
3-DIMENSIONAL SPATIAL CHANNEL
MODEL FOR MULTI-STOREYED INDOOR

ENVIRONMENTS

Tennakoon Mudiyanselage Priyashantha Tennakoon

138041R

Thesis submitted in partial fulfillment of the requirements for the degree Master
of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa
Sri Lanka

February 2021



Abstract

A three-dimensional (3-D) geometry-based stochastic model (GBSM) is presented

for various types of multi-story indoor environments. The proposed model as-

sumed that the scatterers are distributed within a spheroid, where the transmit-

ter and the receiver are located at the focal points of the spheroid. The proposed

model provides the probability density functions (PDFs) of the angle of arrival

(AoA), the time of arrival (ToA) and the spatial correlation coefficients corre-

spondence with several channel parameters of the channel.

By considering non-uniform scatterer distributions, the spheroid GBSM is

extended for multistory indoor environments. Closed-form expressions are derived

for the joint and marginal PDFs of the AoA in both the elevation and azimuth

planes and the ToA. The analytically-derived PDFs of the AoA and ToA obtained

for Gaussian and Rayleigh scatterer distributions are compared against those

obtained from the ray-tracing simulation of typical indoor environments. The

standard deviation values of Gaussian and Rayleigh scatterer distributions are

chosen to provide the best possible approximation to the PDFs of the AoA and the

ToA obtained from simulation. Our results clearly indicate that the analytically-

derived PDFs of the AOA and the TOA for Gaussian and Rayleigh scatterer

distributions are in much closer agreement with those obtained from ray-tracing

simulation than for uniform scatterer distribution. However, analytically-derived

PDFs of the AOA and the TOA for Gaussian scatterer distribution show closest

agreement with those PDFs obtained from the simulations.

A generalized 3D channel model with an arbitrator scatterer distribution point

is proposed based on the spheroid GBMS. The proposed channel model is assumed

that the scatterers to be distributed according to the Gaussian distribution about

an arbitrary point within the spheroid. Closed-form expressions are derived for

the joint PDFs of the AoA, marginal PDFs in both the elevation and azimuth

planes, as well as for the marginal PDF of the ToA. Numerical results are utilized

for the verification of the derived-closed form mathematical expressions. More-
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over, the obtained marginal PDFs of AoA and TOA are compared against PDFs

obtained from the simulation of an indoor environment using ray-tracing tool.

By choosing a proper scatterer distribution center point based on the actual in-

door propagation environment and a suitable value for the standard deviation of

the scatterer region, the proposed 3-D model of the channel can be exploit the

performance of the wireless communication technologies and systems in indoor

environments.

The spheroid GBSM is extended to a 3D geometry-based spatial correlation

model for multiple-input multiple-output (MIMO) communication environments.

Approximated closed-form expressions are obtained for the normalized spatial

correlation coefficients of frequency non-selective Rician fading channels. As a

special case, the normalized spatial coefficients are derived for Gaussian scatterer

distribution. Closed-form expressions developed are verified by the simulation re-

sults obtained using the WINNER Phase II channel model (WIM2). Furthermore,

the capacity performance of MIMO channels is investigated using the proposed

geometry-based correlation model. Our results have clearly demonstrated that

the proposed 3D spatial correlation model can be used to investigate the perfor-

mance of the frequency non-selective Rician or Rayleigh fading MIMO channels

with different antenna configurations accurately.
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