DEVELOPMENT OF WALL PUTTY FOR TROPICS USING DRINKING WATER TREATMENT PLANT WASTE ALUM SLUDGE

Galkanda Arachchige Himahansi Hasinthara Galkanda

188060U

Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2022

DEVELOPMENT OF WALL PUTTY FOR TROPICS USING DRINKING WATER TREATMENT PLANT WASTE ALUM SLUDGE

Galkanda Arachchige Himahansi Hasinthara Galkanda

188060U

Thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2022

DECLARATION OF CANDIDATE AND SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other media. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature of Candidate:

Date:

The above candidate has carried out research for the Ph.D. thesis under my supervision.

.....

Prof. R. U. Halwatura Department of Civil Engineering University of Moratuwa

Date:

.....

Prof. A. H. L. R. Nilmini Faculty of Technology University of Sri Jayewardenepura

Date:

ABSTRACT

Water is the main source of life; therefore, a sufficient amount of safe water consumption is essential for public health. It is one of the responsibilities of a country, to ensure the access of its citizens to consume sufficient safe water. In Sri Lanka, the national water supply and drainage board (NWSDB) is the responsible authority for drinking water purification and distribution. NWSDB owned 323 water supply schemes. In drinking water treatment plants, surface water is collected and treated to drinking quality removing impurities dissolved in surface water. In the purification process aluminium sulphate $(Al_2(SO_4)_3)$ (Alum) is used as the coagulant and generated alum sludge at the end. The sludge disposal to surface water bodies creates the undesirable formation of mud deposits according to the activation of alum. Direct discharge of sludge into water bodies creates damage to its' creatures and ecosystems. Therefore, direct disposal of alum sludge in open lands and water bodies is prohibited by legislation. Dewatered alum sludge is disposed at landfills and rock blasting wells. However, the increasing daily generation of sludge is creating an urgent necessity for a sustainable solution. The increasing amount of daily alum sludge production has considerable environmental and economic concerns in most countries. Therefore, the world's attention turned to finding a sustainable way to reuse or recycle DWTP alum sludge. This research aimed to address the issues mentioned, by developing a wall putty using waste alum sludge generated in drinking water treatment plants (DWTP) in Sri Lanka. Properties of the DWTP waste sludge differ according to the climatic conditions, geographical conditions, water treatment process and raw water quality. The research was conducted after the identification of the properties of DWTP waste alum sludge of different plants. Laboratory experiments were conducted to study the properties of sludge samples collected from DWTPs in Ambathale, Biyagama and Kandana. Biyagama DWTP was selected to collect sludge for the study due to the low moisture content and high solid content compared to other samples. Waste sludge is discharged at the end of the water treatment process, in semisolid form with high moisture content and it is dewatered through a sludge treatment process in Biyagama DWTP. Dewatered sludge generation of the plant is estimated at 10m³ per day. Properties of DWTP waste alum sludge were studied. According to the results, moisture content variation, volumetric shrinkage variation, chemical composition and heavy metal analysis of the sludge was analyzed. In the first phase of the study, experiments were conducted to develop a wall putty mix using wet alum sludge. Test results reveal that volumetric shrinkage can be reduced with physical additives and adhesiveness can be improved with binders, but a wall putty mix cannot be developed with wet sludge by mixing additives and a binder, due to the high moisture content, high shrinkage and alum activation. In the second phase of the study, experiments were conducted to develop a dry powder from wet sludge overcoming the alum activation. To that thermal alterations of DWTP waste alum sludge were studied. Colour and density variations of the burned sludge at different temperatures were studied. Sludge becomes harder when burned, due to the alum activation and none of the processes that exist in the world, to produce dry powder from DWTP alum sludge. Alum activation of the sludge can be overcome by burning sludge with a lubricant. According to the experiments, coconut oil is identified as an effective lubricant. The density of burned sludge with oil is lower than that of burned sludge without oil at each temperature. Finally, a process was developed to produce dry powder from DWTP alum sludge. In the final phase of the study putty properties of the developed dry powder were analyzed and optimized and the performances of the developed wall putty mix were analyzed compared to existing wall finishes. And the real scale performances of the putty were tested. Finally, it was concluded that the developed dry powder is applicable as a wall finisher successfully on both interior and exterior walls. And also new research areas were identified for further studies from this research.

