INVESTIGATION OF RELATIONSHIPS BETWEEN THE CBR SWELL AND OTHER SOIL PARAMETERS USED IN ROAD CONSTRUCTION IN IDENTIFICATION OF EXPANSIVE SOIL

Koralage Dona Indu Uthpala Kannangara (168330F)

Degree of Master in Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2022

INVESTIGATION OF RELATIONSHIPS BETWEEN THE CBR SWELL AND OTHER SOIL PARAMETERS USED IN ROAD CONSTRUCTION IN IDENTIFICATION OF EXPANSIVE SOIL

Koralage Dona Indu Uthpala Kannangara (168330F)

Thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering in Highway & Traffic Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2022

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out this research for the Master's thesis under my supervision.

Name of the supervisor:

Signature of the supervisor:

Date:

ABSTRACT

With the rapid growth in the construction industry in Sri Lanka, presently there is a shortage of natural resources, especially soils. Therefore, finding good quality soil that conforms to the construction specification is challenging.

Expansive soils are one of the major problematic materials in the road construction industry. Clay minerals within expansive soils are subjected to significant volume changes when their environmental conditions are altered from dry to wet. Therefore, prolonged periods of drying and wetting cycles in the expansive soil can result in surface movements and distress in the road pavement which may lead to safety issues for road users and high maintenance costs to the road authorities.

There are various measures used to predict the swell behaviour of soils in the road construction industry. Some of the measures which regularly used are CBR swell, shrink-swell Index, soil suction, plasticity index, weighted plasticity index, swelling pressure, linear shrinkage, clay content and cation exchange capacity. Even though some of the measures used are complex, CBR swell test is one of the simplest ways of predicting the swell behaviour of soil.

As Sri Lanka is a tropical country, four days of soaked CBR is carried out as a part of the requirement of pavement design guidelines. CBR swell test is also conducted as a part of the CBR test. Therefore CBR swell data are readily available. But there is no published information on relationships between CBR swell with soil parameters for Sri Lankan conditions. Therefore, it is expected that the relevance of current specifications on quantitative estimation of soil swell using CBR swell parameter to be in this research. With that concern, the objectives of the study are to understand the nature of expansive soils and their properties, to identify the parameters of expansive soil behaviour used by engineers in road construction and then identify and quantify relationships that may exist in CBR swell with relevant soil parameters.

Particle size distribution, LL, PI, PL, Soil classification, Modified compaction, CBR and CBR swell data were collected on 61 numbers soil samples and a database was prepared. Then linear regression analysis and multiple regression analysis were carried out considering PI, LL, MDD, CBR and percentage passing in the 75µm test sieve as variables in order to obtain correlations to CBR swell.

Depending on the analysis, the variation of CBR swell is higher for soil types CH, CL, MH and SM and also, these soil types have shown higher CBR swell values over the other soil types. The lower CBR swell range for each soil type is less than 0.5 which is independent of whether the soil is fine-grained soil or coarse-grained soil. As per the analysis, the results from linear regression analysis, logarithmic regression analysis and multiple regression analysis, a relationship between CBR Swell and other soil parameters cannot be established. The soils which could be identified as expansive soil based on the WPI value, were not given evidence to be identified as expansive soils based on their CBR swell.

The reliability of the relationships between CBR swell with soil parameters is greatly influenced by the accuracy of the CBR swell test, especially the use of correct filter paper between soil and perforated base plate of CBR mould. Hence, use of inappropriate filter paper may lead to the migration of fine particles into the soaking tank which will result in low CBR swell measurements.

Therefore, it is suggested to consider CBR swell along with other swell parameters and/ or verify the results with a direct swell parameter for future studies related to expansive soil and obtaining correlations for soil swell.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. H.R Pasindu, Senior Lecturer, Department of Civil Engineering, University of Moratuwa, for all his guidance and advice throughout my research work. I express my sincere gratitude to the lectures, Post Graduate Degree Programme in Meng. Highway & Traffic, Department of Civil Engineering, University of Moratuwa, for giving me the advice to improve my research work.

I am very grateful to Prof. W.K. Mampearachchi, Professor, Department of Civil Engineering, University of Moratuwa for his guidance and advice as well as for providing me soil data on expansive soil to carry out this study.

Also, I am very grateful to Director (R&D), Road Development Authority, and her laboratory staff for providing me laboratory data, facilities to undertake laboratory testing and valuable advice to carry out this study.

Finally, I would like to thank my family and friends for their encouragement throughout the study.

TABLE OF CONTENTS

DECLARATION OF THE CANDIDATE AND SUPERVISORii
ABSTRACTiii
ACKNOWLEDGEMENTSv
TABLE OF CONTENTSvi
LIST OF FIGURESx
LIST OF TABLESxii
LIST OF ABBREVIATIONS
CHAPTER 1: INTRODUCTION
1.1 Introduction
1.2 Problem Statement
1.3 Objectives
1.4 Methodology
CHAPTER 2: LITERATURE SURVEY
2.1 Background
2.2 Expansive soil
2.2.1 Shrink and swell characteristics of expansive soil
2.2.2 Properties of Expansive Soil
2.3 Test that can be used to evaluate the expansiveness of soil
2.3.1 Mineralogical methods of identification7
2.3.2 Direct measurement7

