SMART GLOVE FOR RECOGNITION OF SINHALA SIGN LANGUAGE

V.K.O.N THALPAWILA (IA -178668G)

Degree of Master of Science in Industrial Automation

Department of Electrical Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > June 2022

SMART GLOVE FOR RECOGNITION OF SINHALA SIGN LANGUAGE

V.K.O.N Thalpawila (IA -178668G)

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Industrial Automation

Department of Electrical Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > June 2022

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 30/06/2022

The above candidate has carried out research for the Masters thesis under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of the supervisor:

Signature of the supervisor:

Date: 30/06/2022

DEDICATION

To my mother and grandmother who made all of this possible, for making me who I am

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to my MSc research advisor Prof. D.P Chandima for the incessant support of my MSc study and related research, for his patience, motivation, and immense knowledge helped me to successfully complete the research and writing of this thesis.

Next, I would like to thank my friends and colleagues for their support, encouragement, and insightful comments. Their hard questions lead me to widen my research from various perspectives.

My sincere thank goes to my mother, husband, and aunt(mamma) who provided me support, and encouragement. It would not be possible to carry out this research successfully without their precious support and encouragement.

Finally, I should thank each and every friend and colleague whose names have not been mentioned here, for the support, encouragement and guidance provided to make the educational process a success.

ABSTRACT

Speech and hearing-impaired people used sign language to communicate with each other. Sign languages are made of gestures. The language consists of different gestures instead of letters or words.

The purpose of this research work is to reduce the communication gap between normal people and hearing and speech impaired people. The research incorporates a system comprising of a glove-based mechanism, consisting of sensors to recognize the hand gestures for Sinhala sign language (SSL) alphabet.

The solution combines electronics, sensors, embedded systems, machine learning algorithms, and natural language processing. The research based on a data glove with flex sensors that measure finger bending and an Inertial Measurement Unit (IMU) to recognise palm-turning gestures of the alphabet. Further, sample data with eleven independent variables and hundred data samples per gesture was used for the purpose. In the proposed system, data is trained and classified using Random Forest machine learning algorithm. And natural language processing (NLP) is completed using a newly developed Application Programming Interface (API) to make Sinhala words.

The results show that the proposed algorithm has a better recognition effect on gestures, and is capable of making words and sentences. The accuracy of the model on the prepared dataset was founded as 99% for the target user with regard to random forest classification.

Complete training for all possible combination of letters and preparation of words is necessary to continue NLP. Also, the system can customise as an education platform for sign language learners. Further, the developed smart glove can use separately for any other hand gesture base applications, the developed ML base system can use or customize separately for feature extraction of any smart wearable item, and finally, the newly developed Sinhala API can use separately for any Sinhala sign language base NLP research work.

Keywords: Sinhala sign language, Hand gesture, Machine learning, Data glove

TABLE OF CONTENTS

DECLAR	ATION OF THE CANDIDATE & SUPERVISOR	i
DEDICAT	TION	ii
ACKNOW	WLEDGEMENTS	iii
ABSTRA	.CT	iv
TABLE C	OF CONTENTS	v
LIST OF	FIGURES	vii
LIST OF	TABLES	viii
LIST OF A	ABBREVIATIONS	ix
LIST OF A	APPENDICES	X
1 INTR	RODUCTION	1
1.1 E	Background	1
1.2 7	The significance of the study	2
1.3 I	Literature review	4
1.3.1	Background	4
1.3.2	Machine learning (ML) methods	6
1.3.3	Supervised machine learning algorithms	8
1.4 F	Research gap and objectives	10
1.4.1	Problem statement	10
1.4.2	Objectives	11
2 SYST	TEM DESIGN AND IMPLEMENTATION	12
2.1 H	Hardware implementation	14
2.1.1	Electronic system design	14
2.1.2	Bend sensor	14
2.1.3	Analog to Digital Converter (ADC)	16
2.1.4	Six-axis Inertial Measurement Unit (IMU)	18
2.1.5	Circuit design	22
2.1.6	Implementation of data glove	24
2.2 I	Data acquisition	
2.3 I	Data analysis	27
2.4 S	Sinhala sign language API and alphabetic logic	

