IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 12 June 2022, accepted 26 July 2022, date of publication 3 August 2022, date of current version 10 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3196018

== RESEARCH ARTICLE

Combining Long-Term Recurrent Convolutional
and Graph Convolutional Networks to Detect
Phishing Sites Using URL and HTML

SUBHASH ARIYADASA 2, SHANTHA FERNANDO 3,
AND SUBHA FERNANDO !, (Member, IEEE)

'Department of Computational Mathematics, University of Moratuwa, Moratuwa 10400, Sri Lanka
2Department of Computer Science and Informatics, Uva Wellassa University, Badulla 90000, Sri Lanka
3Department of Computer Science and Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka

Corresponding author: Subhash Ariyadasa (188077d@uom.lk)

ABSTRACT Phishing, a well-known cyber-attack practice has gained significant research attention in the
cyber-security domain for the last two decades due to its dynamic attacking strategies. Although different
solutions have been exercised against phishing, phishing attacks have dramatically increased in the past
few years. Recent studies have shown that machine learning has become prominent in the present anti-
phishing context, and the techniques like deep learning have extensively improved anti-phishing tools’
detection ability. This paper proposes PhishDet, a new way of detecting phishing websites through Long-term
Recurrent Convolutional Network and Graph Convolutional Network using URL and HTML features.
PhishDet is the first of its kind, which uses the powerful analysis and processing capabilities of Graph Neural
Network in the anti-phishing domain and recorded 96.42% detection accuracy, with a 0.036 false-negative
rate. It is effective against zero-day attacks, and the average detection time which is 1.8 seconds could also be
considered realistic. The feature selection of PhishDet is automatic and occurs inside the system, as PhishDet
gradually learns URLs and HTML content features to handle constantly changing phishing attacks. This has
outperformed similar solutions by achieving a 99.53% f1-score with a public benchmark dataset. However,
PhishDet requires periodic retraining to maintain its performance over time. If such retraining could be
facilitated, PhishDet could fight against phishers for a more extended period to safeguard Internet users
from this Internet threat.

INDEX TERMS Cyberattack, deep learning, graph neural networks, internet security.

I. INTRODUCTION Phishing is an Internet threat and has a top rank in the

Phishing is a cyber-attack that lures the victim, using a tech-
nological bait to collect personal or confidential informa-
tion [1]. It started in 1995 with the American Online (AOL)
attack. Afterwards, the phishers-individuals or teams steering
the phishing attacks, moved to more profitable targets such as
online banking and e-commerce services [1], [2]. Financial
gains are the primary motivating factors for phishers; how-
ever, fame and notoriety are also interesting psychological
aspects of phishing [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry

VOLUME 10, 2022

cyber threat landscape [4]. It has become a leading cyber
threat to the financial sectors [5] and has spread into many
sectors [6]. The recent statistics show the number of phishing
attacks doubled in 2020 compared to the past, and nearly 84%
of phishing sites have been recorded in the latter part
of 2020 which used SSL protection [6]. It indicates that
HTTPS is not a vital feature when detecting phishing attacks
at present. In fact, half of the phishing attacks’ lifetime
ended in less than a day [7], and new phishing trends have
also emerged rapidly due to the dynamic nature of phishing
attacks [6].

In the past few years, researchers have used different
approaches to fight against phishers (Table 1), and these

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 82355

https://orcid.org/0000-0002-7937-128X
https://orcid.org/0000-0002-4538-4883
https://orcid.org/0000-0002-2621-5291
https://orcid.org/0000-0002-1939-4842

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

approaches could be categorised into machine learning and
non-machine learning. Machine learning that learns things
independently [8] shows some success in the phishing domain
in the past due to its advantages which includes coping
with frequent data changes and automating the learning pro-
cess [2]. However, most machine learning-based solutions
use manual feature engineering techniques (Table 2) with
some drawbacks [9].

In manual feature engineering, the features are
handcrafted, and the attackers often bypass these hand-
crafted features due to the visibility of these to the out-
side [9]. Furthermore, selecting the best set of features in
a specific domain is also a challenging task in manual fea-
ture engineering, and it highly depends on experts’ knowl-
edge [2], [9]. Therefore, many recent phishing detection
studies [2], [9]-[13] have focused on integrating represen-
tation learning that learns a representation of data through
multiple abstraction levels to extract features for the learning
process [14].

However, many of these efforts [10], [11], [15], [16] have
concentrated on the URL-based phishing detection category,
and just a few researches [12], [13] have efficiently applied
representation learning in HTML content analysis. These
researchers have used Long Short-Term Memory (LSTM)
and Convolutional Neural Network (CNN) for HTML content
analysis. However, they have not used the Graph Neural
Network (GNN) technique, a powerful technique for extract-
ing phishing detection features from HTML contents [13].
Since HTML content has a graph structure, GNN would be
ideal for analysing its phishing characteristics [13]. There-
fore, this study focuses on a differentiated phishing detection
approach that uses the GNN technique for the first time in the
anti-phishing domain to cope with the increasing number of
phishing attacks.

PhishDet is proposed as a representation learning-based
phishing detection solution that uses the URL and the HTML
content of a website. It combines two deep networks —i.e. the
Long-term Recurrent Convolutional Network (LRCN) and
the Graph Convolutional Network (GCN). It performed well
during the experiments and achieved 96.42% detection accu-
racy with a real-world public dataset. PhishDet has been fur-
ther tested with a benchmark dataset, and it has outperformed
similar solutions [12], [13] by recording 99.57% detection
accuracy.

The key contributions of this paper are, 1). PhishDet - A
phishing detection solution that automatically selects features
from a website’s raw URL and HTML content; 2). The first
GNN based phishing detection approach that uses raw HTML
content.

The rest of this paper is organised as follows. In Section II,
related work in the phishing detection area is discussed, while
Section III is the proposed solution, with Section IV explain-
ing how the experiment was done. Then the results obtained
and the performance of the proposed solution is presented in
Section V. Finally, in Section VI, the paper summarises the
work done with some future directions.

82356

Il. RELATED WORK

Phishing is a prevalent Internet threat that attached various
definitions due to its changing nature [2], [17]. The previ-
ous studies defined phishing in the context of its use and
more prominently under the social engineering-based cyber
attacks [3], [17], [18]. Phishers are not only targeting human
psychology but are also keen to use technical methods like
malicious software installation and pharming to steal users’
digital assets directly or indirectly [17]. Therefore, phishing
attacks could be classified into two categories: deceptive
phishing and technical subterfuge [17]. Deceptive phishing
is the most common type of phishing attack experienced
at present, and spoofed website is the dominant technique
today [17]. Anti-Phishing Working Group (APWG) showed
the situation precisely by detecting more than fifteen hundred
thousand unique phishing websites in 2020 [6].

Phishing is defined as a social engineering crime in the
current study that leads a victim to a fake website to steal per-
sonal or confidential information [6], [17], [18]. The phishers
impersonate trusted third parties when developing these fake
websites, and different tactics like clicking a link are exer-
cised to move victims to the fake websites [1], [17], [18].

In the past two decades, academia and the industry
researched better detection approaches to combat phishing
attacks, but it seemed challenging due to the nature of
phishing attacks [7]; however, there are now differentiated
solution that protects the privacy of Internet users against
phishing. These solutions could be clustered into several
approaches, and these approaches could be categorised into
machine learning and non-machine learning, as shown in
Table 1. Although existing solutions were classified into
two categories, they differ from each other, as shown in
Table 2. Therefore, past work was reviewed closely by two
topics related to the current study: feature selection and engi-
neering, and the phishing detection approach. Consequently,
the findings gathered through this analysis are connected in
Section II-C to discuss how the proposed solution is designed
based on the literature.

A. FEATURE SELECTION AND ENGINEERING
Feature selection plays an essential role in the anti-phishing
domain since it directly affects phishing detection accu-
racy [2], [38]. Phishing detection features have been cate-
gorised under different feature sets and those used in different
ways in previous studies. One such categorisation includes
four main features: URL-based lexical features, URL-based
host features, website page content, and visual similarity [2].
URL-based lexical features, such as URL length, number of
dots, number of sub-domains, and the use of HTTPS protocol,
have been considered features that can be extracted directly
from a URL. The URL-based host features primarily rely on
third-party services such as WHOIS data.

The next two categories are based on the web page. These
include the content characteristics like page rank, links and
forms, and visual appearances like texts, images, and colours.

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

TABLE 1. Overview of the standard phishing detection approaches.

o This technique trains Internet users
to access the Internet services safer
to protect them from phishing at-
tacks

Category Approach Limitations / Remarks Sources
Machine Learning Supervised Learning] [8]-[11], [14], [19]
e A model trains from known It deper_lds ona s_et of features (_1.e. URL f;atures)
phishing and legitimate data A learning al g(_)rlthm uses to adjust the weights of these
features to achieve optimum performance
Reinforcement Learning - [20], [21]
o An agent is used to gather its expe- Agenft produces ?n alc)tlpn f(1.e. access or block a web-
rience in web surfing for sequential ‘fl}}tle) rom a set o fwe site ,e atur.es . dioh
decision making e correctness of an agent’s action is measured to have
an effective learning process
Non-machine Learning User Awareness [22], [23]

A machine-centric approach

Game-based education has been found as an effective
method when improving the user-awareness

Expecting users to get educated about technological
things like phishing is not practical

Blacklisting & Whitelisting
o Blacklisting contains a list of phish-
ing website URLs
o Whitelisting is a list of legitimate
website URLs

[19], [24]-[27]
It requires exact matching of the website URLSs

It fails when detecting zero-day attacks since those may
not include in the lists

Practical difficulties exist to have an up-to-date list

Rule-based Heuristics

o A technique that uses a set of rules
when detecting phishing attacks

[26], [28]-[31]
Domain expertise is essential to constructing high-end
rules

The rules need frequent updates to keep alive

The cost of updating rules is high

Visual Similarity
e This technique uses the visual ap-
pearance of the web page in phish-
ing detection

_ 5T, 321-134]
It depends on a threshold value, and difficult to find the
optimum value

It uses visual features such as text, HTML tags, CSS
and images

Maintaining an up-to-date database is challenging;
therefore, it fails to detect zero-day attacks

The detection time is relatively high

Data Mining

o A technique that extracts data to dis-
cover hidden phishing patterns in a
given dataset to implement predic-
tive models

))) o [2], [8], [35]-[37]
It is not categorised under machine learning since the
model does not learn over time

It focuses on finding new and interesting phishing pat-
terns without getting a specific goal from the domain
The best features selection is a challenging task

The findings are used with rule-based heuristics to
enhance the classification accuracy

In a separate study [38], phishing detection features were
listed under URLs and web pages. URLs and web pages were
mainly divided into lexical, script, and network classes. Each
of these was further divided into the syntactic, semantic and
pragmatic levels to form a complete relationship among the
available phishing detection features. Furthermore, another
study [39] proposed six categories of features, and yet a dif-
ferent study [19] grouped thirty features under four different
feature sets.

