

DECENTRALIZED FUNCTION AS A SERVICE

Siyane Koralege Nuwan Uditha Tissera.

209386K

Degree of Master of Science/ Master of Engineering

Department of Computer Science Engineering

University of Moratuwa

Sri Lanka

March 2022

i

DECLARATION

I declare that this is my own work and this thesis/dissertation2 does not incorporate

without acknowledgement any material previously submitted for a Degree or Diploma

in any other University or institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa, the non-exclusive right to reproduce

and distribute my thesis/dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

Signature: Date:

The supervisor/s should certify the thesis/dissertation with the following declaration.

The above candidate has carried out research for the Masters under my supervision.

Name of the supervisor:

Signature of the supervisor: Date :

ii

ABSTRACT

The objective of this research is to implement an automated, user-oriented, decentralized

function as a service provider that replaces the existing centralized, single-authority FaaS

providers in a way that can address the weaknesses in the global cloud infrastructure related

to the serverless architecture. This refers to applications which heavily depends on third-party

services running on the most well-known vendor temporary containers (or FaaS). Existing

serverless architecture suffers from deficiencies such as vendor control, multi-tenancy issues,

vendor lock-in, security issues, lack of monitoring tools, difficulty managing granular activity,

and architectural complexity. The proposed system decentralizes granular functions across a

peer-to-peer network to provide decentralized FaaS. A granular function is an atomic function

with a single responsibility deployed on the Orb network. "Orb" is a peer-to-peer network of

peers (nodes) and super peers (Supernodes/Trackers). Node detection on the network is done

using the principles of "Satoshi Client Node Discovery". The user can register to the network

as a node or super node by installing the client or server software as required. A node

(represents a personal computer) provides the functionality of executing, deploying, and

hosting functions. Supernodes keep a record of peers, live Supernodes, host particulate

functions, and more. The user can apply an atomic particle function to the network through

the server software. For deployment, users are charged in cryptocurrency (Ether). The

payment form of "Orb'' is based on ether smart contracts that use blockchain technology. The

deployed function is sent to the Supernode and distributed across a network of peers across

the network to achieve enhancement, reliability, and integrity. The confidentiality of a

deployed function (a piece of code) is achieved through technologies such as private-key

public-key encryption, proper obfuscation, and containerization. Users can restrict access to

the function by keeping it private and opening it to a select group of users. For hosting a

function, the user is paid in "ether" depending on the number of requests served and the

uptime. When analyzing the response time by calling the function against an active set of peers

will provide the real time analytics data about the availability and reliability. In the long run,

“Orb” might support decentralized APIs.

iii

ACKNOWLEDGEMENT

I would like to express my heartfelt appreciation and gratitude to Dr. Indika Perera,

for mentoring me in the MSc Research Project as it’s supervisor and for guiding me

throughout the semesters.

I am very grateful for his significant assistance in the research endeavor, His assistants

in this research endeavor became a key success factor, which facilitated me with the

necessary skills, resources, direction, supervision, and honest feedback. I was able to

complete my coursework properly in a timely manner thanks to his expertise and

constant guidance. I would like to thank all of my colleagues for their assistance and

support in locating relevant study material. I am really grateful for the support of my

parents, brothers, sister, nephew, niece, and close friends.