2.3.3 Indirect methods of identification	9
2.3.3.1 Index Property test	10
2.3.3.1.1 Atterberg Limits test	10
2.3.3.1.2 Plasticity Index	10
2.3.3.1.3 Weighted Plasticity Index	11
2.3.3.1.4 Linear shrinkage	12
2.3.3.1.5 California Bearing Ratio (CBR) Swell test	13
2.3.3.1.6 Free Swell Index	14
2.3.3.1.7 Activity	14
2.3.3.2 Cation Exchange Capacity	14
2.4 Classification of Expansive Soils	15
2.4.1 General classification systems	16
2.4.1.1 Unified soil classification system (USCS)	16
2.4.2 Classification specific to expansive soils	17
2.5 Mechanics of Swell	20
2.5.1 Mechanics of Swell	20
2.5.2 Factors affecting shrink-swell characteristic of soils	21
CHAPTER 3: METHODOLOGY	23
3.1 Introduction	23
3.2 Data collection	23
3.2.1 Determination of the Particle size distribution	24
3.2.1.1 Sample preparation	24
3.2.1.2 Sieve analysis by wet sieving	24

3.2.2	Determination of consistency limits of soils	24
3.2.2	.1 Determination of Liquid limit	25
3.2.2	.2 Determination of Plasticity limit	25
3.2.2	Determination of Plasticity Index	25
3.2.2	.4 Determination of Weighted Plasticity Index	26
3.2.3	Determination of Modified Proctor compaction	26
3.2.4	Determination of California Bearing Ratio and CBR swell	26
3.3 Da	ata Analysis	27
CHAPTER 4	4: DATA ANALYSIS AND RESULTS	29
4.1 Da	atabase and its distributions	29
4.2 Fo	ormulation of Linear Relationship	35
4.2.1	CBR Swell with PI	35
4.2.2	CBR Swell with LL	39
4.2.3	CBR Swell versus MDD	43
4.2.4	CBR Swell versus CBR	44
4.2.5	CBR Swell versus PL	45
4.2.6	CBR Swell versus 75µm passing percentage	45
4.2.7	CBR Swell versus WPI	46
4.3 Fo	ormulation of Non-Linear Logarithmic Relationship	47
4.3.1	CBR Swell versus PI	47
4.3.2	CBR Swell versus LL	48
4.4 Co	omparison of CBR swell values with the respective WPI values	49
4.5 Fo	ormulation of Multiple variable Relationship	50

4.5.1	Formulation of two independent variable relationships	51
4.5.2	Formulation of three independent variable relationships	52
4.5.3	Formulation of four independent variable relationships	53
4.5.4	Formulation of five independent variable relationships	54
CHAPTER	5: DISCUSSION	55
CHAPTER	6: CONCLUSIONS AND RECOMMENDATIONS	57
	REFERENCE LIST	59

LIST OF FIGURES

Figure 2-1: Swell Pressure Test by Constant Volume Method	8
Figure 2-2: Swell Pressure Test by Consolidometer	9
Figure 2-3: CBR test specimens with swell measurement apparatus	13
Figure 2-4: Soil with different CEC values	15
Figure 2-5: Plasticity Chart from ASTM D 2487-93 Classification for E Purposes (USCS)	ngineering 16
Figure 4-1: CDF of PI	29
Figure 4-2: CDF of WPI	
Figure 4-3: CDF of percentage passing the 75µm test sieve	31
Figure 4-4: CDF of LL	32
Figure 4-5: CDF of CBR	
Figure 4-6: CDF of CBR swell	34
Figure 4-7: CBR swell with soil type	35
Figure 4-8: CBR Swell Vs PI for different PI ranges	
Figure 4-9: CBR Swell Vs PI with different soil types	37
Figure 4-10: CBR Swell Vs (PI) ²	
Figure 4-11: CBR Swell Vs Ln (PI)	
Figure 4-12: CBR swell Vs LL	40
Figure 4-13: CBR swell Vs LL with different soil types	41
Figure 4-14: CBR swell Vs (LL) ²	42
Figure 4-15: CBR swell Vs Ln (LL)	43

Figure 4-16: CBR Swell Vs MDD	.44
Figure 4-17: CBR swell versus CBR	.44
Figure 4-18: CBR swell vs PL	.45
Figure 4-19: CBR swell vs 75µm passing percentage	.46
Figure 4-20: CBR Swell Vs WPI	.46
Figure 4-21: CBR Swell Vs PI-Logarithmic	.47
Figure 4-22: CBR Swell Vs LL-Logarithmic	.48
Figure 4-23: CBR Swell Vs WPI	.49
Figure 4-24: CBR Swell Vs WPI for soils having LL<50 and PI<25	.50

LIST OF TABLES

Table 2-1: Soil types and their swell potential	.17
Table 2-2: Linear shrinkage, shrinkage limit with the swell potential	.18
Table 2-3: Classification of expansive soils by Holtz and Gibbs (1956)	.18
Table 2-4: Classification of expansive soils by Seed et al. (1962)	. 19
Table 2-5: Austroad guide - classification of expansive soil	.20
Table 4-1: Variables for multiple regression analysis	.51
Table 4-2: Two independent variable relationships	.52
Table 4-3: Three independent variable relationships	.53
Table 4-4: Four independent variable relationships	.54
Table 4-5: Five independent variable relationships	.54

LIST OF ABBREVIATIONS

CBR	California Bearing Ratio
LL	Liquid Limit
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PL	Plastic Limit
PI	Plasticity Index
RDA	Road Development Authority
SSCM	Standard Specification for Construction and Maintenance
WPI	Weighted Plasticity Index