DEVELOPMENT OF A FRAMEWORK FOR INTEGRATED SOLID WASTE MANAGEMENT: AN APPLICATION TO KEKIRAWA PRADESHIYA SABHA

Marakkala Manage Mahesh Samanpriya

(169165K)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

Sri Lanka

August 2021

DEVELOPMENT OF A FRAMEWORK FOR INTEGRATED SOLID WASTE MANAGEMENT: AN APPLICATION TO KEKIRAWA PRADESHIYA SABHA

Marakkala Manage Mahesh Samanpriya

(169165K)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering and Management

Department of Civil Engineering

University of Moratuwa

Sri Lanka

August 2021

Declaration

"I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books)."

Signature: Date:

The above candidate has carried out research for the Master's thesis under my

supervision.

Name of the supervisor: Prof. M.W. Jayaweera

Signature of the supervisor:

Date:

i

Abstract

Municipal solid waste management (MSWM) has evolved into a national concern affecting every individual in Sri Lanka. Poorly managed MSW affects to health and wellbeing of people, pollutes the air, soil, and water, causes flooding, spreads diseases, harms flora and fauna, loss of money, and obstructs resource recovery. Therefore, Sri Lanka has been trying to find a long-lasting solution to MSWM, which should be environmentally, socially, and economically acceptable. Integrated Solid Waste Management (ISWM) provides a contemporary and systematic approach to MSWM. In these efforts, the paradigm shift from landfilling to MSW reduction or prevention is thought vital to be embedded. The government's new policy on "Vistas of Prosperity and Splendor" and Draft National Environmental Policy (2021) also mandates the use of ISWM for MSWM in Sri Lanka.

Embedding circular economy perspectives to ISWM further reduces the amount of MSW produced or retained globally by transforming it into resources. Therefore, the quantity of MSW disposed of at landfills is greatly reduced, and natural resources for manufacturing processes are optimized. This study focused on developing an ISWM framework for MSWM in Sri Lanka based on the circular economy perspectives and under the purview of the present administrative framework. The local needs and conditions were carefully analyzed during the study to determine the most suitable options for all aspects of MSWM, including generation, segregation, collection and transport, sorting, recovery, treatment, and final disposal of MSW. The application of the 3R concept for MSW minimization, promoting source-segregation, increasing the efficiency of collection and transport, producing value-added compost and liquid fertilizer, selling reuse and recyclable materials, pre-processing and reusing of construction and demolition waste, landfilling, and generating electricity through waste incineration were proposed under the ISWM framework developed. The value-addition to the final compost product and liquid fertilizer was considered mandatory, as the government has given priority to organic fertilizer production efforts. The proposed ISWM framework was applied to Kekirawa Pradeshiya Sabha to evaluate the long-term sustenance of the framework developed.

The present status of MSWM practices carried out by Kekirawa Pradeshiya Sabha was evaluated through a questionnaire survey, field visits, meetings with officials involved in existing MSWM practices, and a comprehensive literature survey. Based on the deficiencies identified in the current MSWM practices carried out by Kekirawa Pradeshiya Sabha, the proposed ISWM framework developed was tailor-made to overcome the deficiencies identified and improve revenue generation to Kekirawa Pradeshiya Sabha. The current collection of MSW (17%) was increased up to 50% with the provision of two garbage compactors (6-8 m³ each). The open dumping of mixed waste currently being practiced will completely be halted, and an ISWM facility was designed with a compost plant, resource center, construction and demolition waste collection yard, and controlled landfill. The expected output of value-added compost and liquid fertilizers was 3.5 MT/day and 500 L/day, respectively. The electricity generation was 0.2 MW. Only 0.3 MT/day of fly ash will be disposed of in a secure landfill out of 13.8 MT/day of total MSW collected, which accounts

for 1.3% of the total MSW generation. An economic analysis was carried out to evaluate the economic feasibility of the proposed ISMW framework for Kekirawa Pradeshiya Sabha.

The results of economic analysis manifested that the Net Present Value (NPV) was SLR 66.52 million at an interest rate of 10%. The Internal Rate of Return (IRR) was 12%. Further, reduction of greenhouse gas emissions (GHG), land value appreciation, city beautification, improving health and wellbeing of people, promoting tourist attraction, and employment opportunities are other benefits to be gained from the proposed ISWM framework. Therefore, the proposed ISWM framework appears viable from a national economic viewpoint and can be used as a role model for the MSWM by other local authorities, particularly covering agriculture-based cities of Sri Lanka.