iv

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

CHAPTER 1 1

INTRODUCTION 1

1.1 Overview 1

1.2 Motivation 2

1.3 Purpose 3

1.4 Conceptual idea 3

1.5 Research problem 4

1.6 Research objectives 6

1.6.1 Decentralized Service Deployment 6

1.6.2 Network Infrastructure 7

1.6.3 Function as a service model 7

1.6.4 Payments model 8

1.6.5 Security 8

CHAPTER 2 11

LITERATURE REVIEW 11

2.1 Overview 11

2.2 Serveless architecture providers 11

2.2.1 AWS Lambda 11

2.2.1.1 AWS Lambda Benefits 12

2.2.1.2 AWS Lambda by examples 12

2.2.1.2.1 File processing 12

2.2.1.2.2 Stream processing 12

2.2.2 Azure Functions 13

v

2.2.2.1 Overview 13

2.2.2.2 Azure Web Jobs 14

2.2.3 Google Cloud Functions 14

2.2.4 IBM Cloud Functions 17

2.3 Distributed storage 18

2.3.1 IPFS 18

2.3.1.1 IPFS overview 18

2.3.1.2 IPFS Content Addressing 19

2.3.1.2.1 IPFS Objects 19

2.3.2 Storj 19

2.3.2.1 Storj overview 19

2.3.2.2 Storj Decentralized Cloud Storage (DCS) 20

2.3.2.3 Benefits of Storj DCS 21

1. Availability 21

2. Safety 21

3. Durability 22

4. Privacy 22

5. Cost Efficiency 22

6. Developer Friendly 22

7. Open Source Freedom and Flexibility 22

8. Community driven 22

2.4 Decentralized social network 23

2.4.1 Steemit 23

2.4.1.1 Blockchain online social media (BOSM) 23

2.4.1.2 Objectives of Steemit 24

2.4.1.3 Smart media tokens (SMT) 25

2.4.1.4 Price of Steem 25

2.4.1.5 Earn from Steem 26

CHAPTER 3 27

DESIGN & IMPLEMENTATION 27

3.1 Network Design 27

vi

3.1.1 Nodes 29

3.1.2 Supernodes 30

3.1.2.1 DHT 31

3.1.3 Payment manager 31

3.1.3.1 Smart contract 32

3.2 Implementation 33

3.2.1 Client studio 33

3.2.2 Node 41

3.2.3 Supernode 44

3.2.4 Smart contact 46

CHAPTER 4 50

RESULTS & EVALUATION 50

4.1 Overview of the chapter 50

4.2 General functionality 50

4.2.1 Deployment & distribution of functions in the decentralized network 51

4.2.1.1 Function deployment steps 52

4.2.1.1.1 Download & Setup Orb 52

4.2.1.1.2 Implement code on Inline code editor 53

4.2.1.1.3 Code obfuscation 56

4.2.1.1.3 Deploy to the network 59

4.2.1.2 Function distribution/propogation 61

4.2.2 Calling a deployed function 62

4.2.3 Updating and depreciating of a function 63

4.2.4 Handling payments through wallet 63

4.2 Samples scenarios 65

4.2.1 Global temperature warning mechanism using IoT 65

4.2.2 Sharing a reusable function code 66

4.3 Testing 68

4.3.1 Non functional testing 68

4.3.1 Functional testing 69

4.4 Evaluation 70

vii

4.4.1 Cost evaluation 70

4.4.2 Performance evaluation 72

4.5 Research findings 73

CHAPTER 5 76

CONCLUSION & RECOMMENDATION 76

5.1 Overview 76

5.2 Benefits of this research 76

5.3 Revisited objectives 76

5.4 Limitations 77

5.5 Target Market 77

5.6 Marketing Strategy 77

5.7 Contribution 78

5.8 Future work 78

REFERENCES 80

LIST OF FIGURES

Figure 3.1 Hashing function

Figure 4.1 File processing in AWS Lambda

Figure 4.2 Stream Processing in AWS Lambda

Figure 5.1 “Orb” Architecture

Figure 5.2 Trackers & Nodes

Figure 5.3 Process of function deployment

Figure 5.4 “Orb” Dashboard

Figure 5.5 “Orb” Inline code editor

Figure 5.6 “Orb” Add function in inline code editor

Figure 5.7 “Orb” Obfuctation code

Figure 5.8 Rename Obfuscation

Figure 5.9 String Encryption

Figure 5.10 Contro-flow Obfuscation

Figure 5.11 “Orb” Deploy to network

Figure 5.12 “Orb” Confirmation of payment

Figure 5.13 “Orb” Function loading window

Figure 5.14 “Orb” Successful deployment

Figure 5.15 “Orb” List functions

Figure 5.16 “Orb” Add values to parameters

Figure 5.17 “Orb” Executing funtion

viii

Figure 5.18 “Orb” Wallet dashboard

Figure 5.19 “Orb” Wallet

Figure 5.20 Global temperature warning mechanism using IoT

Figure 5.21 Sharing a reusable function code

LIST OF TABLES

Table 5.1 Simple “Add” function

Table 5.2 Sentimental function

ix

LIST OF ABBREVIATIONS

Abbreviation Description

DHT Distributed Hash Table

FAAS Function as a Service

DFAAS Decentralized Function as a Service

AWS Amazon Web Services

JSON JavaScript Object Notation

API Application programming interface

LB Load balancing/ Load balancer

S3 Amazon Simple Storage Service

EC2 Amazon Elastic Compute Cloud

EFS Amazon Elastic File System

GCP Google Cloud Project

DDoS Denial-of-service attack

AI Artificial intelligence

SaaS Software as a service

IPFS InterPlanetary File System

HTTP Hypertext Transfer Protocol

SMT Smart media token

DCS Decentralized cloud storage

REST Representational state transfer

URL Universal resource locator

UI User interface

MVP Minimum viable product