However, in real-time phishing detection systems, features
that rely on third-party services like page ranking and domain
age should be avoided due to the increased detection time,
high development cost, and limitations on the services them-
selves [7], [40]. Therefore, Li ef al. [7] have proposed URL
and HTML-related features that do not rely on third-party
services. It is interesting to note that if a feature cannot

VOLUME 10, 2022

be mined quickly, no matter how valid, it results in user
inconveniences through service delays [2].

The current study focuses on three main feature sets
when evaluating existing anti-phishing solutions. These are
URL-based features, content-based features and external fea-
tures. URL-based features are lexical features that can be
extracted directly from the URL, and content-based features
are extracted from HTML content. All the other features that
are not directly available with URL or HTML content, such
as page rank, browser history, google index, and domain age,
are listed under external factors. Table 2 shows a summary of
the selected feature sets in different solutions.

According to Table 2, some solutions depend only on
the URL. However, the URL shortening services that hide
original URLs and URL simulation tools such as Deep-
Phish [41] that generate malicious URLs could challenge

82357

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

these solutions in the long run [42]. The Generative Adver-
sarial Networks (GAN) have been identified as a challenge
for URL-only solutions, and those could be used to evade
the URL-based phishing detection solutions [43]. Further,
the possibility of benign URLs becoming malicious in the
future has been considered a key element in URL-based anti-
phishing solutions [42]. Therefore, URL information alone
is not practical since it does not represent the phishing char-
acteristics entirely, and multidimensional features are vital
when developing anti-phishing solutions [44]. As a result,
the current study combines URL-based features with content-
based features to form better phishing detection.

Like the feature sets, feature engineering (a.k.a., feature
extraction) also significantly impacts the detection accuracy
of an anti-phishing solution [2]. If a feature can easily be
manipulated by the attackers and has a strong relationship
with accuracy, the solution will no longer work effectively.
Hence, if a solution used a complicated feature and took more
time to mine, the solution would not be practical again due to
service delays [2]. Therefore, feature engineering is crucial
when building a phishing detection solution. After exploring
the literature, the current study classified feature engineering
techniques essentially into two categories: manual and rep-
resentation learning. The manual technique involves human
experts, and the extraction also can be done using a com-
puter program built by a human expert [45]. However, the
human user actively participates in the feature engineering
process [45].

Many of the solutions available in Table 2 used manual
feature engineering techniques due to the controllable envi-
ronment it gives, such as carefully picking the most important
features through different analyses [27]-[29], [33]. However,
the validity of the manually selected features for the next
few years is a debatable question. ‘HTTPS’ in anti-phishing
solutions can showcase the situation precisely. The ‘HTTPS’
feature was famous in older anti-phishing solutions [19], [39],
but it is not practical at present [2], [6]. It indicates that the
significant phishing detection features are outdated over time,
and the features need to be updated frequently to have a robust
detection. However, such updating is difficult with the manual
feature extraction technique due to experts’ involvement, and
challenges exist when selecting the best features [9]. Even
though the manually extracted features have not changed
for a more extended period, these features are primarily
handcrafted, and the extracted features are visible [9]. Hence
attackers could easily bypass these solutions by targeting
these features.

Representation learning is ideal for overcoming such chal-
lenges since it is more suitable for classification problems
like phishing [14]. Therefore, it is popular in the anti-phishing
domain at present [9], [10], [12], [13]. Representation learn-
ing gets raw data as inputs and automatically discovers the
relevant representations needed through multiple levels of
abstractions for a given task without any manual feature
engineering [14]. Since this approach has achieved signif-
icant results in the research field [9], [10], [12], [13], the

82358

current study also focuses on a representation learning-based
approach to detect phishing attacks.

B. PHISHING DETECTION APPROACHES

The explored phishing detection solutions have been
inspired by machine learning and non-machine learning
approaches, including improving user awareness, blacklist-
ing/whitelisting, visual similarity, rule-based heuristic and
data mining, as shown in Table 2.

1) MACHINE LEARNING-BASED PHISHING DETECTION

Sir Arthur Samuel defined machine learning as “‘a field of
study that gives computers the ability to learn without being
explicitly programmed” [8]. It originated more than 70 years
ago and became a popular technique after the new millennium
due to a large amount of data available in different sectors.
Machine learning mainly focuses on classification problems
like phishing and uses previous examples to build effective
models [8]. Most machine learning-based phishing detection
approaches have been categorised under supervised learning,
and reinforcement learning has also been practised in one
study, as shown in Table 2. As a result, the previous phishing
detection efforts in machine learning could be categorised
as supervised learning and reinforcement learning. Table 1
describes these categories in detail.

According to Table 2, phishing detection was more towards
machine learning during the last decade, and it all began with
a single-layer neural network solution. This solution used
four URL features and six heuristics rules to achieve 98.43%
detection accuracy [46]. Although this solution achieved an
interesting accuracy, it proposed further enhancements for the
solution with more heuristics and large data sources. Phish-
Safe was proposed as another way to detect phishing attacks
with the support of the Support Vector Machine (SVM) tech-
nique [36]. This solution used fourteen URL features and was
evaluated using 32,951 phishing data collected from Phish-
Tank. Phish-Safe recorded more than 90% detection accuracy
during the evaluation. In a study done by Sahingoz et al. [40],
seven different algorithms were exercised to find the best
machine learning algorithm against phishing attacks. This
approach used Natural Language Processing (NLP) based
features and word vectors that focused on the words in a
URL. This study has shown that the NLP-based features
with Random Forest (RF) algorithm perform well in phishing
detection.

Similarly, Subasi ef al. [47] also found that the RF algo-
rithm is better in phishing detection since it recorded higher
accuracy and fast detection time during the experiment.
Moreover, a self-structuring Multi-Layer Perceptron (MLP)
network with seventeen HTML and URL features has been
exercised in the literature to detect phishing attacks [39].
This self-structuring network differs from the previous solu-
tions because this network can automatically adapt the neu-
ral network structure during the learning process, which
has not been seen in others. However, this solution only
achieved 92.5% detection accuracy during the experiment.

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

In a separate study, Pratiwi et al. [48] proposed a neural
network approach using the same features available in the
literature [39]. Even though it used the same features, only
83.4% detection accuracy was achieved during this study.

Further, the first stack model introduced in the
anti-phishing domain used Gradient Boosting Decision Tree
(GBDT), eXtreme Gradient Boosting (XGBoost), and Light
Gradient Boosting Machine (LightGBM) in multiple lay-
ers [7]. This model used eight URLs and twelve HTML-based
features that did not rely on third-party services. Interestingly,
the first stack model achieved 97.3% detection accuracy
during the experiment. Similarly, a Multidimensional Feature
Phishing Detection (MFPD) approach [44] with XGBoost
and CNN-LSTM techniques was also proposed in the past.
It first used the CNN-LSTM deep network to classify phish-
ing URLs based on character sequence features. Then that
decision was combined with other multidimensional features
such as URL statistical features, webpage code and text
features in an XGBoost classifier when producing the final
decision. However, MFPD recorded a higher detection time
during the experiment, and it was minimised to 3.5 seconds
through a specific threshold value by controlling the feature
extraction process. In a separate study, PhiDMA [49] used
five layers during phishing detection. During the imple-
mentation, PhiDMA considered visually impaired users and
therefore included specific support.

Bahnsen et al. [10] proposed an LSTM network against
phishing URLs and recorded 98.7% detection accuracy.
Later, another similar solution [11] achieved 99.1% detection
accuracy against phishing URLs. However, the approach used
in this study differs from the one by Bahnsen e al. from
the feature engineering perspective because this study used
manually extracted features. Literature has also shown that
a combination of LSTM with CNN is better when detecting
malicious URLs [50]. As a result, an anti-phishing solu-
tion named PDRCNN was proposed, which used LSTM and
CNN to have a successful phishing detection [15]. This used
only the URLs, and the experiment was performed with
500,000 data from PhishTank and Alexa. Further, PDRCNN
used 0.4ms to detect a given URL, and as a result, it was con-
sidered a speedier solution. However, the PDRCNN dataset is
problematic because the combination of Alexa and PhishTank
URLSs could prioritise the URL length feature during the
training, and it may produce a wrong interpretation of the
model performance [38], [51].

In the past, another LSTM and CNN-based deep net-
work [52] achieved 98.3% detection accuracy. However, this
solution is not like PDRCNN since this approach uses URL
and HTML features. Furthermore, representation learning
was used only to extract URL features in this solution,
while the HTML features were extracted manually. In con-
trast, HTMLPhish [9] used representation learning to extract
features from HTML content. It achieved 97.2% detection
accuracy, and the HTML document was used directly in
the learning process. A few months later, the HTMLPhish
team introduced another phishing detection solution called

VOLUME 10, 2022

WebPhish [12], a deep learning-based phishing detector that
selects features from the raw URLs and HTML content.
It was the first representation learning approach that sup-
ports raw URLs and HTML in phishing detection, and this
solution achieved 98% accuracy on a real-world dataset.
However, both HTMLPhish and WebPhish demonstrated that
their phishing detection ability was declining with time, and
a successful retraining phase was used to support them in
regaining their earlier performance.

Like WebPhish, Web2Vec [13] is another anti-phishing
solution that uses raw URLs and HTML content in phishing
detection. It extracted features automatically in run time and
outperformed most of the latest solutions (Table 2) by achiev-
ing 99% detection accuracy. Web2Vec inputted the URL,
HTML content and Document Object Model (DOM) struc-
ture of webpages to a deep hybrid network and applied an
attention mechanism to strengthen the solution. However, this
work highlighted the effectiveness of GNN in HTML content
analysis over the proposed architecture and mentioned it in
their future work. Although WebPhish and Web2Vec showed
some interesting accuracy, these solutions used Alexa and
PhishTank to collect the required URLs and did not mention
any specific strategy to avoid the URL length issue mentioned
earlier. This indicates that these solutions may also be biased
to the URL length issue, and it may have affected the pre-
sented performances [38], [51].

Even though Web2Vec and WebPhish detected phish-
ing attacks through multidimensional feature sets, a pure
URL-based approach called PhishHaven [16] sensed the
phishing problem differently. It divided the phishing URLs
into human-crafted and Al-generated phishing URLs since
the solutions like DeepPhish [41] could generate challeng-
ing phishing URLs automatically. PhishHaven was the first
approach found in the literature that emphasises the impor-
tance of a separate detection mechanism for Al-generated
phishing URLs. It achieved 98% accuracy, and the authors
mentioned that it could detect Al-generated phishing URLSs
with higher accuracy; theoretically, it could be 100%.

