References


[35] E. Yoon, J. Hansen, and A. Paulraj, “Space-frequency precoding with space-

[36] H. R. Bahrami and T. Le-Ngoc, “Mimo precoder designs for frequency-


[38] J. Choi and R. Heath, “Interpolation based transmit beamforming for mimo-


[40] M. Kobayashi and X. Mestre, “Impact of csi on distributed space-time coding

knowledge-based optimum power allocation for relaying protocols in the high

space-time codes in amplify-and-forward mode.”

[43] Y. Jing and H. Jafarkhani, “Network beamforming with channel means and
[44] ——, “Network beamforming using relays with perfect channel information,”


beamforming with perfect csi: Optimum and distributed implementation,”

beamforming for two-way relay networks,” accepted for publication on IEEE

[48] K. T. Phan, T. Le-Ngoc, S. A. Vorobyov, and C. Tellambura, “Power alloca-

[49] Y. Fan, A. Adinoyi, J. S. Thompson, H. Yanikomeroglu, and H. V. Poor,
“A simple distributed antenna processing scheme for cooperative diversity,”

2007.

[51] J. Luo, R. S. Blum, L. Cimini, L. Greenstein, and A. Haimovich, “Power allo-
ocation in a transmit diversity system with mean channel gain information,”

decode-and-forward mimo relay system with mean and covariance feedback,”


[76] Universal Mobile Telecommunications System (UMTS); Spacial channel model for Multiple Input Multiple Output (MIMO) simulations, ETSI Std., 3GPP TR 25.996 version 9.0.0 Release 9.

