
 

 

 

DECENTRALIZED FUNCTION AS A SERVICE 

 

 

 

 

 

Siyane Koralege Nuwan Uditha Tissera. 

209386K 

 

 

Degree of Master of Science/ Master of Engineering 

 

 

 

 

 

Department of Computer Science Engineering 

University of Moratuwa 

Sri Lanka 

March 2022 



i 

 

 

DECLARATION 

I declare that this is my own work and this thesis/dissertation2 does not incorporate 

without acknowledgement any material previously submitted for a Degree or Diploma 

in any other University or institute of higher learning and to the best of my knowledge 

and belief it does not contain any material previously published or written by another 

person except where the acknowledgement is made in the text.  

Also, I hereby grant to University of Moratuwa, the non-exclusive right to reproduce 

and distribute my thesis/dissertation, in whole or in part in print, electronic or other 

medium. I retain the right to use this content in whole or part in future works (such as 

articles or books). 

Signature:        Date: 

The supervisor/s should certify the thesis/dissertation with the following declaration. 

The above candidate has carried out research for the Masters under my supervision. 

Name of the supervisor: 

 

Signature of the supervisor:      Date : 

 

 

 

 

 

 



ii 

 

ABSTRACT 

The objective of this research is to implement an automated, user-oriented, decentralized 

function as a service provider that replaces the existing centralized, single-authority FaaS 

providers in a way that can address the weaknesses in the global cloud infrastructure related 

to the serverless architecture. This refers to applications which heavily depends on third-party 

services running on the most well-known vendor temporary containers (or FaaS). Existing 

serverless architecture suffers from deficiencies such as vendor control, multi-tenancy issues, 

vendor lock-in, security issues, lack of monitoring tools, difficulty managing granular activity, 

and architectural complexity. The proposed system decentralizes granular functions across a 

peer-to-peer network to provide decentralized FaaS. A granular function is an atomic function 

with a single responsibility deployed on the Orb network. "Orb" is a peer-to-peer network of 

peers (nodes) and super peers (Supernodes/Trackers). Node detection on the network is done 

using the principles of "Satoshi Client Node Discovery". The user can register to the network 

as a node or super node by installing the client or server software as required. A node 

(represents a personal computer) provides the functionality of executing, deploying, and 

hosting functions. Supernodes keep a record of peers, live Supernodes, host particulate 

functions, and more. The user can apply an atomic particle function to the network through 

the server software. For deployment, users are charged in cryptocurrency (Ether). The 

payment form of "Orb'' is based on ether smart contracts that use blockchain technology. The 

deployed function is sent to the Supernode and distributed across a network of peers across 

the network to achieve enhancement, reliability, and integrity. The confidentiality of a 

deployed function (a piece of code) is achieved through technologies such as private-key 

public-key encryption, proper obfuscation, and containerization. Users can restrict access to 

the function by keeping it private and opening it to a select group of users. For hosting a 

function, the user is paid in "ether" depending on the number of requests served and the 

uptime. When analyzing the response time by calling the function against an active set of peers 

will provide the real time analytics data about the availability and reliability. In the long run, 

“Orb” might support decentralized APIs. 
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