Keywords: Alum sludge, Drinking water treatment plant, Sludge putty, Tropical climate

ACKNOWLEDGMENT

I wish to express my first and deepest gratitude to Prof. R.U. Halwathura, Faculty of Engineering, University of Moratuwa for his kind corporation, assistance, supervision and technical knowledge given throughout the research study as the supervisor to complete this research successfully. And also, I like to acknowledge the valuable support and guidance provided by Prof. A.H.L.R Nilmini, Faculty of Technology, University of Sri Jayewardenepura as the co-supervisor.

I express my heartfelt thanks to Dr. N.G.R. Perera (Senior Lecturer, Dept. of Architecture), Dr. N. Wijayaratna (Research Coordinator, Department of Civil Engineering) and former research coordinators of the Department of Civil Engineering for the continuous guidance and comments provided as examiners of the progress review panel. And I like to acknowledge the support provided by Prof. C. Jayasinghe (Head, Department of Civil Engineering) and all the academic and non-academic staff of the Department of Civil Engineering throughout the research period.

I offer my special thanks to all the Technical Officers and Lab Attendants of the Department of Civil Engineering and Department of Materials Science and Engineering, University of Moratuwa for the support provided to complete the laboratory experiments of this research. And I offer my sincere thanks to Ms. Priyantha, Ms. Rukma and Naween in the Construction Management Division for the support provided during the research period.

I offer my sincere thanks to all the members of the Pro-Green laboratory for the valuable support provided to complete this research.

I would like to thank, Mr. R. Wijekoon (Manager, Biyagama Water Treatment Plant), Mr. Disanayaka (NWSDB), Mr. Dhammika (NWSDB) and all the staff members of the National Water Supply and Drainage Board Sri Lanka for granting permission and support to collect material and data required for the research. And also, I offer my special thanks to all the staff members of the Biyagama Drinking Water Treatment Plant for the support provided to collect sludge samples throughout the research.

I would like to thank all who contributed to successfully complete this research.

Finally, I like to offer my heartfelt thanks to my loving husband, beloved parents and two sisters for being with me throughout this research period and providing encouragement and valuable contributions.

TABLE OF CONTENTS

DECLARATION OF CANDIDATE AND SUPERVISOR	i	
ABSTRACT		
ACKNOWLEDGMENT		
LIST OF FIGURES		
LIST OF TABLES		
LIST OF APPENDICES	xii	
LIST OF ABBREVIATIONS		
CHAPTER 01: INTRODUCTION	1	
1.1. General	1	
1.2. Research Gap	3	
1.3. Aim and Objectives	4	
1.4. Methodology	5	
1.5. Main Findings	6	
1.6. Organization of the Thesis	8	
CHAPTER 02: LITERATURE REVIEW	9	
2.1. General	9	
2.2. Drinking Water Treatment	9	
2.2.1. Drinking water treatment process	10	
2.2.2. Drinking water treatment in Sri Lanka	12	
2.3. DWTP Waste Sludge	14	
2.3.1. DWTP sludge disposal methods	14	
2.3.2. DWTP sludge applications	16	
2.4. Sustainable Building Construction and Materials	19	
2.4.1. Sustainable building constructions	20	
2.4.2. Sustainable construction materials	21	
2.4.3. Walling materials	22	
2.5. Wall Finishes and Technologies	24	
2.5.1. Historical evidence of earthen wall finishes in the world	24	
2.5.2. Historical evidence of earthen wall finishes in Sri Lanka	26	
2.5.3. Present wall finishes and technologies	28	
2.5.4. Wall care putty	28	
2.6. Soil-based Wall Finishes	30	
2.6.1. Research conducted on soil-based wall finishes	30	
2.6.2. Test standards for soil-based wall finishes	34	
2.7. Characteristics of Wall Care Putty Products	35	

