MODELING OF POLARIZATION INSENSITIVE PHASE SENSITIVE AMPLIFIER FOR PHASE REGENERATION

Dushani Rasoja Munasinghe

(188033P)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

October 2021

Declaration

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in print, electronic, or any other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The candidate, whose signature appears above, carried out research for the Msc dissertation under my supervision.

Name of the supervisor:

Signature:

Date:

Abstract

This thesis describes a novel configuration which implements a polarization insensitive phase sensitive fiber optic parametric amplifier for phase regeneration. The proposed design can be used to address the inherent gain degradation issue in a polarization insensitive phase sensitive amplifier when polarization diversity loop is incorporated. This research investigates the possibilities for a significant gain enhancement when the polarization diversity loop is implemented.

At first, a baseline for a phase sensitive amplifier scheme is developed by taking different parameters into consideration. In this case, an extensive characterization is carried out to identify the variations of phase sensitive fiber amplifier gain associated with the parameter changes. Once the baseline is developed, the polarization diversity loop is implemented in the phase sensitive amplifier in order to make the phase sensitive fiber amplifier insensitive to polarization state variations of the input signals. Moreover, the existing issues in the polarization diversity loop are identified.

Finally, a strategic design is developed to overcome one of the major issues that persists in the existing polarization diversity loop configurations. It is the degradation of maximum achievable gain due to not being able to utilize the total pump power for parametric amplification process as only half of the pump power is available after polarization splitting at the input of the loop. The proposed design includes the concatenation of fiber pieces together to explore the possibility of gain enhancement of the diversity loop. To assess the performance of the proposed design, an extensive analysis is carried out. The gain enhancement introduced to the existing system is presented and suggestions are made for further improvements in the future.

Index terms— FOPA, PSA, FWM, polarization diversity, cascaded fiber

Acknowledgements

I extent my utmost gratitude towards Prof. L.W.P. Ruwan Udayanga of Department of Electronic and Telecommunication Engineering for his excellent guidance and supervision that I received throughout this research study. I am so grateful for his continuous support and understanding despite of the difficult times, for being a mentor and a role model and most importantly, for having faith on my capabilities to make this work a success.

I am thankful to Dr. Chamira Edussooriya and Dr. Mevan Gunawardena at the Department of Electronic and Telecommunication Engineering who evaluated the progress of this research during progress reviews for their invaluable comments and follow ups which greatly enhanced the quality of this research work.

I would also like to thank the entire academic staff at the Department of Electronic and Telecommunication Engineering for their insightful guidance and support in numerous ways.

I appreciate the continuous support and encouragement provided by my colleagues at the Department of Electronic and Telecommunication Engineering at University of Moratuwa. The knowledge and wisdom I have gained from them is immense. Moreover, I express my gratitute towards all the non-academic staff at the Department of Electronic and Telecommunication Engineering for their support throughout.

Finally, I am grateful to my parents, sister, teachers and everyone who gave me strength and courage to move forward in life and achieve milestones along the way.

D.R.Munasinghe

Contents

	Declaration			
	Abstract			
	Ack	inowledgements	iii	
\mathbf{Li}	st of	Figures v	ii	
\mathbf{Li}	st of	Tables	x	
1	INT	TRODUCTION	1	
	1.1	Background to the Research Topic	2	
	1.2	Objectives and Scope of the Thesis 1	10	
	1.3	Structure of the Thesis	1	
2	\mathbf{TH}	EORETICAL BACKGROUND 1	.2	
	2.1	Introduction	12	
	2.2	Wave Propagation in Optical Fiber	12	
	2.3	Fiber Nonlinearities 1	13	
		2.3.1 Self Phase Modulation (SPM)	14	
		2.3.2 Cross Phase Modulation (XPM)	15	
		2.3.3 Four Wave Mixing (FWM)	15	
		2.3.3.1 Coupled Mode Equations (CMEs) 1	17	
		2.3.3.2 Conditions for Phase Matching	19	
	2.4	Fiber Optic Parametric Amplification	23	
		2.4.1 Phase Insensitive (PI) and Phase Sensitive (PS) FOPA 2	24	
		2.4.2 PI-FOPA Gain 2	26	
		2.4.3 Characterization	26	
		2.4.3.1 Operating Gain Regimes of PI-FOPA	28	
		2.4.3.2 Effect of Pump Power on Gain Spectrum 2	29	
		2.4.3.3 Effect of Fiber Length on Gain Spectrum 3	30	