The only solution listed under reinforcement learning
(Table 2) was proposed by Chatterjee and Namin [20]. It was
a URL-based phishing detection that attempted to apply
dynamic behaviour to detect phishing attacks. The proposed
solution achieved only 90% detection accuracy, and the
fl-score of the solution was 87.3%. However, this work
opened a new window for researchers to consider continuous
learning support in future anti-phishing solutions.

Even though machine learning has shown some promising
results in previous work, it faces unique challenges when
dealing with constantly changing phishing attacks. One such
challenge is data drifting [38], [42]. It mainly affects the
solution’s performance, and the solution needs to be retrained
occasionally to retain its performance [38]. However, retrain-
ing is again a challenge in the anti-phishing domain, as col-
lecting a considerable amount of labelled phishing data
is difficult in the current context [42], [53]. Furthermore,
adversarial attacks are also considered a threat to machine

82359

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

learning-based anti-phishing solutions [42]. These attacks
can convert well-performing models into incorrect predic-
tions to reduce the trustworthiness of the solutions.

2) OTHER PHISHING DETECTION APPROACHES

Other than the machine learning-based solutions, the exist-
ing phishing detection solutions could be classified into
five main approaches, as shown in Table 1. However, some
explored solutions have come under more than one approach
(e.g., PhishNet and AIWL) because of their characteristics.
The following describes each of these categories in detail.

a: USER AWARENESS

AntiPhishing Phil [22] and Smells Phishy [23] are interactive
educational games found in the literature that reduce phishing
victims through user awareness. These solutions used a gam-
ing environment to teach phishing concepts joyfully. Other
than the gaming approach, some organisations have published
training materials to improve phishing attack awareness [26].
Microsoft Online safety, OnGuardOnline phishing tips, and
National Consumer League Fraud tips are some famous
examples of training materials [26]. Further, how the Internet
users interact with phishing attacks and how they behave in
such attacks have been identified as an important aspect of
user awareness [54]. This information assist system designers
and security professionals in predicting future victims, mak-
ing them aware of these attacks [54].

Even though user awareness is being practised to minimise
phishing impact, it may not be a viable approach because
phishing attacks have constantly been changing, responding
to the latest security countermeasures [17]. Therefore, user
awareness is considered a costly approach since users need
to regularly keep up to date on these attacks, which requires
many resources such as people, time, and physical equip-
ment [17], [26]. Further, the user awareness technique also
expects considerable security knowledge from the trainees to
have a successful training program which is again impractical
in phishing detection [17], [26].

b: BLACKLISTING/WHITELISTING

Blacklisting and whitelisting are more popular phishing
detection techniques that use simple text-matching to detect
phishing attacks [19]. Google Safe Browsing (GSB) APIL!
maintained by Google LLC, is a famous blacklist used by dif-
ferent Internet services. Even though this list-based technique
has been using a simple strategy to detect phishing websites,
maintaining a practical list is challenging due to the number
of new websites appearing on today’s Internet [6]. As stated
by Khonji et al. [26], 47% to 83% of phishing URLSs took
twelve hours to appear on a blacklist from their first appear-
ance. It is a considerable delay because nearly 63% of phish-
ing websites end their duties within the first two hours [26].
This indicates that these phishing attacks may have vic-
timised many users once the list is updated. Therefore, the

1 https://safebrowsing.google.com/

82360

blacklisting/whitelisting technique is always vulnerable to
zero-day attacks, which is considered a significant drawback
of this technique [19], [26]. Further, an effective list always
includes reporting and confirmation process to maintain the
quality of its content [27]. It is again a challenge in phishing
detection due to the number of phishing attacks added to the
Internet and the life-time of these attacks.

The literature has introduced several alternative approaches
to the blacklisting/whitelisting technique as a solution to
these limitations. One such solution is PhishNet [24]. Phish-
Net used approximate matching of URLSs integrated heuristic
rules with the blacklisting technique. It also used a predictive
blacklist mechanism that predicts a set of URLs based on
a given URL to defend against dynamic phishing attacks.
An Automated Individual White-List (AIWL) [25] is another
solution that has maintained an individual whitelist with the
support of login user interfaces. Even though it takes time
to collect legitimate URLs specific to the user, this AIWL
will be more stable and fits the user with time since the users
are typically using the same set of websites [25]. Similarly,
Jain and Gupta [27] also proposed a White-List maintainer,
which automatically maintains a whitelist. It used hyperlink
features to decide the legitimacy of a web page added to
the whitelist. Even though these alternative solutions tried
to eliminate the limitations that exist with the blacklisting/
whitelisting technique, El-Alfy [19] mentioned in another
study that zero-day attack detection is still a problem in these
list-based techniques.

c: VISUAL SIMILARITY
This is a time-consuming approach due to the comparison of
visual elements [2], [5]. In this approach, the suspicious web
page is compared to a list of legitimate web pages and checks
the similarity based on a threshold value [5], [32], [34].
PhishZoo [34] is one solution that has used a profile-based
approach using the website’s URL, textual content, images,
scripts, and SSL certificate. In another study, GoldPhish [33]
was proposed as a browser-based plug-in to detect phishing
attacks. It was very effective against popular organisations
and could detect zero-day phishing attacks. However, Gold-
Phish’s accuracy depended on optical character recognition,
logo image, and Google ranking [5], [55]. Therefore, it is not
a practical solution against non-popular legitimate web pages
since such web pages have not been indexed in Google.
Rosiello ef al. [32] DOM tree approach, which used
HTML DOM in similarity measuring, and site signature-based
phishing detection approach [56] are other visual similarity
approaches found in the literature. Despite these approaches,
visual similarity detection faces several challenges, includ-
ing defining a clear similarity value, maintaining detection
databases, ineffectiveness against zero-day attacks, and con-
cerns with embedded object recognition [5]. As a result,
visual similarity detection cannot be considered effective
against modern phishing attacks, as they are mainly con-
structed through software tools that can create visually similar
web pages.

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

TABLE 2. Explored phishing detection solutions.

' Featur.e
Solution Detection Approach Features E:é;anclgﬁrel Accuracy
g . E
g 2] % ? =] E
|22 5|8 |=]|= 15| E| 2|8
s | & | P |B|Z3 |5 |Aa]|>2|]o|d]| = |~
SpoofGuard [30] v v v v NS
Anti-Phishing Phil [22] v v v 87.0%
DOMAntiPhish [32] v v NS
CANTINA [28] v v v v v 90.0%
AIWL [25] v v v v v v 100.0%
PhishGuard [29] v v v NS
PhishNet [24] v v v v NS
GoldPhish [33] v v v v 98.0%
PhishZoo [34] v v v v v 96.0%
Self-structuring MLP Network [39] v v v v v 92.5%
Single-layer Neural Network [46] v v v v 98.0%
Smells Phishy [23] v v v v 75.0%
‘White-List Maintainer [27] v v v v v 89.4%
Phishing URL Detection [35] v v v 93.0%
Probabilistic Neural Network (PNN) [19] v v v v 96.8%
LSTM Network [10] v v 98.7%
Random Forest Classifier [47] v v v v v 97.4%
Phish-Safe [36] v v v 90.0%
LSTM Recurrent Neural Network [11] v v 99.1%
Phishing Detection using ANN [48] v v v v 83.4%
Deep RL based Detection [20] v v v v v 90.1%
Machine Learning based Detection [40] v v v 98.0%
HTMLPhish [9] v v 97.2%
Stacking Model [7] v v v 97.3%
PDRCNN [15] v v v 97.0%
MFPD Model [44] v v v v v v 99.0%
HybridDLM [52] v v v v v 98.3%
PhiDMA [49] v v v v v v 92.7%
PhishHaven [16] v v v 98.0%
WebPhish [12] v v v v 98.0%
Web2Vec [13] v v v v 99.0%
NS means ‘Not Specified’. It is used when the solution’s accuracy cannot be found.
VOLUME 10, 2022 82361

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

URLDet
Dropout Dropout Dropout Dropout
(0.8) (0.5) (0.5) (0.5)
Preprocessing 9 N N
g 3 + 2 g g
URL 23451267 g @ Q3 5 5
i.e. https://www.abc.com 56 34 8976 5 5 z 8 = = A
4511 60 55 2 3 3 - 0 s
229832 ... £ 2 = e e
w
] _/
EY ”
/ - %’. Legitimate
Q
- -
Web Page © 5
HTMLDet 2 2
egment ids. ’—segmem ids. g g
o
N _¢ 3
Preprocessing _ _ K]
g 5| |8 5| |3 5| |8
z S > 9 S - ishi
HTML Content & g EANERRER g 2% Phishing
i.e. <html>...</html. - ©] 2w [
L.e. <html>...</html> g. 8 (E) 8 8 (E) 1 8 R
£ (Y] s (C] = [C] ©
(0]

l—segment ids—T

.

FIGURE 1. The architecture of the PhishDet model.

d: RULE-BASED HEURISTICS

SpoofGuard [30] is a rule-based heuristic approach that uses
seven heuristics in phishing detection. It was developed as
an anti-phishing toolbar for the Internet Explorer browser
to transmit passive warnings to users about suspected data
requests. PhishGuard [29] is another heuristic solution that
uses HTTP digest authentication to detect phishing attempts.
It has been an effective solution against zero-day attacks
and is applied only in login interfaces. CANTINA [28] is
a content-based solution that has been used in phishing
detection with the Term Frequency/Inverse Document Fre-
quency (TF-IDF) technique. Since CANTINA has shown a
high false-positive rate, eight heuristics were applied later to
reduce CANTINA’s false-positive rate from 6% to 1%.

The rule-based heuristic technique is more successful
than blacklisting/whitelisting since it can detect zero-day
attacks [26]. Although it detects zero-day attacks, more
generic algorithms are susceptible to misclassifying legiti-
mate websites, a significant drawback of this strategy [26].
Heuristic-based techniques also have several drawbacks, such
as rule visibility to the outside world, which supports phishers
in devising solutions, rule validity owing to the continu-
ously changing nature of phishing, and the cost of upgrading
rules [26], [31].

e: DATA MINING

Data mining has been practised in the anti-phishing domain
to detect phishing attacks. The fuzzy logic-based phishing
detection solution is one data mining approach that uses three
layers with six different phishing criteria [37]. In another
study [35], eighteen association rules were also exercised
with apriori and predictive apriori to achieve 93% detection

82362

accuracy. Although data mining techniques were used to
identify phishing, Aburrous et al. [37] observed that finding
a suitable collection of phishing detection features in data
mining is challenging. On the other hand, data mining aims
for new and interesting patterns that should be combined with
other methodologies such as rule-based or machine learning
to provide successful outcomes.

C. UNDERLYING CONCEPTS FOR STRONGER PHISHING
DETECTION

This study extracted several underlying concepts supporting
a successful phishing detection solution based on the analysis
presented in previous literature sections. These ideas will be
linked in the following paragraphs to provide a background
for the techniques chosen when designing the PhishDet
solution.