2.7.1. Durability of wall finishes	35
2.7.2. Tropical climate and rain surface erosion	36
2.7.3. Bio-receptivity of wall finishes	37
2.7.4. Fungus growth on building walls	37
2.8. Summary	39
CHAPTER 03: SELECTION OF DWTP TO COLLECT SLUDGE	42
3.1. General	42
3.2. Selection of a DWTP	42
3.2.1. Ambathale DWTP	44
3.2.2. Kandana DWTP	44
3.2.3. Biyagama DWTP	44
3.3. Experimental Analysis of Sludge Properties	46
3.3.1. Moisture and solid content analysis	46
3.3.2. Wet Sieve Analysis	48
3.4. Summary	50
CHAPTER 04: ANALYSING PUTTY PROPERTIES OF DWTP	51
WASTE ALUM SLUDGE	
4.1. General	51
4.2. Chemical Properties of DWTP Waste Alum Sludge	51
4.2.1. XRF Analysis	51
4.2.2. XRD Analysis	53
4.2.3. Heavy Metal Analysis	54
4.3. Observational Shrinkage of DWTP Waste Alum Sludge	58
4.4. Physical Properties of DWTP Waste Alum Sludge	61
4.4.1. Shrinkage variation with chemicals and climatic factors	62
4.4.2. Moisture content variation with chemicals and climatic factors	66
4.5. Summary	69
CHAPTER 05: OPTIMIZING PUTTY PROPERTIES OF DWPT WET	70
ALUM SLUDGE	
5.1. General	70
5.2. Selection of Additives	70
5.3. Physical Additives to Improve Putty Properties	71
5.3.1. Analyzing the effectiveness of sand	71
5.3.2. Volumetric shrinkage variation of wet alum sludge with sand	72
5.3.3. Analyzing optimum sand/wet alum sludge mixing ratio (Ball drop test)	74
5.3.4. Analyzing the effectiveness of natural fibers	76

5.3.5. Volumetric shrinkage variation of wet alum sludge with natural fibers	77
5.4. Binders to Improve Putty Properties	79
5.4.1. Analyzing putty properties variation of wet alum	81
sludge with binders	01
5.4.2. Moisture content variation of wet sludge with binders	81 82
5.4.3. Observational shrinkage variation of wet alum sludge with binders	82
5.4.4. Analyzing fungus growth of wet alum sludge with binders	83
5.5. Analyzing Putty Properties of Wet Alum Sludge Mixture	85
5.5.1. Volumetric shrinkage variation with additives	86
5.5.2. Observational shrinkage variation with additives	87
5.5.3. Wet alum sludge mixture with optimum putty properties	88
5.6. Summary	89
CHAPTER 06: DEVELOPMENT OF DRY POWDERED ALUM SLUDGE	91
6.1. General	91
6.2. Thermal Properties of DWTP Waste Alum Sludge	92
6.2.1. Color Variation	93
6.2.2. Density Variation	94
6.3. Overcome Alum Activation of DWTP Waste Alum Sludge	96
6.3.1. Selection of a lubricant	97
6.3.2. Dry powdered sludge production with coconut oil	98
6.3.3. Identification of effectiveness of coconut oil as a lubricant	99
6.3.4. Identification of optimum temperature	100
6.3.5. Identification of optimum coconut oil mixing ratio	101
6.4. Putty properties of dry powdered alum sludge	103
6.4.1. Analyzing observational shrinkage	104
6.4.2. Analyzing effectiveness of stabilizer	105
6.5. Summary	108
CHAPTER 07: DEVELOPMENT OF WALL PUTTY AND REAL- SCALE APPLICATION	110
7.1. General	110
7.2. Selection of Stabilizer	111
7.2.1. Bonding strength variation with stabilizers	112
7.2.2. Bio receptivity variation with stabilizers	117
7.2.3. Durability variation with stabilizers	120