3 THE EXPERIMENT AND RESULTS	32
3.1 Classification results	32
3.1.1 Classification reports	32
3.2 Language processing results	35
3.2.1 Preparation of letters	35
3.2.2 Preparation of words	38
3.2.3 Preparation of sentence	41
4 CONCLUSIONS AND FUTURE WORK	42
4.1 Conclusions	42
4.2 Future work	
REFERENCES	
Appendix A: Cost of implementation unit	47
Appendix B: Data Sheets of Components	

LIST OF FIGURES

Figure	Description	Page
Fig. 1.1.	Different sign language families	2
Fig. 1.2.	Alphabet of Sinhala sign language	3
Fig. 1.3.	Leap motion controller	4
Fig. 1.4.	Electromyography sensor	5
Fig. 1.5.	Sign language gesture types	6
Fig. 1.6.	Machine learning algorithm categorization	7
Fig. 1.7.	KNN working scenario	9
Fig. 1.8.	Features of SSL	10
Fig. 2.1	Flow of design plan	12
Fig. 2.2.	System overview	13
Fig. 2.3.	Methodology of complete system design	14
Fig. 2.4.	Approach with conductive stretchable yarn	15
Fig. 2.5.	Approach with Velostat and conductive yarn	15
Fig. 2.6.	Voltage divider circuit per finger	16
Fig. 2.7.	ADS1115	16
Fig. 2.8.	Six-axis IMU	18
Fig. 2.9.	Complementary filter process schematic	19
Fig. 2.10.	Euler angle transformation	19
Fig. 2.11	Four- dimensional extension of the complex numbers	21
Fig. 2.12.	Schematic diagram of the circuit	22
Fig. 2.13.	PCB layout of the circuit	23
Fig. 2.14.	Planned flex sensor arrangement	24
Fig. 2.15.	Hand glove with initial sensor positions	24
Fig. 2.16.	Hand glove with final sensor positions	25
Fig. 2.17.	Sample hand postures with the data glove	25
Fig. 2.18.	Bolock diagram of data analysis and evaluation process	27
Fig. 2.19.	Standard normal distribution- standard scaler	27
Fig. 2.20	Test-Train split of data	28
Fig. 2.21.	Block diagram of API and NLP process	29
Fig. 2.22.	Vowel and consonant conjunction	30
Fig. 2.23.	API data flow chart	31
Fig. 3.1.	Outcome of ML algorithm	32
Fig. 3.2.	Real-time data feeding via USB	35
Fig. 3.3.	Random letters	37
Fig. 3.4.	Word preparation	38
Fig. 3.5.	Word "Bas"	38
Fig. 3.6.	Sentence preparation experiment	41
Fig. 3.7.	Resulted Sentence	41
Fig. 3.8.	Sentence preparation	41

LIST OF TABLES

Figure	Description	Page
Table 2.1	CSV file created using all attributes	26
Table 2.2	Lookup table to create moderators	29
Table 3.1	Classification report for KNN algorithm	33
Table 3.2	Classification report for Random Forest algorithm	34
Table 3.3	Experiment and results on letter recognition - Vowels	36
Table 3.4	Experiment and results on letter recognition - Moderators	36
Table 3.5	Experiment and results on language processing - Words	39

LIST OF ABBREVIATIONS

Abbreviation	Description
AI	Artificial Intelligence
API	Application Programming Interface
ASL	American Sign Language
EGALE	Easily Applicable Graphical Layout Editor
EMG	Electromyography
FN	False Negative
FP	False Positive
HRI	Human-Robot Interaction
IDE	Integrated Development Environment
IMU	Inertial Measurement Unit
ML	Machine Learning
NLP	Natural Language Processing
PCB	Printed Circuit Board
SSL	Sinhala Sign Language
TP	True Positive
TN	True Negative
WHO	World Health Organization

LIST OF APPENDICES

Appendix	Description	Page
Appendix – A	Cost of Implementation unit	47
Appendix – B	Data Sheets of Components	48