As illustrated in Table 2, machine learning attracted the
most current phishing detection interest due to its unique
learning ability, past success, and ineffectiveness of alterna-
tive techniques in the constantly changing phishing nature.
Even though machine learning systems demonstrated some
promising results, data drifting challenges have generally
affected these solutions. As a result, regularly updating
the core phishing detection features is critical for these
anti-phishing solutions to function correctly [38].

However, due to the advantages that representation learn-
ing algorithms offered over manual methods, representation
learning played a crucial role in feature extraction when
updating significant phishing detection features. As a result,
the representation learning approach called deep learning has
had much success, and it has been utilised in many recent
studies to extract features from raw data. Although deep

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

learning has been employed in phishing detection, it has
primarily been utilised in URL-based phishing detection
studies, with several drawbacks. However, as mentioned
previously, the deep learning technique has recently been
successfully applied to HTML content analysis in WebPhish
and Web2Vec.

When it comes to detecting malicious URLs, LSTM has
been considered a successful technique [10], [11]. However,
in the past, combining LSTM and CNN increased the detec-
tion of malicious URLs [50], [52]. LRCN has been identified
as one such combination which employs CNNs as a feature
extractor for LSTMs in the front end [57]. Similarly, LSTM
and CNN have been used to obtain notable results in HTML
content analysis [12], [13]. Even though these techniques
have been used effectively, past findings emphasised that
GNN could be a powerful technique for analysing HTML
content because HTML naturally has a graph structure [13].
Furthermore, a deeper analysis of HTML content might
be possible with GNN to have robust phishing detection
features.

GNN is generally a deep representation learning technique
that is applied on graphs [13], [58]. When exploring GNN,
GCN has been identified as a compelling neural network
architecture that operates on graphs [59]. As an improvement
to the GCN architecture, a new filtering mechanism over the
traditional polynomial filters called Auto-Regressive Mov-
ing Average (ARMA) filters has also been proposed [58].
This study has shown that ARMA achieves higher mean
accuracy and lower standard deviation than the traditional
GCN approach in graph classification [58]. Furthermore, this
study has also proposed Graph Convolutional Skip (GCS)
layer with ARMA filters for better performance of the
GCN architecture.

Even though literature has emphasised the advantages of
GNN in HTML analysis, none of the explored solutions has
used the powerful analysis and processing capabilities of
GNN to find a more differentiated phishing webpage detec-
tion method. PhishDet proposed in this paper is designed to
use the effective LRCN for URL-based feature extraction and
GCN for effective HTML content analysis for more robust
phishing detection.

lll. PROPOSED MODEL: PhishDet

PhishDet uses URL and HTML content in phishing detection
without experts’ knowledge. It uses two separate deep net-
works to handle these two components, and the networks are
concatenated later to produce a final decision.

Phishing detection is a binary classification task that con-
tains two classes: legitimate and phishing. Suppose a dataset
has S amount of data where each data consists of three parts:
website URL (u), HTML content (w) and the label (y). A data
item can be represented as u;, w;, y;, where i indicates the
index of the data item. Then, y; € {0, 1}; y; = 1 corresponds to
aphishing website, and y; = O represents a legitimate website.

As shown in Fig. 1, PhishDet combines two deep learning
architectures called LRCN and GCN. The LRCN processes

VOLUME 10, 2022

B |egitimate
8000 4 EEE phishing

6000 +

4000 -

number of URLs

2000 A

25 50 75 100 125 150 175 200 225 250
number of characters

FIGURE 2. Character length distribution of the URLs.

URLSs and the GCN processes the HTML contents. These two
models are named URLDet and HTMLDet, respectively.

A. URLDet

As identified by literature, the deep network architecture
called LRCN is the most effective technique for designing
the URLDet model. The primary input to the URLDet is
the URL of the website. At first, each character of a URL
is considered a word. Then, these words are transformed
into a machine-understandable format using a tokeniser that
allows one to vectorise a corpus by turning each word into an
integer sequence. However, the input layer of the URLDet is
a tensor, and the tensor must have the same shape throughout
the training process. Therefore, to avoid different URL sizes
that make different input shapes, all the transformed URLSs
are normalised into 150 maximum character lengths. In that
process, the URLs with more than 150 characters in length
are chopped at 150th character, and the URLs with less than
150 are filled with Os to have 150 lengths. However, the max-
imum character length was decided after analysing the URL
character length distribution of Dataset A (see Section IV-A),
as shown in Fig. 2.

Once the URLs are normalised, they are first passed to the
input layer. Then, the input layer passes those to the embed-
ding layer to have a vector representation of the input. The
URLDet’s embedding layer is a 100 vocabulary-sized layer
configured to have 256 dense embeddings and 150 length
input sequences. It also used a le-5 valued L2 regulariser.
After the embedding layer’s task is completed, its output is
input to the 1D convolutional and Maxpooling layers. The
layers then collectively extract the local features from the
embedding matrix. In here, the 1D convolutional layer uses
a size three window and 256 output size with the rectified
linear activation function (ReLU). Further, the ‘he_uniform’
initialiser with ‘zeros’ bias is used in the 1D convolutional
layer, and the 1e-5 valued L2 regulariser is also applied. Once
the features are extracted, those are passed to the URLDet’s
LSTM layers.

The LSTM layers are responsible for carrying out the rep-
resentation learning task using the features extracted from the

82363

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

1D convolutional and Maxpooling layers. In the URLDet, the
LSTM layers have 32 output spaces and use the hyperbolic
tangent (tanh) activation function. Further, these use le-5
valued L2 regularisers to introduce additional information
to prevent overfitting. Once the first LSTM layer receives
the output of the Maxpooling layer, the last moment output
then inputs to the URLDet’s second LSTM layer. After the
second LSTM layer processes its input further, the output
of the second LSTM layer is input to the URLDet’s output
layer, a dense layer with a sigmoid activation function. Once
the output layer receives an input from the LSTM layer,
it classifies the input and returns whether a given URL is
phishing or not.

The URLDet is configured to use the Adam optimiser with
binary cross-entropy loss function to minimise the target loss.
Further, as shown in Fig. 1, the dropout strategy is applied in
several places to prevent overfitting in the feature extraction
process.

B. HTMLDet

The HTML content has provided some essential features
when detecting phishing attacks [7], [9], [12], [13], [39], [47],
[48]. Therefore, HTML content analysis is vital to detect
phishing attacks, and HTMLDet is the responsible compo-
nent for analysing HTML content in PhishDet. HTMLDet,
a GCN-based architecture, is a novel phishing detection
approach that was not applied elsewhere in the phishing
domain. Since the HTMLDet is a representation learning
approach, it does not use experts’ knowledge when extracting
features.

1) GRAPH CONSTRUCTION

In general, graph (G) is a pair of nodes (V) and edges (E)
which can denote G(V, E) [60]. A GCN takes an input fea-
ture matrix (X) and graph structure (A). The input feature
matrix is an N x D matrix, where N is the number of nodes,
and D is the number of input features for each node [59].
Similarly, the graph structure is an N x N adjacency matrix
representation [59].

Technically, the HTML content of a web page con-
tains HTML tags called elements, and elements have been
attributed to providing additional information about the ele-
ment. Further, an attribute usually comes in name/value pair
like name = ‘value’. Generally, the HTML content has a
tree structure, as illustrated in Fig. 3, and the tree structure
can be used to generate a graph. In HTMLDet, the HTML
tags and those tags’ attributes contemplate the graph’s nodes.
Then, the node features become node labels and values. The
HTML tags do not contain any values; those contain only the
labels. However, the attributes usually have labels and values.
Therefore, in HTMLDet, the input X becomes N x 2 matrices
since each node has only two features: label and value.

In the HTMLDet input generation process, first, a script
traverses through the HTML code to generate the node list
and the features of each node. Then, a graph is constructed
from the generated node, and the edges of the graph are added

82364

hierarchically based on the parent-child relationship. Concur-
rently, feature matrix X is also generated using the features of
each node. However, the X needs a machine-understandable
representation since the labels and values contain textual
content. Therefore, a domain-specific doc2vec model is con-
structed using the Dataset A corpus, and the trained doc2vec
model is used to transform the X’s textual content into a
size one vector format. The following HTML code example
explains how the graph is constructed from a given HTML
content.

<p>

</p>

In the above example, the HTML tags, ‘p’ and ‘img’,
and ‘img’ tag attributes ‘src’ and ‘alt’ are considered
nodes. Therefore, the example has four nodes: p, img, src,
and alt. These nodes get a unique identification number
as 1, 2, 2_1, and 2_2, respectively. Now the edges list is
generated as (1, 2), (2, 2_1), and (2, 2_2). Then a graph
is constructed from these edges. Graph A (Fig. 4) shows a
construction for the above example HTML code, and graph B
shows the generated graph for Fig. 3 HTML code. Next, the
feature matrix is also generated, and Table 3 shows the feature
matrix generated for the above example.

TABLE 3. Input X values (The values are transformed to a vector format in
real execution).

Node / Feature Label Value
1 p
2 img
21 src a.jpg
22 alt example_image

2) MODEL IMPLEMENTATION
The HTMLDet model, as illustrated in Fig. 1, is designed
using GCN architecture. It uses an input layer and three GCS
layers with pooling layers. HTMLDet requires three inputs:
the adjacency matrix, the feature matrix, and segment ids. The
input layer in HTMLDet has three input tensors, and one of
these is a sparse tensor to accept an adjacency matrix. In the
HTMLDet model, the adjacency matrix and feature matrix
are first constructed using Section III-B1. The third input,
segment ids, is generated using an inbuilt Spektral® function.
Then these three are inserted into the input layer. After that,
the HTMLDet passes the adjacency matrix and feature matrix
to the GCS layer to carry out graph nodes’ feature repre-
sentation. In HTMLDet, all GCS layers consist of 32 chan-
nels and use the ReLLU activation function. These layers use
le-3 valued L2 regularisers and ‘he_uniform’ initialiser with
‘zeros’ bias.

In the next step, the GCS output inputs to the MinCut-
Pool layer. In HTMLDet, the MinCutPool layers used the

2A specific library available in Keras to perform graph classification tasks.

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

<IDOCTYPE html>
<html>

<head>

~

<title> Example </title>
<meta charset="UTF-8">

</head>
<body>

<h1>My First Heading</h1>
<p>My first paragraph.</p>

/

</body>

K</htm|>

FIGURE 3. Example of an HTML page in a tree view.

(a). Sample HTML code

(a). Graph A

html

head body

v v_ v

title meta h1 p

(b). Tree view of the given HTML code

(b). Graph B

FIGURE 4. Example graphs constructed from the graph construction process.