7.3. Comparison with Existing Wall Finishes	124
7.3.1. Material selection	125
7.3.2. Bonding strength comparison of different wall finishes	127
7.3.3. Bio receptivity comparison of different wall finishes	129
7.3.4. Durability comparison of different wall finishes	131
7.4. Real Scale Application	133
7.4.1. Sludge dry powder production	134
7.4.2. Wall preparation	135
7.4.3. Material mixing	135
7.4.4. Putty application	136
7.4.5. Sanding putty surface	137
7.4.6. Application of top coat	137
7.4.7. Real-scale performance analysis	138
7.5. Summary	141
CHAPTER 08: CONCLUSIONS AND RECOMMENDATIONS	142
CHAPTER 08: CONCLUSIONS AND RECOMMENDATIONS 8.1. Conclusions and Recommendations	142 142
8.1. Conclusions and Recommendations	142
8.1. Conclusions and Recommendations8.2. Future Research	142 149
 8.1. Conclusions and Recommendations 8.2. Future Research REFERENCES APPENDIX – I: Recorded data of physical properties, chemicals and 	142 149 150
 8.1. Conclusions and Recommendations 8.2. Future Research REFERENCES APPENDIX – I: Recorded data of physical properties, chemicals and climatic factors 	142 149 150 167
 8.1. Conclusions and Recommendations 8.2. Future Research REFERENCES APPENDIX – I: Recorded data of physical properties, chemicals and climatic factors APPENDIX – II: Regression analysis of shrinkage 	142 149 150 167 169
 8.1. Conclusions and Recommendations 8.2. Future Research REFERENCES APPENDIX – I: Recorded data of physical properties, chemicals and climatic factors APPENDIX – II: Regression analysis of shrinkage APPENDIX – III: Regression analysis of moisture content APPENDIX – IV: One-way ANOVA: Bonding strength of putty mixtures 	142 149 150 167 169 170 171
 8.1. Conclusions and Recommendations 8.2. Future Research REFERENCES APPENDIX – I: Recorded data of physical properties, chemicals and climatic factors APPENDIX – II: Regression analysis of shrinkage APPENDIX – III: Regression analysis of moisture content APPENDIX – IV: One-way ANOVA: Bonding strength of putty mixtures with stabilizers 	142 149 150 167 169 170 171
 8.1. Conclusions and Recommendations 8.2. Future Research REFERENCES APPENDIX – I: Recorded data of physical properties, chemicals and climatic factors APPENDIX – II: Regression analysis of shrinkage APPENDIX – III: Regression analysis of moisture content APPENDIX – IV: One-way ANOVA: Bonding strength of putty mixtures with stabilizers APPENDIX – V: One-way ANOVA: SOF of putty mixtures with stabilizers 	142 149 150 167 169 170 171 172

LIST OF FIGURES

Figure 1.1	Wall finishing system; (a) conventional wall finishes (b) proposed wall finishes 5				
Figure 2.1	Population without access to an improved water source, 2020				
Figure 2.2	Estimated quantities of DWTP sludge in different countries and				
U	estimated cost of sludge treatment and disposal [31]	11			
Figure 2.3	Existing water supply schemes of NWSDB Sri Lanka [33]				
Figure 2.4 Historical earthen plasters in the world; (a)Bhaja caves – I					
-	(b)Tomb paintings – Egypt; (c)Minoan wall paintings; (d)Mud				
	plasters – Mali; (e)Tung-oil-lime putty – China; (f)Blood lime				
	plaster - Mexico	26			
Figure 2.5	Soil-based plasters in Sigiriya Sri Lanka; (a) Mirror wall (b)				
	Sigiriya fresco	27			
Figure 2.6	Stupa – earth-based historical constructions in Sri Lanka;				
	(a)Thuparamaya; (b)Jethawanaramaya; (c) Abhayagiriya	27			
Figure 2.7	Observational shrinkage test for clay plaster	33			
Figure 2.8	Possible crack patterns in bonding strength test and analysis of				
	nature of the bond	33			
Figure 2.9	Possible observations in the ball drop test	33			
Figure 3.1	Locations of selected DWTPs; (a)Biyagama DWTP				
	(b)Ambathale DWTP (c)Kandana DWTP	43			
Figure 3.2 Collected sludge samples; (a)Raw sludge from Ambathale DWTP					
	(b)Sludge from sludge drying beds in Kandana DWTP				
	(c)Dewatered sludge from Biyagama DWTP	45			
Figure 3.3	Moisture and Solid content measuring test 4'				
Figure 3.4	Particle size distribution of sludge samples; (a)Ambathale DWTP	10			
F' 4.1	sludge (b)Biyagama DWTP sludge (c)Kandana DWTP sludge 4				
Figure 4.1	XRF analysis results	52			
Figure 4.2	XRD analysis; (a)Sample preparation; (b)X-Ray Diffractometer;	51			
Eiguna 12	(c)XRD test report	54			
Figure 4.3	Heavy metal concentration of sludge and maximum permissible	57			
Figure 4.4	limits Measuring shrinkage [113]; (a)Volumetric shrinkage;	57			
Figure 4.4	Measuring shrinkage [113]; (a)Volumetric shrinkage; (b)Observational shrinkage	58			
Figure 4.5	Sand cement plaster panel casting for observational shrinkage test	59			
Figure 4.6	Observational shrinkage test results	60			
Figure 4.7	Observational shrinkage with different application areas	60			
Figure 4.8	• • • • • • • • • • • • • • • • • • • •				
Figure 4.9	Sludge samples collected form DWTP6Casting cubes for volumetric shrinkage test6				
Figure 4.10	Volumetric shrinkage test; (a) Initial volume; (b)Volume after	05			
inguie into	completely dry	63			
Figure 4.11	Volumetric shrinkage test results	64			
Figure 4.12	Scatterplot of sludge shrinkage Vs humidity	65			
Figure 4.13	Scatterplots of sludge shrinkage Vs chemicals and other climatic	50			
0	factors	66			
Figure 4.14	Moisture content test results	67			