			2.4.3.4 Effect of ZDW on Gain Spectrum	33
	2.5	Phase	e Sensitive Amplifier (PSA)	33
		2.5.1	Phase Sensitive Gain	35
			2.5.1.1 Operating Gain Regimes of PSA	38
		2.5.2	Characterization	38
			2.5.2.1 Effect of Pump Power, Fiber Length and Fiber	
			Nonlinearity on PSA Gain	41
			2.5.2.2 Phase stabilization of PSA gain in the Quadratic	
			Gain Regime	41
	2.6	Concl	usion	47
3	PO	LARIZ	ZATION DIVERSITY LOOP	48
	3.1	Introd	luction	48
	3.2	Polari	ization Independent FOPA Schemes	48
		3.2.1	Vector Scheme for Dual-Pump FOPA	48
		3.2.2	Polarization Diversity Loop Scheme for Single-Pump FOPA	49
	3.3	State	of the Art Implementation of Diversity Loop Scheme $\ . \ . \ .$	49
	3.4	Issues	in the Existing Configuration	53
	3.5	FOPA	Gain Enhancement Techniques	54
		3.5.1	Fiber Bragg Grating Based Gain Enhancement	54
		3.5.2	Gain Enhancement Using Raman Pump	56
		3.5.3	Gain Enhancement Using Cascaded Fiber Architecture	56
			3.5.3.1 Periodic Dispersion Compensation	56
			3.5.3.2 Quasi-Phase Matching Technique	57
			3.5.3.3 Utilizing Genetic Algorithm	59
	3.6	Concl	usion	59
4	MC	DIFIE	ED POLARIZATION DIVERSITY LOOP FOR PSA	61
	4.1	Introd	luction	61
	4.2	Modif	fied Diversity Loop Scheme	61
		4.2.1	Mathematical Analysis	62
			4.2.1.1 PSA Gain of the Modified Diversity Loop	65
	4.3	Simul	ation Setup	66
	4.4	Result	ts and Discussion	68
		4.4.1	PI-FOPA gain spectrum	68
		4.4.2	PSA gain spectrum	69

		4.4.3	Polariza	tion independence of PSA gain with polarization	
			diversity	/ loop	70
		4.4.4	Charact	erization of gain enhancement in the cascaded fiber	
			polariza	tion diversity loop based PSA	71
			4.4.4.1	Dependence of PSA gain on signal wavelength and	
				fiber length in cascaded fiber diversity loop con-	
				figuration	73
			4.4.4.2	Dependence of PSA gain on input pump power in	
				cascaded fiber diversity loop configuration $\ . \ . \ .$	78
		4.4.5	Discussi	on	81
	4.5	Concl	usion		88
5	CO	NCLU	SION A	ND FUTURE WORK	89
	5.1	Introd	uction .		89
	5.2	Concl	usion		90
	5.3	Future	e work .		92
R	efere	nces			95

List of Figures

1.1	The schematic of an optical amplifier	3
2.1	Generated FWM idlers for three input waves with equal frequency spacings [1]	16
2.2	(a) Dual pump degenerate FWM (one-mode) (b) Single pump non- degenerate FWM (two-mode)	17
2.3	Basic design of FOPA where PM: Phase modulation of pump(s), WDM: wavelength division multiplexing coupler, HNLF: highly	
	nonlinear fiber.	24
2.4	PI-FOPA without pre-generated idler at the input and PS-FOPA	
	with pre-generated idler at the input, P: pump, S: Signal, I: idler .	25
2.5	PI-FOPA gain for different signal wavelength (λ_s) detunings from	
	pump wavelength (λ_p) for single pump FOPA	27
2.6	Effect of pump power on PI-FOPA gain spectrum for different	
	signal wavelength (λ_s) detunings from pump wavelength (λ_p) for	
	single pump FOPA	30
2.7	Effect of fiber length on PI-FOPA gain spectrum for different signal	
	wavelength (λ_s) detunings from pump wavelength (λ_p) for single	
	pump FOPA.	31
2.8	Effect of fiber length on PI-FOPA gain for a fixed gain value	32
2.9	Effect of ZDW wavelength fluctuations for PI-FOPA gain spectrum	34
2.10	Conversion of coherent state of light with equal variances in both	
	quadratures into coherent state with unequal variances in both	
	quadratures (squeezed light) by phase sensitive amplification. $\ .$.	36
2.11	Phase sensitive amplifier gain with relative signal input phase	39
2.12	Variations in phase sensitive swing with same input signal, idler	
	powers (ideal case) and with different input signal and idler powers	
	$(non-ideal \ case) \ \ldots \ $	40
2.13	Phase sensitive gain for different $\gamma P_p L$ values in exponential gain	
	regime	42