Keywords: Municipal Solid Waste Management, Integrated Solid Waste Management, Circular Economy, Greenhouse Gases, Net Present Value, Internal Rate of Return

Acknowledgement

First of all, I would like to extend my heartfelt gratitude to my supervisor Prof. Mahesh Jayaweera, for allowing me to complete the research. Your guidance and encouragement, given at every step of the research, helped me achieve the goals. Your support was immense, and I am very fortunate to have you as my supervisor. I extremely appreciate the advice given while carrying out the research, writings, and moral assistance given to complete the research.

I am very grateful to Prof. Jagath Manatunge and Prof. Buddhika Gunawardana for providing guidance and support for the research. Your advice and assistance given are very much appreciated.

I wish to express my sincere thanks to the Chairman, Secretary, Technical Officer, Development Officer, and other staff of Kekirawa Pradeshiya Sabha for the support given for me to collect data and information regarding MSWM practices carried out by Kekirawa Pradeshiya Sabha.

I would like to thank other staff of the Environmental Engineering Laboratory, Environmental Engineering Division, Department of Civil Engineering of the University of Moratuwa for the support given to me to carry out the research.

I am grateful to my family for being there for me, giving their unconditional love and support to fulfill my aims.

Table of contents

Dec	clara	tion			i
Ab	strac	t			ii
Acl	know	ledger	nent		iv
Tab	ole of	f conte	nts		v
Lis	t of f	igures			ix
Lis	t of t	ables			xi
Lis	t of a	lbbrevi	ations		xii
1.	INT	rod	UCTIO	N	1
	1.1	Backg	ground o	f the study	1
	1.2	Justif	ication o	f the study	4
	1.3	Objec	etives of	the study	8
2.	LIT	TERA'	TURE R	EVIEW	11
	2.1	Legal	and reg	ulatory framework applicable to MSWM	11
		2.1.1	Existing	policy framework	11
		2.1.2	Legal fr	amework for solid waste management in Sri Lanka	13
			2.1.2.1	National Environmental Act	13
			2.1.2.2	Western Provincial Council Statue No. 9 of 2009	16
			2.1.2.3	Municipal Councils Ordinance No. 29 of 1947	16
			2.1.2.4	Urban Council's Ordinance No. 61 of 1939	17
			2.1.2.5	Pradeshiya Sabha's Act, No. 15 of 1987	17
			2.1.2.6	Urban Development Authority	18
			2.1.2.7	Coast Conservation Act, No. 57 of 1981	18
			2.1.2.8	Fisheries and Aquatic Resources Act, No. 2 of 1996	19
			2.1.2.9	Nuisance Ordinance No. 15 of 1862	19
			2.1.2.10	Police Ordinance No. 16 of 1865	19
			2.1.2.11	Technical Guidelines on Solid Waste Management	20
			2.1.2.12	Regulations for Hazardous Waste Management	21
		2.1.3	Instituti	onal framework	21
			2.1.3.1	Local Authorities	22
			2.1.3.2	Central Environment Authority	22

	2.	1.3.3	Waste Ma	nagement Authority - Western Province	23
	2.	1.3.4	National S	Solid Waste Management Support Center	23
	2.	1.3.5	Urban De	velopment Authority	23
	2.	1.3.6	Sri Lanka	Land Development Corporation	24
	2.	1.3.7	Ministry o	of Environment and Natural Resources	24
	2.	1.3.8	Ministry o	of Urban Development, Coast Conservation, W	/aste
			Disposal,	and Community Cleanliness	24
	2.	1.3.9	Marine E	nvironment Protection Authority	24
	2.	1.3.10	Departme	nt of Coast Conservation & Coastal Reso	urce
			Managem	ent	25
2.2	ISWM	concep	t, options,	and challenges	25
	2.2.1 IS	SWM c	oncept		25
	2.2.2 IS	SWM o	ptions		28
	2.2.3 C	halleng	ges for imp	olementing ISWM	28
2.3	Develop	pment o	of technological	ogy options	32
	2.3.1 W	aste pi	revention.		32
	2.3.2 Se	ource-s	egregation	1	33
	2.3.3 C	ollectio	on and trar	nsport	34
	2.3.4 Fi	inal dis	posal		35
	2.	3.4.1	Composti	ng	35
			2.3.4.1.1	Aerobic composting	35
			2.3.4.1.2	In-vessel composting	36
			2.3.4.1.3	Windrow composting	37
			2.3.4.1.4	Composting through Kawashima machine	38
	2.	3.4.2	Waste-to-	Energy technologies	40
			2.3.4.2.1	Incineration	40
			2.3.4.2.2	Gasification	41
			2.3.4.2.3	Pyrolysis	42
			2.3.4.2.4	Anaerobic digestion	42
	2.	3.4.3	Landfillin	g	43
			2.3.4.3.1	Controlling landfilling	43
			2.3.4.3.2	Sanitary landfilling	44