Figure 4.15	Scatterplots of sludge moisture content Vs chemicals and climatic	
	factors	68
Figure 5.1	Sieved sand for the test	
Figure 5.2	Mixing with mechanical mixer and cube casting for volumetric	
	shrinkage test	72
Figure 5.3	Volumetric shrinkage variation with sand	73
Figure 5.4	Ball drop test results demonstration [113]	75
Figure 5.5	Ball drop test results	75
Figure 5.6	Natural fibers selected for the study	76
Figure 5.7	Cut natural fiber samples; (a)Laboratory cutting mill SM 200;	
	(b)Cut fiber samples with 10mm	77
Figure 5.8	Volumetric shrinkage variation with natural fiber type	79
Figure 5.9	Binders selected in the study	80
Figure 5.10	Moisture content variation of wet sludge mixtures with binders	81
Figure 5.11	Observational shrinkage of wet sludge mixtures with binders	82
Figure 5.12	Sample preparation and fungus growth test	83
Figure 5.13	Fungus growth test results	84
Figure 5.14	Mixtures prepared in a mechanical mixer	85
Figure 5.15	Volumetric shrinkage variation of wet alum sludge with additives	86
Figure 5.16	Observational shrinkage variation of wet alum sludge with	
U	additives	87
Figure 5.17	Wet sludge mix with optimum putty properties	88
Figure 6.1	Wet and dry sludge	91
Figure 6.2	Thermal alterations of soil at different temperatures [169]	92
Figure 6.3	Heating sludge for determination of thermal alterations	93
Figure 6.4	Color variation of sludge with heat	93
Figure 6.5	Powdered dried sludge preparation for density test	94
Figure 6.6	Density measuring test of dried sludge	94
Figure 6.7	Density variation of dried sludge with heating temperature	95
Figure 6.8	Coagulation process	
Figure 6.9	Coconut oil as the lubricant	96 97
Figure 6.10	The production process of dry powdered sludge with coconut oil	98
Figure 6.11	Comparison of burned sludge samples with and without coconut	
U	oil	99
Figure 6.12	Density variation of sludge burned with coconut oil	101
Figure 6.13	Dry powdered sludge production variation with coconut oil	
U	percentage	102
Figure 6.14	Burned sludge samples with coconut oil	103
Figure 6.15	Sludge dry powder production process	103
Figure 6.16	Dry powder mix preparation for observational shrinkage test	104
Figure 6.17	Results of observational shrinkage test	105
Figure 6.18	Selected stabilizers	106
Figure 6.19	Stabilization of dry powdered sludge	106
Figure 6.20	Observational shrinkage with stabilizers	107
Figure 7.1	Stabilizers selected for the experiments	112
Figure 7.2	Sample preparation for bonding strength test of sludge putty	
C	mixtures with stabilizers	113