ReLU activation function, le-3 valued L2 regularizer and
‘he_uniform’ initializer with ‘zeros’ bias. The k value of the
MinCutPool layer is decided using the number of average
nodes in the training dataset. The MinCutPool layer needs
segment ids to construct the aggregated features. Therefore,
the input layer links the initial segment ids to the first Min-
CutPool layer for feature construction. Then, the aggregated
features are inputs to the second GCS layer for more abstract
feature representation. The GCS and MinCutPool process the
node features similar to the previous layers by outputting
the relevant feature matrix, adjacency matrix, and segment
ids. The second level feature matrix again inputs to the third
GCS layer for a deeper feature representation. The third GCS
layer’s output inputs to a GlobalAvgPool layer to generate
one feature map for the classification task. Finally, to classify
the HTML page, the GlobalAvgPool layer’s output inputs to

VOLUME 10, 2022

the HTMLDet’s output layer, a dense layer with a softmax
activation function. The HTMLDet has also used adam opti-
miser and categorical cross-entropy loss function to adjust the
network’s weights.

C. PhishDet

As visualised in Fig. 5, the URLDet and HTMLDet networks
are concatenated to have the proposed anti-phishing solu-
tion, PhishDet. The two networks, URLDet and HTMLDet,
are separately trained and combined through a concatena-
tion layer by eliminating the output layers of each. Then
a dense layer with two neurons is added as the output
layer of PhishDet, and the softmax activation is enabled
to have a phishing and legitimate probability for a given
input. Further, PhishDet has used adam optimiser with

82365

lEEEACC@SS S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

main_input: InputLayer

l

embedding: Embedding

l

dropout: Dropout

 J
convld: ConvID X_in: InputLayer input_1I: InputLayer
Y l /
max_poolingld: MaxPooling1 D graph_conv_skip: GraphConvSkip segment_ids_in: InputLayer

\ /

dropout_|: Dropout min_cut_pool: MinCutPool

Istm: LSTM graph_conv_skip_l: GraphConvSkip
dropout_2: Dropout min_cut_pool_1: MinCutPool
Istm_1: LSTM graph_conv_skip_2: GraphConvSkip
dropout_3: Dropout global_avg_pool: GlobalAvgPool

N

concatenate: Concalenate

l

output: Dense

FIGURE 5. A plot of PhishDet model graph.

82366 VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

a categorical cross-entropy loss function to have the least
difference between actual and predicted outputs.

IV. EXPERIMENT

The proposed solution, which combines LRCN and GCN
deep networks, was implemented with Keras 2.3.1 and Spek-
tral 0.3.0 deep learning libraries. The experiment environ-
ment depended on TensorFlow 2.1.0 deep learning frame-
work and Python 3.7.6 programming language.

A. DATASETS

Generally, phishing websites exist only for a limited time
on the web [53]. Therefore, it is not easy to construct more
reliable datasets for a study if the study depends on URL and
HTML content like the current study. However, in previous
studies, PhishTank, OpenPhish and APWG were mainly used
when constructing phishing datasets, and legitimates were
generated mainly through Alexa [53]. Although these sources
exist to construct a dataset for a study, a diverse and extensive
dataset is the key to accurate and unbiased detection [38].

TABLE 4. Details of the used datasets.

[Dataset Sub-dataset Legitimate | Phishing Total

o Training Set (Tra) 13,895 14,105 28,000
a‘(‘)“(‘;gé]A Validation Set (Vals) 2,006 1,094 4,000
? Testing Set (Tea) 4,099 3,901 8,000

o Training Set (Trp) 17,500 17,500 35,000
g‘g‘g&t)]B Validation Set (Valg) 2,500 2,500 5,000
? Testing Set (Teg) 5,000 5,000 10,000
Benchmark | Training Set (Trgm) 17,360 14,906 32,266
Dataset Validation Set (Valgp,) 2,480 2,130 4,610
[46,096] Testing Set (Tegm) 4,960 4,260 9,220

The current study used three datasets during the experiment
time. Out of these, two are publically available datasets,
and one is limited to this study. For ease of use, the study
named these datasets Dataset A, Dataset B and the Bench-
mark Dataset. These three datasets were used on different
scales during the experiment to pursue training, testing and
validation, and Table 4 presents the details of those datasets
in each task.

Dataset A contained 20,000 phishing data and 20,000 legit-
imate data. Both legitimate and phishing data contained a
URL and the relevant web page. The legitimate data was
collected from the Google search engine. A script was used
to pass a word list to the Google search engine, and the
websites that appeared within the top 10 search results were
selected as legitimate websites. The word list consisted of
words borrowed from the Internet and self-generated words.

The phishing data was mainly constructed using PhishTank
records submitted before September 2019 and a public phish-
ing websites dataset [61]. Even though the public phishing
dataset is a trusted source, these data were again verified
using PhishTank and GSB API to guarantee the label. After
constructing the Dataset A, 40,000 data items included there
were divided randomly into three sub-datasets: training, val-
idation, and testing. 70% of data was used for the training,

VOLUME 10, 2022

and 10% and 20% were used for validation and testing. The
amount of legitimate and phishing data available in these
sub-datasets is mentioned in Table 4.

Dataset B, which contained 50,000 data items consists of
an equal amount of legitimates and phishing which was con-
structed from a public phishing website dataset [62]. Then,
the dataset was mainly split into two sub-datasets as training
and testing in a 4:1 ratio, and 10% of training data were used
for the validation task during the model training. Since the
experiment used a balanced training environment, an equal
number of legitimates and phishing data were used under all
sub-datasets, as displayed in Table 4.

Benchmark Dataset is again a publically available dataset.?
It is used to build a similar solution to the proposed one [13],
but with a different technique. Since a few data had some
issues during the extraction, the study could select 24,800
legitimate and 21,296 phishing data from the original dataset
to construct Benchmark Dataset. Then, these data were spit-
ted into training, validation and testing, as shown in Table 4.

Out of these three datasets, Dataset B and Benchmark
Dataset were initially selected for the final evaluation process
since Dataset A contained old phishing data used in initial
level training. In an anti-phishing study, a diverse dataset is
essential for a more generalised model [38]. Therefore, the
diversity of Dataset B and Benchmark Dataset was evaluated
via a specific analysis. Since there is no widely accepted
method to check the diversity of a phishing dataset [38], the
number of different domains and the number of different
top-level domains (TLDs) used in the past [38] were used
alongside the URL length and HTTPS presence during the
analysis. The URL length and HTTPS presence were espe-
cially considered because earlier findings have shown that
HTTPS in phishing attacks and URL length distribution are
essential to consider in the current phishing attack nature to
have unbiased, accurate model training [6], [S1].

Fig. 6 to Fig. 9 show the results obtained through the
diversity analysis. In there, the domains and TLDs distribu-
tion analysis followed a specific procedure. First, a list of
unique domains and TLDs was separately collected from each
dataset, and those frequencies were calculated. Then, the top
fifty domains and TLDs were selected and the percentage
of those proportion to the size of the relevant dataset was
calculated accordingly. Finally, the percentages were plotted
to have domains and TLDs distribution, as shown in Fig. 6
and Fig. 7. This domain and TLDs analysis show that both
datasets were not biased toward specific domains or TLDs.

However, the URL character length and the presence of
HTTPS analysis illustrated a different view of these two
datasets. It has shown that the Benchmark Dataset is not
diverse based on URL character length and HTTPS presence.
Fig. 8 shows that the legitimate URL character lengths are
positively skewed, and Fig. 9 shows that most URLs in the
Benchmark Dataset are in the HTTP category. It concludes
that a model trained with the Benchmark Dataset may result

3 https://github.com/Hanjingzhou/Web2vec

82367

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

1.0 1.0
—— legitimate —— legitimate
—— phishing —— phishing
0.8 0.8
8 |2
© ©
© 0.6 2 0.6
kel el
5 G
(9] ()
o o
S S
g 0.4+ S 0.4
<4 =4
[[
o o
0.2 1 0.21
0.0 T T T T 0.0 T T T y
0 10 20 30 40 50 0 10 20 30 40 50
number of domains number of domains
(a). Dataset B (b). Benchmark Dataset
FIGURE 6. Distribution of domains in Dataset B and benchmark dataset.
1.0 1.0
—— legitimate —— legitimate
—— phishing —— phishing
0.8 1 0.8
Q @
0 @
© ©
© 0.6 w 0.6
o o
G k3
(9] ()
o o
2 S
G 0.4 G 0.4
=4 =
[[
o o
0.2 0.2 1
0.0 T T T T 0.0 T T u T
0 10 20 30 40 50 0 10 20 30 40 50

number of TLDs
(a). Dataset B

FIGURE 7. Distribution of TLDs in Dataset B and benchmark dataset.

in a biased model and not presents the current phishing
status [38], [51]. Therefore, a more realistic evaluation of
the proposed solution was feasible with Dataset B compared
to the Benchmark Dataset. Thus, Dataset B was selected to
evaluate the proposed solution’s overall performance, and
Benchmark Dataset has been used only to benchmark the
solution with other similar solutions.

B. PERFORMANCE METRICS

The confusion matrix is an improved approach to evaluate
a classification model’s correctness and errors. More impor-
tantly, the confusion matrix gives a better insight into the
types of errors the classifier is being made during the classifi-
cation process. Therefore, when evaluating the performance
of the PhishDet, a confusion matrix was used, as shown
in Fig. 10.

82368

number of TLDs
(b). Benchmark Dataset

In this experiment, detecting a phishing website is
considered a positive case. Therefore, in the confusion
matrix, ‘True Positive’ (TP) is used for correctly pre-
dicted phishing sites, ‘False Positive’ (FP) for incorrectly
predicted phishing sites, “True Negative’ (TN) for correctly
predicted legitimate sites, and ‘False Negative’ (FN) for
incorrectly predicted legitimate sites. Although the confu-
sion matrix provides an understanding of the model per-
formance, advanced classification metrics like accuracy,
precision, recall, and f1 score were used during the experi-
ment to understand the model performance in a better manner.

C. TRAINING

PhishDet was trained in two phases. Initially, all the mod-
els, URLDet, HTMLDet and PhishDet, were trained using
Dataset A. Then Dataset B was used to retrain PhishDet to
incorporate the latest phishing knowledge.

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

B [egitimate B legitimate
5000 1 B phishing 17500 4 mmm phishing
15000 4
4000 A
9 9 12500 4
o o
2 3000 4 2
s S 10000 -
i [
Qo Qo
£ :
< 2000 2 7500 A
5000
1000 A
2500 -
0 m
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
number of characters number of characters
(a). Dataset B (b). Benchmark Dataset
FIGURE 8. Distribution of URL length in Dataset B and benchmark dataset.
1.0 1.0
B legitimate BN egitimate
mmm phishing mmm phishing
0.8 1 0.8 1
ko] Q
w wv
© ©
© 0.6 0.6
© o
G G
Q [
j=2] o
8 S
] @ 0.4+
2 =
GJ [0
Q Q
0.2
0.0 T

secure

non-secure
hypertext transfer protocol

(a). Dataset B

FIGURE 9. Distribution of HTTPS in Dataset B and benchmark dataset.