	2.4	Financial and economic perspectives in relation to ISWM	48
		2.4.1 Financial and economic perspectives	48
		2.4.2 Circular economy	51
3.	ME	THODOLOGY	55
	3.1	Methodology to evaluate the present status of MSWM practices carried of	ut
		by Kekirawa Pradeshiya Sabha	55
	3.2	Methodology for the development of an ISWM framework based on t	he
		circular economy perspectives and under the purview of the prese	nt
		administrative framework of Sri Lanka	57
	3.3	Methodology for the development of technology options of the propos	ed
		ISWM framework developed	66
	3.4	Methodology for carrying out economic analysis for the long-term sustenan	ce
		of the proposed ISWM framework	68
		3.4.1 Financial analysis	69
		3.4.2 Economic analysis	74
4.	RE	SULTS	77
	4.1	Present status of MSWM practices of Kekirawa Pradeshiya Sabha	77
		4.1.1 MSW generation and composition	77
		4.1.2 Source-segregation of MSW	79
		4.1.3 Collection and transport of MSW	79
		4.1.4 Transfer stations	81
		4.1.5 Final disposal system	82
		4.1.5.1 Open dumping	82
		4.1.5.2 Resource center	86
		4.1.5.3 Current institutional arrangement for MSWM by Kekirav	va
		Pradeshiya Sabha	88
		4.1.5.4 Deficiencies and gaps identified in the existing MSW	M
		system	89
	4.2	Proposed ISWM framework based on the circular economy perspectives a	nd
		under the purview of the present administrative framework	
		4.2.1 MSW generation	95
		4.2.2 Source-segregation of MSW	95

	4.2.3	Collecti	on and transport of MSW	96
	4.2.4	Final di	sposal of MSW	101
		4.2.4.1	Compost plant	102
			4.2.4.1.1 Design philosophy	104
		4.2.4.2	Resource center	121
		4.2.4.3	Controlled landfill	121
	4.2.5	Instituti	onal arrangement	130
	4.3 Deve	elopment	of technology options of the proposed ISWM framework	132
	4.3.1	Final di	sposal of MSW	132
	4.3.2	GPS tra	cking system	136
	4.3.3	Value a	ddition to final compost product	138
	4.3.4	Value a	ddition to leachate	140
	4.4 Econ	omic ana	alysis for the long-term sustenance of ISWM framework	143
	4.4.1	Financia	al analysis for the proposed ISWM framework	143
		4.4.1.1	Capital expenditure	144
		4.4.1.2	Operation and maintenance cost	144
		4.4.1.3	Revenue generation	147
		4.4.1.4	Financial feasibility	148
	4.4.2	Econom	nic analysis for the proposed ISWM framework	149
		4.4.2.1	Estimation of the reduction of GHG emissions	150
		4.4.2.2	Economic feasibility	151
5.	DISCUS	SION		153
6.	CONCL	USION.		153
7.	RECOM	MENDA	ATIONS	174
Ref	erences	••••••	•••••••••••••••••••••••••••••••••••••••	176
An	neviires			186

