S. Morapitiya, Mohammad Furqan Ali, Samikkannu Rajkumar, Sanika K. Wijayasekara, Dushantha Nalin K. Jayakody and R.U.Weerasuriya "A SLIPT-Assisted Visible Light Communication Scheme" *IEEE International Conference on Distributed Computing in Sensor System (DCOSS)*, California, USA, 15th June 2020.

2. Sumali S. Morapitiya, TWW Leelarathna, Dushantha Nalin K. Jayakody and RU Weerasuriya "Performance Analysis of the SLIPT Architectures" 10th IEEE International Conference on Information and Automation for Sustainability 2021 (IEEE ICIAFS 2021), Sri Lanka, 15th August 2021.

Acknowledgements

I would like to extend my gratitude to my supervisors, Prof. L.W.P. Ruwan Udayanga, Department of Electronic and Telecommunication Engineering, University of Moratuwa and Prof. Dushantha Nalin K. Jayakody, Head - School of Postgraduate Research, Sri Lanka Technological Campus (SLTC), Padukka, Sri Lanka and professor at the School of Computer Science & Robotics, National Research Tomsk Polytechnic University (TPU), Russia for their academic advice, continuous guidance and the tremendous support given to me throughout my research study. I am extremely grateful that you took me on as a student and continued to have faith in me over the years.

I am fortunate to have been a part of the Center for Telecommunication Research (CTR) committee member - SLTC. Your encouraging words and thoughtful, detailed feedback have been very important to me. My appreciation also goes out to my family and friends for their encouragement and support all through my studies.

Contents

	Dec	laratio	n	i
	Abstract			ii
	List	of pu	blications	iii
	Ack	nowle	dgements	iv
1	INT	ROD	UCTION	1
	1.1	Optica	al Wireless Communication (OWC)	1
	1.2	Visible	e Light Communication (VLC)	2
	1.3	Simul	taneous Lightwave Information and Power Transfer (SLIPT)	4
	1.4	SLIPT	ſ Receiver Architectures	4
		1.4.1	Power Splitting SLIPT Architecture (PS-SLIPT)	5
		1.4.2	Time Splitting SLIPT Architecture (TS-SLIPT)	5
	1.5	Simul	taneous Wireless Information and Power Transfer (SWIPT)	6
	1.6	Contr	$ibution \ldots \ldots$	6
	1.7	Outlin	ne of the Thesis	7
2	LIT	ERAT	URE REVIEW	9
2.1 Optical Wireless Communication (OWC) / Free Space		al Wireless Communication (OWC) / Free Space Optics (FSO)	9	
	2.2	Visible	e Light Communication (VLC)	11
		2.2.1	Advantages of VLC	11
		2.2.2	VLC Applications	12
		2.2.3	Transmitter - LED in VLC	14
		2.2.4	Transmitter-Modulation Techniques used in VLC $\ . \ . \ .$.	18
		2.2.5	Receiver-PD/Solar Cell in VLC $\ldots \ldots \ldots \ldots \ldots \ldots$	20
		2.2.6	Channel Models in VLC	22
		2.2.7	Energy Harvest (EH) \ldots \ldots \ldots \ldots \ldots \ldots	23
		2.2.8	Simultaneous Lightwave Information and Power Transfer	
			$(SLIPT) \ldots \ldots$	24