Actual
Phishing (1) Legitimate (0)
o o
% Phishing (1) TP FP
%
& Legitimate (0) FN TN

FIGURE 10. Confusion matrix.

1) TRAINING WITH DATASET A

The training process was executed in three steps. First, the
URLDet model was trained with 64 batch sizes and a learn-
ing rate of le-4 for 500 epochs. Since the early stopping
technique was used, the training process was stopped at the

VOLUME 10, 2022

secure non-secure

hypertext transfer protocol
(b). Benchmark Dataset

355th epoch. Fig. 11 shows the accuracy and loss functions’
performance of URLDet for both training and validation
datasets. Next, the HTMLDet model was trained using a batch
size of one (size one is a requirement in ARMA filters) and a
learning rate of 1e-3. The training process was stopped in the
272nd epoch due to the early stopping technique (Fig. 12).
Finally, PhishDet was trained with a batch size of one and
a learning rate of le-5 and the training was stopped at the
79th epoch. Fig. 13 illustrates the phase one training’s accu-
racy and loss functions.

2) TRAINING WITH DATASET B

After the initial training, the PhishDet was retrained with
Dataset B to explore the latest phishing trends. The retraining
used the same batch size and learning rate in phase one and
completed training within 292 epochs. Fig. 14 shows the
accuracy and loss functions of the phase two training.

82369

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

0.95 A

0.90 -

0.85

0.80 A

accuracy

0.75 A

0.70 A
— train
—— validation

0.65 -

0 50 150 200 250 300 350

epoch

100
(a). Accuracy curve for train and validation set

FIGURE 11. URLDet performance curves.

0.92

0.90 -

0.88 -

accuracy

0.86 -

0.84 -

— train
validation

0.82 -

150 200 250

epoch

0 50 100

(a). Accuracy curve for train and validation set

FIGURE 12. HTMLDet performance curves.

D. EVALUATION
PhishDet was evaluated under five criteria to check the pro-
posed solution’s effectiveness.

1) OVERALL PERFORMANCE

After the initial training of the PhishDet, the solution was
evaluated on Tep and Tep datasets. Once the phase two
training concluded, the model was re-evaluated with the Tep
dataset. Table 5 shows the results obtained during these eval-
uations.

2) BENCHMARKING
PhishDet was benchmarked in two different experiments.

First, it was used with five benchmark solutions: URLDet,
HTMLDet, URLNet* [63], StackModel® [7] and Hybrid-

4https://github.com/Antimalweb/URLNet

SThe study could not found the original implementation of the Stack-
Model. Therefore, the StackModel implemented by [64] was used.

82370

loss

loss

0.6 1 — train
—— validation

0.5 A

0.4

0.3

0.2 A

01 A T T T T T T T T

0 50 100 150 200 250 300 350
epoch
(b). Loss curve for train and validation set

0.45 A — train
— validation

0.40 A

0.35 A

0.30

0.25 A

020 1 T T T T T T

0 50 100 150 200 250
epoch
b). Loss curve for train and validation set
TABLE 5. PhishDet performance evaluation.

Dataset Phase Accuracy | Precision Recall Fl1
Tea Phase 1 96.64% 97.59% 95.80% 96.69%
Te Phase 1 87.29% 86.35% 88.58% 87.45%

B Phase 2 96.42% 96.40% 96.44% 96.42%

DLM® [52], to compare the performance. Secondly, PhishDet
was evaluated using the Benchmark Dataset.

In the first experiment, all the benchmark solutions were
initially trained with Trg dataset. Then, the performance
was evaluated using the Tep dataset. Table 6 shows the
obtained results of the first experiment. The second experi-
ment trained the phase 1 model on the Trpy, dataset and eval-
uated the before and after model performance using the Tegp,

6https:// github.com/sna-hm/HybridDLM

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

0.98 -

0.96 -

0.94 -

0.92 4

accuracy

0.90 -

0.88

—— train
validation

0.86 -

0 10 20 30

40 50 60 70 80

epoch

(a). Accuracy curve for train and validation set

FIGURE 13. PhishDet performance curves in phase 1 training.

0.98 A

0.96 1

0.94 4

accuracy
S

S

©

N
)

0.90 A

—— train
validation

0.88 -

150 200 250 300

epoch

0 50 100

(a). Accuracy curve for train and validation set

FIGURE 14. PhishDet performance curves in phase 2 training.

dataset. Table 7 presents the results obtained by the second
experiment.

3) ZERO-DAY ATTACK DETECTION

A zero-day attack, essentially a new or not yet reported attack
detection, is vital in any anti-phishing solution. Therefore,
PhishDet was also evaluated against zero-day attacks through
a specific testing procedure exercised in previous studies [65],
[66] with the support of a famous blacklist, GSB.

During the experiment, the PhishTank was continuously
monitored through an automated script. The script was
responsible for calling PhishTank API every hour and col-
lecting verified phishing URLs submitted in the last hour.
Then the collected URLs were submitted to PhishDet and
GSB API. The results provided by these two solutions were
recorded separately. After a while, the second attempt was
carried out on the URLSs that were not marked as phishing by
Google during the first attempt. However, the study recorded

VOLUME 10, 2022

loss

loss

—— train
0.5 validation
0.4 4
0.3 1
0.2 4
0.1+
0 10 20 30 40 50 60 70 80
epoch
(b). Loss curve for train and validation set
— train
0.40 A - validation
0.35 4
0.30 A
0.25 4
0.20 A
0.15 A
0.10 A
0.05 +— T T T T T
0 50 100 150 200 250 300
epoch

(b). Loss curve for train and validation set

a more than 24 hours’ delay between the first and second
attempts since 47%-83% of phishing URLs are added to the
blacklists after 12 hours [26]. Then, if a submitted URL did
not receive a phishing flag from Google in the first attempt
and received it in the second attempt, it was considered a zero-
day attack. Finally, the correct decisions made by PhishDet
over the zero-day attacks were calculated to get a conclusion
about PhishDet’s zero-day attack detection ability. The exper-
iment was done for three days, and the results are tabulated
in Table 8.

4) DETECTION TIME

The experiment was set up on an Intel(R) Xeon(R) CPU @
2.20GHz machine with four cores and 32 GB of mem-
ory. The average detection time for a given website was
calculated using 3,000 randomly selected data from the
Tep dataset. Fig. 15 shows the PhishDet detection time over
each website.

82371

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

TABLE 6. Comparison with selected phishing detection solutions.

Model Feature Set(s) Accuracy Precision Recall F1
URLDet URL Only 94.81% 95.57% 93.98% 94.77%
HTMLDet HTML Only 89.87% 91.18% 88.28% 89.71%
URLNet URL Only 91.71% 92.62% 90.64% 91.62%
StackModel URL™ + HTML" 93.83% 93.18% 94.58% 93.87%
HybridDLM URL + HTML" 96.95% 96.98% 96.28% 96.51%
PhishDet URL + HTML 96.42% 96.40% 96.44% 96.42%
"Manually extracted features
TABLE 7. PhishDet performance evaluation with the benchmark dataset. 100] -
\ . - .

Accuracy | Precision Recall F1
Before Train with Trg, | 86.65% 94.58% 75.42% 83.92%
After Train with Trgp, 99.57% 99.41% 99.65% 99.53%

TABLE 8. Details of the zero-day attack detection experiment.

st nd

U Juempt | 2EAtempt s | A | S
20-11-2021 22-11-2021 53 49 16 04 04
21-11-2021 23-11-2021 217 188 101 18 17
22-11-2021 24-11-2021 135 128 85 06 06

f1 - Number of phishing websites downloaded from PhishTank
f> - Number of phishing websites correctly detected by PhishDet
f3 - Number of phishing websites correctly detected by GSB

f4 - Number of zero-day attacks (see Section IV-D3)

fs - Number of zero-day attacks correctly detected by PhishDet

60

——— average

50 4

time (seconds)
w B
o o
| !

N
o
L

10 A

0 500 1000 1500 2000 3000

website

2500

FIGURE 15. PhishDet detection time curve.

5) PERFORMANCE ON AN IMBALANCED DATASET

On the real Internet, the occurrence of phishing is much
lower compared to the legitimate. Therefore, evaluating an
anti-phishing tool on an imbalanced dataset is essential for a
realistic evaluation of the model’s performance [38]. To have
such an experiment, the current study constructed imbalanced
datasets by having different legitimate to phishing ratios from
1:1 to 1:10. However, the number of legitimate counts was
kept constant in all cases, and different ratios were maintained
by changing the number of phishing data. The experiment
was performed twice using the Teg and Tepy, datasets to have
an unbiased, accurate conclusion at the end. The f1-score was
used to measure the performance instead of accuracy since it
is the most appropriate metric on imbalanced datasets [38].

82372

60 -

fl-score

40 4

20
—e— Dataset B
- Benchmark Dataset

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10

ratios

FIGURE 16. PhishDet performance on different legitimate to phishing
ratios.

Fig. 16 demonstrates the model’s performance on the differ-
ent legitimate to phishing ratios.

V. RESULTS AND DISCUSSION

Phishing attacks are at historic highs at present. It is then
necessary to experiment solutions to this increasing phish-
ing trend. In that context, PhishDet comes as an alternative
solution that uses LRCN with GCN to fight against phishers.
PhishDet has experimentally shown that it can detect phishing
attacks with 96.42% accuracy, 96.40% precision, 96.44%
recall, and 96.42% f1-score. The FP and FN rates were also
at 0.036.

Moreover, the proposed solution was compared with five
different solutions in Section IV-D2. In that experiment, the
URLDet and URLNet are based only on URLs, and the
HTMLDet is based only on HTML content. However, Stack-
Model and HybridDLM use both URL and HTML content
during the detection, and StackModel extracts both URL and
HTML features manually, while HybridDLM only collects
HTML features manually. Table 6 result shows that PhishDet
performed well over URLDet, URLNet, HTMLDet and
StackModel. However, HybridDLM recorded a marginally
high performance over PhishDet. It could be due to the
careful selection of phishing detection features in Hybrid-
DLM because of the feature extraction technique. However,
as mentioned in Section II-A, manual feature extraction has
several drawbacks. PhishDet is free from such drawbacks due
to the used representation learning approach. It could also
gradually learn the significant features from the raw URLSs
and HTML contents when the phishing detection features

VOLUME 10, 2022

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

are constantly changing. Therefore, PhishDet is better than
HybridDLM from the perspective of feature engineering.