Figure 7.3	Bonding strength test of sludge putty mixtures with stabilizers	114	
Figure 7.4	Bonding strength variation of putty mixtures with stabilizers 1		
Figure 7.5	Crack patterns variation of putty mixtures with stabilizers		
Figure 7.6	Sample preparation for fungus test of sludge putty mixtures with		
C	stabilizers	118	
Figure 7.7	Fungus culture preparation	119	
Figure 7.8	Fungus test chamber preparation		
Figure 7.9	Fungus growth test of sludge putty mixtures with stabilizers		
Figure 7.10			
Figure 7.11	Sample preparation for spray erosion test of sludge putty mixtures with stabilizers	121	
Figure 7.12	Spray erosion test of sludge putty mixtures with stabilizers	122	
Figure 7.13	Spray erosion test results of sludge putty mixtures with stabilizers	123	
Figure 7.14	Hardware stores selected to purchase commercially available wall putty products	125	
Figure 7.15	Wall finishes selected for the comparison	125	
Figure 7.16	Sample preparation for bonding strength comparison of different	120	
rigule 7.10	wall finishes	127	
Figure 7.17	Bonding strength test conducted for comparison of different wall	127	
1 18010 / 11 /	finishes	128	
Figure 7.18	Bonding strength variation of different wall finishes	129	
Figure 7.19	Sample preparation for comparison of fungus growth of different		
8	wall finishes	130	
Figure 7.20	Surface appearance of different wall finishes before and after the		
U	fungus test	130	
Figure 7.21	Sample preparation and spray erosion test for comparison of		
e	different wall finishes	131	
Figure 7.22	SOF variation of different wall finishes	132	
Figure 7.23	Real-scale applications of the sludge putty	133	
Figure 7.24	Sludge putty application procedure	134	
Figure 7.25	Sludge dry powder production for real-scale application	134	
Figure 7.26	Wall preparation for putty application	135	
Figure 7.27	Mixing the sludge putty mixture	136	
Figure 7.28	Sludge putty application on wall plaster	136	
Figure 7.29	Putty application tools	136	
Figure 7.30	Sanding the putty surface with sandpapers	137	
Figure 7.31	Applying sealer on sludge putty surface as a top coat	138	
Figure 7.32	Selected sludge putty applied walls to analyze performances; (a)		
-	Interior wall; (b)exterior wall; (c)exterior wall with shade	139	
Figure 7.33	Color variation of the sludge putty applied to an interior wall	139	
Figure 7.34	Color variation of sludge putty applied on exterior wall	140	
Figure 7.35	Color variation of sludge putty applied on exterior wall with		
<u> </u>	shade	140	
Figure 7.36	Observations of real scale performances of the developed wall		
-	putty	140	

LIST OF TABLES

Table 2.1	Properties of DWTP sludge types	14
Table 2.2	Increasing waste sludge generation in other countries	15
Table 2.3	Experiments conducted to incorporate DWTP sludge in material productions	17
Table 2.4	Materials and tests conducted in research studies to develop soil- based wall finishes	32
Table 2.5	Test standards used in previous research studies	
Table 3.1	Weight basis Moisture and Solid content of sludge samples	47
Table 3.2	Particle size distribution of DWTP sludge	49
Table 4.1	Chemical elements of DWTP Sludge	53
Table 4.2	Chemical compounds of DWTP sludge	54
Table 4.3	Contaminated DWTP sludge with heavy metals and identified	
	solutions in the literature	56
Table 4.4	Heavy metal concentration of DWTP sludge	57
Table 4.5	Volumetric shrinkage of DWTP waste alum sludge	64
Table 5.1	Additives in historical soil-based plasters	71
Table 5.2	Mixing ratios of sand and sludge	73
Table 5.3	Natural fiber inventory	76
Table 5.4	Mixing ratios of natural fibers and sludge	78
Table 5.5	Mix design for wet sludge mixtures with natural binders	81
Table 5.6	Fungus growth rating system – ASTM D 5590-00 [115]	
Table 5.7	Additives and binder selected to improve optimum wet sludge	
	mix	85
Table 5.8	Mix Design	86
Table 7.1	Mix design for sludge putty mixtures with stabilizers	112
Table 7.2	Analyzing the nature of bonds between putty mix and plaster	
	according to the crack pattern [116]	114
Table 7.3	Analysis of the bond of putty mixtures variation with stabilizers	117
Table 7.4	Properties of selected commercial putty products	126
Table 7.5	Mix design for preparation of putty mixtures	127
Table 7.6	Product details developed with skilled labor feedback and	
	observations	138

LIST OF APPENDICES

Appendix	Description	Page
APPENDIX – I	Recorded data of physical properties, chemicals and climatic factors	167
APPENDIX – II	Regression analysis of shrinkage	169
APPENDIX – III	Regression analysis of moisture content	170
APPENDIX – IV	One-way ANOVA: Bonding strength of putty mixtures with stabilizers	171
APPENDIX – V	One-way ANOVA: SOF of putty mixtures with stabilizers	172
APPENDIX – VI	Properties of existing wall putty products	173
APPENDIX – VII	One-way ANOVA: Bonding strength of putty mixtures	174
APPENDIX – VIII	One-way ANOVA: SOF of putty mixtures	175

LIST OF ABBREVIATIONS

Abbreviation	Description
DWTP	Drinking Water Treatment Plant
NWSDB	National Water Supply and Drainage Board
SOF	Scaled Off Factor
XRD	X-Ray Diffraction
XRF	X-Ray Fluorescence