2.14	Phase sensitive gain for different $\gamma P_p L$ values in quadratic gain	
	regime	43
2.15	Variations of the sharpness of the tip, value of maximum attenua-	
	tion, shift in the relative input phase for different pump powers	44
2.16	Variation of relative input phase with signal gain for different pump	
	powers when fiber length is at $50m$	45
2.17	Variation of relative input phase with signal gain for different pump	
	powers when fiber length is at $500m$	45
2.18	Variation of relative input phase with signal gain for different pump	
	powers when fiber length is at $5000m$	46
2.19	Variation of shift in θ_{rel} with input pump powers for different fiber	
	lengths	46
3.1	Vector polarization insensitive loop for dual-pump FOPA with two	
0.1	orthogonally polarized pumps of same wavelength	49
3.2	Polarization diversity loop for single-nump FOPA	50
3.3	Implementation of polarization diversity loop in single pump FOPA	52
3.4	FOPA gain enhancement using fiber Bragg grating	55
3.5	FOPA gain enhancement using Baman pump	57
3.6	FOPA gain enhancement using periodic dispersion compensation	58
3.7	Half passed loop FOPA using OPM technique	59
0.1	non passed loop I of II asing QI II toominque	00
4.1	Proposed modified diversity loop; k is the k^{th} fiber, L is the length	
	of one fiber segment, N is the number of fiber segments, CW is the	
	clockwise direction, CCW is the counter-clockwise direction, PBS	
	is the polarization beam splitter	62
4.2	Simulation setup of polarization diversity loop based PSA; PM:	
	phase modulator, HNLF: highly nonlinear fiber, PC: polarization	
	controller, OSA: optical spectrum analyzer, OBSF: optical band	
	stop filter, PBS: polarization beam splitter, PBC: polarization	
	beam combiner, OBPF: optical band pass filter	67
4.3	$HNLF_1$ input and output spectra: PI-FOPA output $\ldots \ldots$	69
4.4	Poincare sphere representation of the input SOP variation at the	
	output of PIA	70
4.5	$HNLF_2$ (PSA) input and output spectra	71
4.6	Polarization dependence of PSA gain and polarization insensitivity	
	of PSA when polarization diversity loop is deployed	72

4.7	PSA gain with increasing number of cascaded fiber pieces	73
4.8	Signal gain regions in FOPA gain spectrum corresponding to cas-	
	caded fiber based PSA gain analysis	74
4.9	Signal wavelength dependence of polarization diverse PSA based	
	on cascaded fiber architecture for $\lambda_s < \lambda_{max}$ for $L = 50m$	76
4.10	Signal wavelength dependence cascaded fiber PSA gain for different	
	lengths of fiber pieces for $\lambda_s < \lambda_{max}$	77
4.11	Signal wavelength dependence cascaded fiber PSA gain for different	
	lengths of fiber pieces for $\lambda_s > \lambda_{max}$	79
4.12	PSA gain variation with number of concatenated fiber pieces for	
	different input pump powers, $L = 50m$, $\lambda_s = 1581nm$	80
4.13	PSA gain variation available at the $1^{st}, 5^{th}, 10^{th}, 15^{th}$ fiber output	
	with signal wavelength for different fiber lengths $\ldots \ldots \ldots$	85
4.14	PSA gain at the output of each fiber segment from 1 to 15 for a	
	length of one fiber piece at $50m$	86
4.15	Changes in PSA gain with increasing number of cascaded fiber	
	pieces for different pump powers (signal wavelength is $1581nm$,	
	fiber length is $50m$)	87

List of Tables

4.1 Comparison of signal gains for PSA, diversity loop based PSA and modified diversity loop based PSA (for 3 concatenated fiber pieces). 88

List of Abbreviations

Abbreviation Description

WDM	Wavelength Division Multiplexing
DFA	Doped Fiber Amplifier
EDFA	Erbium Doped Fiber Amplifier
SOA	Semiconductor Optical Amplifier
OEO	Optical-to-Electrical-to-Optical
ASE	Amplified Spontaneous Emission
SNR	Signal to Noise Ratio
SRS	Stimulated Raman Scattering
FOPA	Fiber Optic Parametric Amplifier
FWM	Four Wave Mixing
HNLF	Highly Nonlinear Fiber
PI-FOPA	Phase Insensitive Fiber Optical Parametric Amplifier
PS-FOPA	Phase Sensitive Fiber Optical Parametric Amplifier
PIA	Phase Insensitive Amplifier
PSA	Phase Sensitive Amplifier
M-QAM	M-ary Quadrature Amplitude Modulation
M-PSK	M-ary Phase Shift Keying
NF	Noise Figure
SOP	State of Polarozation
PMD	Polarization Mode Dispersion
PDM	Polarization Dependent Modulation
PDL	Polarization Dependent Loss
PDG	Polarization Dependent Gain
BER	Bit Error Rate
SBS	Stimulated Brillouin Scattering
SPM	Self Phase Modulation
XPM	Cross Phase Modulation

CME	Coupled Mode Equation
NLSE	Nonlinear Shrödinger Equation
GVD	Group Velocity Dispersion
ZDF	Zero Dispersion Frequency
ZDW	Zero Dispersion Wavelength
NOLM	Nonlinear Optical Loop Mirror
PM-HNLF	Polarization Maintaining Highly Nonlinear Fiber
PBS	Polarization Beam Splitter
PBC	Polarization Beam Combiner
DSF	Dispersion Shifted Fiber
PC	Polarization Controller
PRBS	Pseudo Random Bit Sequence
QPM	Quasi-Phase Matching
PS-FBG	Phase Shifted-Fiber Bragg Grating
GER	Gain Extinction Ratio
SSFM	Split Step Fourier Method
DCF	Dispersion Compensating Fiber
HPL	Half Passed Loop
OSNR	Optical Signal to Noise Ratio
OSA	Optical spectrum analyzer
OBSF	Optical Band Stop Filter
OBPF	Optical Band Pass Filter
FSK	Frequency Shift Keying
BPSK	Binary Phase Shift Keying
QPSK	Quadrature Phase Shift Keying
MI	Modulational Instability
FPU	Fermi-Pasta-Ulam recurrence