According to Table 2, the Web2Vec solution achieved the
highest phishing detection accuracy among recent solutions,
and it is 99%. As discussed in Section II-B1, Web2Vec
and WebPhish solutions are similar to PhishDet. Further,
Web2Vec and WebPhish have used a similar approach when
collecting data for the study. Therefore, PhishDet experi-
mented with Web2Vec’s dataset in Section IV-D2 to bench-
mark the solution with similar solutions. PhishDet recorded
99.53% detection accuracy in that experiment, which is better
than Web2Vec recorded accuracy. However, as discussed in
Section IV-A, the Benchmark Dataset was not diverse. There-
fore, the accuracy recorded with the Benchmark Dataset was
not selected as the actual accuracy of PhishDet. However,
it shows how a dataset could mislead the final accuracy of a
phishing detection solution. Again, it is proof of what [38]
highlighted about the importance of a diverse dataset in a
phishing detection study.

Further, the literature has suggested that if Alexa is used to
collect legitimate URLs, specific strategies should be applied
to have a diverse set of legitimate URLs [38]. Since Bench-
mark Dataset failed to apply such strategies, PhishDet shows
an unrealistic performance with it. Moreover, the latest is
better when collecting phishing data from any public source
since phishing detection features are constantly changing.
Otherwise, the collected dataset may not represent the current
phishing status, and then the trained solution may not be
effective in a real attacking environment.

Although PhishDet performed well in a balanced envi-
ronment, Fig. 16 shows that the proposed model’s perfor-
mance declines due to its imbalanced nature. The f1-score
was downgraded from 96.42% to 78.95% when the phish-
ing to legitimate ratio changed from 1:1 to 1:10 in the Tep
dataset, and it is proportionally a 17.47% decline. Further,
the FN rate had increased from 0.036 to 0.066 during that
experiment. However, the experiment done with the Tepp,
dataset had only a 3.09% drop in the fl-score when the
ratios have changed similarly. It again emphasises the effect
of diversity in datasets in phishing detection studies and
how the performances of the studies are misled based on
the used dataset. However, there is no well-accepted legit-
imate phishing ratio to test the imbalanced nature thor-
oughly, and it is also known that the classifier performance
declines when the dataset becomes more and more imbal-
anced [38]. In such context, PhishDet averagely maintained
an 85.51% of fl-score with the Teg dataset and 98.05% of
fl-score with the Tep, dataset in the presented experiment.

Moreover, the detection time and zero-day attack detec-
tion are crucial for any anti-phishing solution to be effec-
tive in a real environment. PhishDet has gained positive
points for these criteria during the performed experiments.
Fig. 15 shows that the average detection time of PhishDet
is 1.8 seconds. It is a notable achievement by PhishDet
because [44] have tried different ways to decrease the detec-
tion time in their study and finally came to an average value of

VOLUME 10, 2022

3.5 seconds. The zero-day experiment (Section IV-D3) also
shows that PhishDet could detect 27 out of 28 zero-day
attacks, which is 96.43%. Further, the solution’s overall accu-
racy was 90.12% during the experiment period, and it is well
above the favourite blacklist, GSB, which detected phishing
attacks with 49.88% accuracy.

However, the current performance of PhishDet could be
decreased over time. The problems like data drifting could
affect the performance of PhishDet in the long run since
the phishing nature is rapidly changing, and new attack-
ing strategies have evolved [42]. Thus, PhishDet must be
retrained occasionally to become more effective against
future attacks [38]. Section IV-D1 experimentally shows that
PhishDet’s detection accuracy declined by 9.35% during one
year since Dataset A was collected before September 2019
and Dataset B was after November 2020. However, after
retraining the model with Dataset B, PhishDet reclaimed the
accuracy and proved the effectiveness of retraining in the
long run. Although PhishDet requires retraining, it will be
less costly because PhishDet uses a representation learning
approach without expert involvement. However, retraining
requires labelled data and acquiring labelled data in the phish-
ing domain is one of the challenges when maintaining the
performance of anti-phishing solutions in the long run [42].
That challenge applies to the proposed solution, and stan-
dard data collection approaches need to be established in
future to support PhishDet kind of solutions to retain in the
anti-phishing domain for a more extended periods.

VI. CONCLUSION AND FUTURE WORK

This paper presents a differentiated phishing detection
approach called PhishDet that exercises representation learn-
ing techniques simultaneously for URL and HTML content of
a web page. It combines two separate models named URLDet
and HTMLDet that were modelled using LRCN and GCN
techniques to process URLs and HTML contents. PhishDet
performs well at present. However, the solution should be
retained occasionally to be more effective in future attacks,
and the retaining process may not be costly due to the advan-
tages of the representation learning technique.

PhishDet is susceptible to adversarial attacks since the cur-
rent version of PhishDet is not trained against them. There-
fore, a GAN is planned to integrate with PhishDet to minimise
adversarial attack effects in future work. Further, an auto-
mated framework to retrain the model through a labelled
data collection process may add some value to PhishDet to
overcome labelled data issues in the long run. Moreover,
PhishDet is planned to integrate with an active continuous
learning environment to have a dynamic approach against the
prevalent identity theft called phishing.

ACKNOWLEDGMENT

The authors acknowledge the support received from the LK
Domain Registry in publishing this paper and the invaluable
remarks from Dr. Chamath Keppitiyagama of the University
of Colombo School of Computing, Sri Lanka.

82373

IEEE Access

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]
[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. L. Chiew, K. S. C. Yong, and C.L. Tan, “A survey of phishing
attacks: Their types, vectors and technical approaches,” Expert Syst. Appl.,
vol. 106, pp. 1-20, Sep. 2018.

Z. Dou, 1. Khalil, A. Khreishah, A. Al-Fugaha, and M. Guizani, “Sys-
tematization of knowledge (SoK): A systematic review of software-based
web phishing detection,” IEEE Commun. Surveys Tuts., vol. 19, no. 4,
pp. 2797-2819, 4th Quart., 2017.

W. D. Yu, S. Nargundkar, and N. Tiruthani, “A phishing vulnerability
analysis of web based systems,” in Proc. IEEE Symp. Comput. Commun.,
Jul. 2008, pp. 326-331.

A. Sfakianakis, C. Douligeris, L. Marinos, M. Lourengo, and
A. O. Raghimi, “ENISA threat landscape report 2018: 15 top cyberthreats
and trends,” Eur. Union Agency Netw. Inf. Secur. (ENISA), Greece,
Tech. Rep., 2019, doi: 10.2824/622757.

A. K. Jain and B. B. Gupta, “Phishing detection: Analysis of visual
similarity based approaches,” Secur. Commun. Netw., vol. 2017, pp. 1-20,
Jan. 2017.

Phishing Activity Trends Report: 4th Quarter 2020, Anti-Phishing Work-
ing Group, Lexington, MA, USA, Feb. 14, 2021.

Y. Li, Z. Yang, X. Chen, H. Yuan, and W. Liu, “A stacking model using
URL and HTML features for phishing webpage detection,” Future Gener.
Comput. Syst., vol. 94, pp. 27-39, May 2019.

A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153-1176, 2nd Quart., 2016.

C. Opara, B. Wei, and Y. Chen, “HTMLPhish: Enabling phishing web page
detection by applying deep learning techniques on HTML analysis,” 2019,
arXiv:1909.01135.

A. C.Bahnsen, E. C. Bohorquez, S. Villegas, J. Vargas, and F. A. Gonzalez,
“Classifying phishing URLs using recurrent neural networks,”
in Proc. APWG Symp. Electron. Crime Res. (eCrime), Apr. 2017,
pp. 1-8.

W. Chen, W. Zhang, and Y. Su, “Phishing detection research based
on LSTM recurrent neural network,” in Proc. Int. Conf. Pioneer-
ing Comput. Scientists, Eng. Educators. Singapore: Springer, 2018,
pp. 638-645.

C. Opara and Y. Chen, “Look before you leap: Detecting phishing
web pages by exploiting raw URL and HTML characteristics, 2020,
arXiv:2011.04412.

J.Feng, L. Zou, O. Ye, and J. Han, “Web2Vec: Phishing webpage detection
method based on multidimensional features driven by deep learning,”
IEEE Access, vol. 8, pp. 221214-221224, 2020.

Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, Dec. 2015.

W. Wang, F. Zhang, X. Luo, and S. Zhang, “PDRCNN: Precise phishing
detection with recurrent convolutional neural networks,” Secur. Commun.
Netw., vol. 2019, pp. 1-15, Oct. 2019.

M. Sameen, K. Han, and S. O. Hwang, “PhishHaven—An efficient
real-time AI phishing URLs detection system,” IEEE Access, vol. 8,
pp. 83425-83443, 2020.

Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, “Phishing attacks: A recent
comprehensive study and a new anatomy,” Frontiers Comput. Sci., vol. 3,
Mar. 2021, Art. no. 563060.

C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classifica-
tion of phishing pages,” in Proc. NDSS, 2010, pp. 1-14.

E.-S. M. El-Alfy, “Detection of phishing websites based on probabilistic
neural networks and K-medoids clustering,” Comput. J., vol. 60, no. 12,
pp. 1745-1759, Apr. 2017.

M. Chatterjee and A. S. Namin, “Deep reinforcement learning for detect-
ing malicious websites,” 2019, arXiv:1905.09207.

V. Frangois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau,
“An introduction to deep reinforcement learning,” Found. Trends Mach.
Learn., vol. 11, nos. 3—4, pp. 219-354, 2018.

S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. F. Cranor, J. Hong,
and E. Nunge, “Anti-phishing phil: The design and evaluation of a game
that teaches people not to fall for phish,” in Proc. 3rd Symp. Usable Privacy
Secur., 2007, pp. 88-99.

M. Baslyman and S. Chiasson, ““Smells phishy?’: An educational game
about online phishing scams,” in Proc. APWG Symp. Electron. Crime Res.
(eCrime), Jun. 2016, pp. 1-11.

P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, ‘“PhishNet: Pre-
dictive blacklisting to detect phishing attacks,” in Proc. IEEE INFOCOM,
Mar. 2010, pp. 1-5.

82374

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

[44]

[45]

[46]

(47]

Y. Cao, W. Han, and Y. Le, “Anti-phishing based on automated individual
white-list,” in Proc. 4th ACM Workshop Digit. Identity Manage., 2008,
pp. 51-60.

M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: A literature
survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 4, pp. 2091-2121,
4th Quart, 2013.

A. K. Jain and B. B. Gupta, “‘A novel approach to protect against phishing
attacks at client side using auto-updated white-list,” EURASIP J. Inf.
Secur., vol. 2016, no. 1, pp. 1-11, May 2016.

Y. Zhang, 1. J. Hong, and F. L. Cranor, “Cantina: A content-based approach
to detecting phishing web sites,” in Proc. 16th Int. Conf. World Wide Web,
2007, pp. 639-648.

Y. Joshi, S. Saklikar, D. Das, and S. Saha, “PhishGuard: A browser plug-in
for protection from phishing,” in Proc. 2nd Int. Conf. Internet Multimedia
Services Archit. Appl., Dec. 2008, pp. 1-6.