		2.2.9	Simultaneous Wireless Information and Power Transfer (SWI	PT) 25	5
		2.2.10	Limitations of the VLC	26	
		2.2.11	Chapter Summary	26	
3	SYS	STEM	MODEL	27	
	3.1	VLC S	System Model	27	
		3.1.1	Mathematical Model for the VLC Transmitter	29	
		3.1.2	Mathematical Model for the Free Space Channel	29	
		3.1.3	Mathematical Model for the Receiver	30	
	3.2	SLIPT	Receiver Architectures	30	
		3.2.1	Received Electrical Signal	32	
		3.2.2	AC Component of the Received Signal $i(t)$ - Information		
			Decoding	32	
		3.2.3	DC Component of the Received Signal I_{DC} - Energy Har-		
			vesting	33	
	3.3	A SLI	PT-Assisted Visible Light Communication Scheme	34	
		3.3.1	SWIPT System Model: SM-I	34	
			3.3.1.1 RF-Energy Harvesting in SWIPT Protocol	35	
			3.3.1.2 Outage Probability Analysis for SM-I	36	
		3.3.2	SLIPT System Model: SM-II	37	
			3.3.2.1 Outage Probability Analysis for SM-II	37	
	3.4	Chapt	er Summary	39	
4	RES	SULTS	AND DISCUSSION	40	
	4.1	Perform	mance Analysis of the SLIPT Architectures	40	
		4.1.1	Optimal FoV Angle of TX and Rx	40	
		4.1.2	BER Analysis in PS SLIPT Architecture Using Different		
			Modulation Schemes	44	
		4.1.3	Behaviour of the ID Data Rate Vs Splitting Coefficient in		
			PS and TS SLIPT Architectures	49	
		4.1.4	Observe the Behaviour of the EH Vs Splitting Coefficient		
			in PS and TS SLIPT Architectures	50	
		4.1.5	Observe the Behaviour of the EH vs ID in PS and TS SLIPT $$		
			Architectures for Different Bias Values	51	
		4.1.6	The Sub Optimal Splitting Coefficient with BER in PS and		
			TS SLIPT Architectures Under AWGN	52	

		4.1.7	Calculate the Amount of Harvested Energy for Optimal	
			Splitting Coefficient and Assume Threshold SNR $\ . \ . \ .$	53
		4.1.8	Analyze the PS and TS SLIPT Architecture in EH and ID	54
	4.2	A SLI	PT-assisted Visible Light Communication Scheme	56
		4.2.1	BER Analysis of the SWIPT and SLIPT	56
		4.2.2	Outage Probability Analysis of the SWIPT and SLIPT $$. $$.	57
		4.2.3	Amount of Harvested Energy in SWIPT and SLIPT	59
	4.3	Chapt	er Summary	59
5	CO	NCLU	SIONS AND FUTURE DIRECTIONS	61
		5.0.1	CONCLUSIONS	61
		5.0.2	FUTURE DIRECTIONS	62

List of Figures

1.1	The SLIPT relate with existing technologies	2
1.2	Basic concept of VLC [1].	3
1.3	The basic SLIPT functions.	4
1.4	(a) TS receiver architecture. (b) PS receiver architecture [2]	5
2.1	Luminous efficacy evolution of different light sources $[3]$	14
2.2	Working principle of LED [4]	15
2.3	Refraction of the two different material	16
2.4	AWGN of the communication system model	22
2.5	Transmitter and receiver configuration models [5]	23
3.1	Basic system model of the VLC and LoS between Transmitter (Tx)	
	and the Receiver (Rx)	28
3.2	Block diagram of the overall system model of the VLC	29
3.3	Overall system model of SLIPT system with PS receiver architec-	
	ture and TS receiver architecture	31
3.4	(a) PS SLIPT architecture shows the concept of dividing power	
	for EH and ID. (b) TS SLIPT architecture shows the concept of	
	dividing time for EH and ID	32
3.5	SWIPT and SLIPT System Model Scenario	35
4.1	Transmitter FoV is 15° and Receiver FoV are 15° , 30° , 45° , and 60° .	41
4.2	Transmitter FoV is 30^0 and Receiver FoV are 15^0 , 30^0 , 45^0 , and 60^0 .	42
4.3	Transmitter FoV is 45° and Receiver FoV are 15° , 30° , 45° , and 60° .	42
4.4	Transmitter FoV is 60° and Receiver FoV are 15° , 30° , 45° , and 60° .	43
4.5	Input constellation diagram of OOK	44
4.6	Output constellation diagram of OOK	44
4.7	Input constellation diagram of QPSK	45
4.8	Output constellation diagram of QPSK	45
4.9	Input constellation diagram of 8-PSK	45
4.10	Output constellation diagram of 8-PSK	46

