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Abstract

The severity of the emerging environmental problems and the criticality of a future
energy crisis with associated socio-economic quandaries are becoming strengthen along
with the inevitable growth of energy demand due to the ever-increasing population
and urbanization. Inspired by this, many state-of-the-art and efficient engineering
advancements under demand side management are being conceptualized, developed,
and examined via worldwide research for several years.

As one of the largest global energy consumers, buildings, and their Heating, Ventil-
ating and Air Conditioning (HVAC) systems acquire substantial attention regarding
optimal and efficient energy management. Nevertheless, longer computational time,
complicated implementation, deficient occupants’ thermal comfort and productivity,
and limited practicability and feasibility of most of the approaches that have been pro-
posed, have demotivated the industry applications even though they offer consequential
designing and operating advancements to the system. Therefore, the expected building
energy performance can be further extended by unraveling these encountered disputes
with novel energy saving strategies.

This research concentrates on energy optimal operation of HVAC systems by addressing
secondary chilled water pumping system, temperature setpoint management, cooling
water system, and temperature controllers in Air Handling Unit (AHU). Three different
innovative energy saving strategies to determine the optimal number of chilled water
pumps to be operated with their optimal speed, optimal zone temperature setpoint
schedule, and optimal cooling water flow rate with a setpoint of the chilled water supply
temperature have been proposed along with the consideration of system constraints,
safety, occupant thermal comfort, and satisfaction. In addition, a novel temperature
controller that can be utilized in AHU has been introduced and the performance in
comparison with available controllers has been studied. Simulation results obtained
via the case studies authenticate the effectiveness of the introduced approaches and
encourage the functioning of these strategies in real engineering systems due to the
inherent simplicity, robustness, and less computational complexity.

Keywords- Chilled Water System, Energy Optimization, HVAC, Parallel
Pumps, Variable Speed, Dijkstra, Energy Management, Optimal Setpoint,
Productivity, Thermal Comfort, Cooling Water System, AHU, Elliot Func-
tion, Temperature Control
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