N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. Mitchell, “Client-
side defense against web-based identity theft,” [Online]. Available:
http://crypto.stanford.edu/SpoofGuard/webspoof.pdf

B. B. Gupta, A. Tewari, A. K. Jain, and D. P. Agrawal, “Fighting against
phishing attacks: State of the art and future challenges,” Neural Comput.
Appl., vol. 28, no. 12, pp. 3629-3654, Mar. 2016.

A. P. E. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi, “A layout-
similarity-based approach for detecting phishing pages,” in Proc. 3rd
Int. Conf. Secur. Privacy Commun. Netw. Workshops (SecureComm),
Sep. 2007, pp. 454—463.

M. Dunlop, S. Groat, and D. Shelly, ““‘GoldPhish: Using images for content-
based phishing analysis,” in Proc. 5th Int. Conf. Internet Monitor. Protec-
tion, May 2010, pp. 123-128.

S. Afroz and R. Greenstadt, “PhishZoo: Detecting phishing websites
by looking at them,” in Proc. IEEE 5th Int. Conf. Semantic Comput.,
Sep. 2011, pp. 368-375.

S. C.Jeeva and E. B. Rajsingh, “Intelligent phishing URL detection using
association rule mining,” Hum.-Centric Comput. Inf. Sci., vol. 6, no. 1,
pp. 1-19, Jul. 2016.

A. K. Jain and B. B. Gupta, “PHISH-SAFE: URL features-based
phishing detection system using machine learning,” in Advances
in Intelligent Systems and Computing. Singapore: Springer, 2018,
pp. 467-474.

M. Aburrous, M. A. Hossain, K. Dahal, and FE Thabtah,
“Intelligent phishing detection system for e-banking using fuzzy
data mining,” Expert Syst. Appl., vol. 37, no. 12, pp.7913-7921,
Dec. 2010.

A.E. Aassal, S. Baki, A. Das, and R. M. Verma, “An in-depth benchmark-
ing and evaluation of phishing detection research for security needs,” IEEE
Access, vol. 8, pp. 22170-22192, 2020.

R. M. Mohammad, F. Thabtah, and L. McCluskey, ‘‘Predicting phishing
websites based on self-structuring neural network,” Neural Comput. Appl.,
vol. 25, no. 2, pp. 443-458, Nov. 2013.

0. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based
phishing detection from URLS,” Expert Syst. Appl., vol. 117, pp. 345-357,
Mar. 2019.

A. C. Bahnsen, I. Torroledo, L. D. Camacho, and S. Villegas, “DeepPhish:
Simulating malicious Al in Proc. APWG Symp. Electron. Crime Res.,
2018, pp. 1-8.

D. Sahoo, C. Liu, and S. C. H. Hoi, “Malicious URL detection using
machine learning: A survey,” 2017, arXiv:1701.07179.

A. AlEroud and G. Karabatis, “Bypassing detection of URL-based phish-
ing attacks using generative adversarial deep neural networks,” in Proc.
6th Int. Workshop Secur. Privacy Anal., Mar. 2020, pp. 53-60.

P. Yang, G. Zhao, and P. Zeng, “Phishing website detection based on
multidimensional features driven by deep learning,” IEEE Access, vol. 7,
pp. 15196-15209, 2019.

R. M. Mohammad, F. Thabtah, and L. McCluskey, “An assessment
of features related to phishing websites using an automated tech-
nique,” in Proc. Int. Conf. Internet Technol. Secured Trans., Dec. 2012,
pp. 492-497.

L. A. Tuan Nguyen, B. L. To, H. K. Nguyen, and M. H. Nguyen, “An
efficient approach for phishing detection using single-layer neural net-
work,” in Proc. Int. Conf. Adv. Technol. Commun. (ATC), Oct. 2014,
pp. 435-440.

A. Subasi, E. Molah, F. Almkallawi, and T. J. Chaudhery, “Intelligent
phishing website detection using random forest classifier,” in Proc. Int.
Conf. Electr. Comput. Technol. Appl. (ICECTA), Nov. 2017, pp. 1-5.

VOLUME 10, 2022

http://dx.doi.org/10.2824/622757

S. Ariyadasa et al.: Combining Long-Term Recurrent Convolutional and Graph Convolutional Networks

IEEE Access

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

M. E. Pratiwi, T. A. Lorosae, and F. W. Wibowo, “‘Phishing site detection
analysis using artificial neural network,” J. Phys., Conf. Ser., vol. 1140,
Dec. 2018, Art. no. 012048.

G. Sonowal and K. S. Kuppusamy, “PhiDMA—A phishing detection
model with multi-filter approach,” J. King Saud Univ.-Comput. Inf. Sci.,
vol. 32, no. 1, pp. 99-112, Jan. 2020.

T. T. T. Pham, V. N. Hoang, and T. N. Ha, “Exploring efficiency of
character-level convolution neuron network and long short term memory
on malicious URL detection,” in Proc. 8th Int. Conf. Netw., Commun.
Comput. (ICNCC), Dec. 2018, pp. 82-86.

R. M. Verma, V. Zeng, and H. Faridi, “Data quality for security
challenges,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 2605-2607.

S. Ariyadasa, S. Fernando, and S. Fernando, “Detecting phishing attacks
using a combined model of LSTM and CNN,” Int. J. Adv. Appl. Sci., vol. 7,
no. 7, pp. 56-67, Jul. 2020.

V. Zeng, S. Baki, A. E. Aassal, R. Verma, L. F. T. De Moraes, and
A. Das, “Diverse datasets and a customizable benchmarking framework
for phishing,” in Proc. 6th Int. Workshop Secur. Privacy Anal., Mar. 2020,
pp. 3541.

X.Dong, J. A. Clark, and J. Jacob, “Modelling user-phishing interaction,”
in Proc. Conf. Hum. Syst. Interact., May 2008, pp. 627-632.

M. A. Adebowale, K. T. Lwin, E. Sdnchez, and M. A. Hossain, “Intelligent
web-phishing detection and protection scheme using integrated features
of images, frames and text,” Expert Syst. Appl., vol. 115, pp. 300-313,
Jan. 2019.

C.-Y. Huang, S.-P. Ma, W.-L. Yeh, C.-Y. Lin, and C.-T. Liu, “Mitigate web
phishing using site signatures,” in Proc. IEEE Region 10 Conf., Nov. 2010,
pp. 803-808.

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, T. Darrell, and K. Saenko, “Long-term recurrent
convolutional networks for visual recognition and description,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 2625-2634.

F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural net-
works with convolutional ARMA filters,” 2019, arXiv:1901.01343.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61-80, Dec. 2009.

K. L. Chiew, E. H. Chang, C. L. Tan, J. Abdullah, and K. C. Yong,
“Building standard offline anti-phishing dataset for benchmarking,” Int.
J. Eng. Technol., vol. 7, no. 4, pp. 7-14, 2018.

S. Ariyadasa, S. Fernando, and S. Fernando, “Phishing websites
dataset,” Nov. 17, 2021. Distributed by Mendeley Data, doi:
10.17632/n96ncsr5g4.1.

H. Le, Q. Pham, D. Sahoo, and C. H. Steven Hoi, “URLNet: Learning
a URL representation with deep learning for malicious URL detection,”
2018, arXiv:1802.03162.

Y. Lin, R. Liu, D. M. Divakaran, J. Y. Ng, Q. Z. Chan, Y. Lu, Y. Si, F. Zhang,
and J. S. Dong, “Phishpedia: A hybrid deep learning based approach to
visually identify phishing webpages,” in Proc. 30th USENIX Secur. Symp.,
Aug. 2021, pp. 3793-3810.

T. Thakur and R. Verma, “Catching classical and hijack-based phishing
attacks,” in Proc. Int. Conf. Inf. Syst. Secur. Cham, Switzerland: Springer,
2014, pp. 318-337.

A. Butnaru, A. Mylonas, and N. Pitropakis, “Towards lightweight
URL-based phishing detection,” Future Internet, vol. 13, no. 6, p. 154,
Jun. 2021.

VOLUME 10, 2022

SUBHASH ARIYADASA received the bachelor’s
degree in information and communication technol-
ogy from the University of Colombo School of
Computing, Sri Lanka, in 2013. He is currently
pursuing the Ph.D. degree with the University of
Moratuwa, Sri Lanka.

From 2013 to 2015, he worked in the soft-
ware industry and contributed to several foreign
projects. Since 2015, he has been a Lecturer with
the Department of Computer Science and Infor-
matics, Uva Wellassa University, Sri Lanka. His research interests include
cybersecurity, deep learning, reinforcement learning, and data mining
technologies.

SHANTHA FERNANDO received the B.Sc.
degree (Hons). in engineering and the Master
of Philosophy degree from the University of
Moratuwa, in 1993 and 2000, respectively, and the
Ph.D. degree from the Delft University of Technol-
ogy, The Netherlands, in 2010.

He is a Professor with the Department of
Computer Science and Engineering, University
of Moratuwa; and serves as the Director of
Operations Technical Secretariat (OTS) with the
University of Moratuwa. He is the Former Director of the Centre for IT Ser-
vices (CITeS) and the Engineering Research Unit, University of Moratuwa.
He is one of the founders and the Chief Advisor of TechCERT, affiliated
to LK-Domain Registry. His research interests include in computer and
information security, information systems, and e-learning. He became the
first Chartered Engineer in Sri Lanka in the field of IT in the Institution
of Engineers Sri Lanka (IESL) and has been a Founding Member of IT
and Computer Engineering Sectional Committee of IESL. He served in
the Council of the Computer Society of Sri Lanka. He also served as
a member for the Governing Board of Lanka Education and Research
Network (LEARN).

SUBHA FERNANDO (Member, IEEE) received
the B.Sc. degree (special) (Hons.) in statistics and
computer science from the University of Kelaniya,
Sri Lanka, in 2004, and the Master of Engineer-
ing and Doctor of Engineering degrees from the
Nagaoka University of Technology, Japan, in 2010
and 2013, respectively.

She is an Artificial Intelligence Research Sci-
entist and a Senior Lecturer with the University
of Moratuwa and a Consultant of Artificial Intel-
ligence of CodeGen International (Pvt.) Ltd. She is the Coordinator and the
Co-Founder of the QBITS—Artificial Intelligence Laboratory, University
of Moratuwa. She is the Former Head of the Department of Computational
Mathematics; the Former Director of the Information Technology Research
Unit, University of Moratuwa; and the Past President of the Sri Lankan Asso-
ciation for Artificial Intelligence. She has been a resource person for many
research workshops conducted by research bodies, including academia, and
industry. Her research interests include deep learning, machine learning,
multi-agent systems, and data mining technologies.

82375

http://dx.doi.org/10.17632/n96ncsr5g4.1