4.11	BER vs SNR of the OOK, QPSK and 8-PSK modulation schemes $% \mathcal{A}$
	at $ ho = 0.3.$
4.12	BER vs SNR of the OOK, QPSK and 8-PSK modulation schemes
	at $ ho = 0.5.$
4.13	BER vs SNR of the OOK, QPSK and 8-PSK modulation schemes
	at $ ho=0.7.\ldots$
4.14	Information decoding data rate vs power splitting coefficient
4.15	Information decoding data rate vs time splitting coefficient
4.16	The amount of harvested energy vs power splitting coefficient
4.17	The amount of harvested energy vs time splitting coefficient
4.18	The amount of harvested energy vs information decoding data rate
	in PS SLIPT architecture.
4.19	The amount of harvested energy vs information decoding data rate
	in PS SLIPT architecture.
4.20	The sub optimal values of the ρ which given the minimum BER at
	SNR_{th} values are 5 dB, 8 dB, 10 dB, 13 dB and 15 dB of the PS
	SLIPT architecture.
4.21	The sub optimal values of the τ which given the minimum BER at
	SNR_{th} values are 5 dB, 8 dB, 10 dB, 13 dB and 15 dB of the TS
	SLIPT architecture.
4.22	Harvested energy vs PS splitting factor for harvest 20 mJ/min
4.23	Harvested energy vs TS splitting factor for harvest 20 mJ/min
4.24	Information decoding data rate vs PS splitting factor is 0.3736 for
	harvest 20 mJ/min.
4.25	Information decoding data rate vs TS splitting factor is 0.4523 for
	harvest 20 mJ/min.
4.26	BER performance of the indoor wireless system using LOS-based
	SLIPT scheme
4.27	Outage performance of both SM-I and SM-II for indoor wireless
	system using LOS-based SLIPT scheme at the fixed data rate $R=1$
	b/s/Hz.
4.28	Outage performance of the SLIPT based indoor wireless system
0	for the various data rates.
4.29	Energy harvesting of the proposed SLIPT based indoor wireless
1.20	system versus nower splitting factor a
	system versus power spintening ractor μ .

List of Tables

2.1	The materials to generate different colours of LED with wavelength	15
4.1	Parameters of camera setups	43
4.2	Amount of harvested energy and the BER values in the PS and	
	TS SLIPT architectures.	53

List of Abbreviations

Abbreviation Description

AC	Alternative Current
AF	Amplify and Forward
APD	Avalanche Photo Diode
AWGN	Additive White Gaussian Noise
BER	Bit Error Rate
CSK	Colour Shift keying
DC	Direct Current
DCN	Data Center Network
DF	Decode and Forward
dLoS	direct Line of Sight
DPSK	Differential Phase Shift keying
EH	Energy Harvesting
FCC	Federal Communication Commission
\mathbf{FF}	Fill Factor
FoV	Field of View
FPGA	Field Programmable Gate Array
FSO	Free Space Optics
ID	Information Decoding
IM/DD	Intensity Modulation/Direct Detection
IoT	Internet of Things
IR	Infrared
LAN	Local Area Network
LED	Light Emitting Diode
LoS	Line of Sight
OWC	Optical Wireless Communication
MAN	Metropolitan Area Network
MIMO	Multiple Input Multiple Output

MSN	Minimum Shift Keying
NRZ	Non-Return Zero
OFDM	Orthogonal Frequency Division Multiplexing
OLED	Organic LED
OOK	On-Off Keying
PD	Photo-diode
PPM	Pulse Position Modulation
PWM	Pulse Width Modulation
PS	Power Splitting
QoS	Quality of Service
RAT	Relay Assisted Technology
RF	Radio Frequency
SLIPT	Simultaneous Lightwave Information and Power Transfer
SPPM	Spatial Pulse Position Modulation
SSK	pace-Shift-Keying
SNR	Signal to Noise Ratio
SPAD	Single Photon Avalanche Diode
SWIPT	Simultaneous Wireless Information and Power Transfer
TDMA	Time Division Multiple Access
TS	Time Splitting
UV	Ultra Violet
UWAV	Underwater Autonomous Vehicle
VLC	Visible Light Communication
VPPM	Variable Pulse Position Modulation
V-to-V	Vehicle to Vehicle
WHO	World Health Organization