List of figures

Figure 2.1: Paradigm shift proposed by ISWM concept	26
Figure 2.2: Supply of air under negative or positive pressure	35
Figure 2.3: In-vessel composting	37
Figure 2.4: Kawashima composting machine	39
Figure 2.5: Typical layout of the sanitary landfill	45
Figure 2.6: Components of the liner system (From top to bottom)	49
Figure 2.7: Types and examples of costs incurred for MSWM operations	50
Figure 4.1: Open dump located at Embulgaswewa, Kekirawa	82
Figure 4.2: Current status of the periphery of the open dump	83
Figure 4.3: Access to the open dump from the Kekirawa-Ganewalpola road	84
Figure 4.4: Current status of the open dump	84
Figure 4.5: Different types of waste being disposed of at the open dump	84
Figure 4.6: Undisturbed area of the open dumpsite	85
Figure 4.7: Backhoe loader operations in the open dumpsite	85
Figure 4.8: Underground tanks and other structures used for biogas generation.	85
Figure 4.9: Collection of plastics	87
Figure 4.10: Collection of polythene	87
Figure 4.11: Collection of cardboard	87
Figure 4.12: Collection of PET bottles	87
Figure 4.13: Baling machine	87
Figure 4.14: Electronic scale	87
Figure 4.15: Current institutional arrangement for MSWM	89
Figure 4.16: Proposed ISWM framework	93
Figure 4.17: 3D view of the proposed ISWM facility	103
Figure 4.18: Sectional view of the controlled landfill	123
Figure 4.19: Proposed ISWM framework	128
Figure 4.20: Proposed institutional arrangement for efficient ISWM	130
Figure 4.21: Schematic diagram of a typical deodorization system	134
Figure 4.22: Schematic diagram of a typical deodorization system	135
Figure 4.23: Schematic diagram of a typical deodorization system	135

Figure 4.24: Schematic diagram of a typical deodorization system	136
Figure 4.25: Architecture of the GPS tracking system	137
Figure 5.1: MSW landfilling and tax rates in 2013	164

List of tables

Table 1.1: Generation and composition of MSW in each province of Sri Lanka 5
Table 3.1: Composition of MSW generated
Table 3.2: Data, information, assumptions, etc., used for the conceptual design 62
Table 3.3: Details of the cost incurred during construction and operation phases \dots 69
Table 3.4: Details of the revenues during the operation phase
Table 4.1: Contribution from different sources to the total MSW collected77
Table 4.2: Composition of the MSW collected
Table 4.3: Generation and collection of MSW in Kekirawa Pradeshiya Sabha 80
Table 4.4: Details of the vehicular fleet used MSWM practices
Table 4.5: Collection of different categories of MSW, including composition 98
Table 4.6: Summary of the conceptual design carried out for compost plant 107
Table 4.7: Summary of important design parameters of the controlled landfill 122
Table 4.8: Progressive development of the controlled landfill
Table 4.9: Summary of the conceptual design carried out for controlled landfill $\dots 124$
Table 4.10: Quantities of the final products obtained from the ISWM facility 127
Table 4.11: Summary of the conceptual design carried out for controlled landfill . 131 $$
Table 4.12: Preparation, application, and frequency of application of EM bacteria 133
Table 4.13: Characteristics of compost samples collected
Table 4.14: Details of the Calcium Nitrate used
Table 4.15: Characteristics of leachate
Table 4.16: Summary of the capital expenditure incurred
Table 4.17: Summary of the O&M cost incurred
Table 4.18: Summary of the revenue generation
Table 4.19: Summary of the economic analysis
Table 5.1: Percentage of nitrogen by mass of different fertilizers

List of abbreviations

\$ United States Dollar

3R Reduce, Reuse, and Recycle

ABC Aggregate Base Course

BC British Columbia

BCR Benefit-Cost Ratio

BOD Biological Oxygen Demand

BOQ Bill of Quantities

C:N Carbon:Nitrogen ratio

Ca Calcium

CBA Cost-Benefit Analysis

CCTV Closed-Circuit Television

CEA Central Environmental Authority

CMC Colombo Municipal Council

CO₂ Carbon dioxide gas

COD Chemical Oxygen Demand

DEWAT Decentralized Wastewater Treatment Plant

ECBA Extended Cost-Benefit Analysis

EIRR Economic Internal Rate of Return

EM Effective Microorganisms

ENPV Economic Net Present Value

EOCC Economic Opportunity Cost of Capital

EPL Environmental Protection License

FAO Food and Agriculture Organization of the United Nations

FCA Financial Capability Assessment

FOD First Order Decay

FV Future Value

GHG Green House Gases

GPS Global Positioning System

GSM Global System for Mobile

GWP Global Warming Potential

H₂S Hydrogen Sulfide

HDPE High Density Polyethylene

IPCC Intergovernmental Panel on Climate Change

ISWM Integrated Solid Waste Management

K₂O Potassium Oxide

LDPE Low Density Polyethylene

LPG Liquefied Petroleum Gas

MEPA Marine Environment Protection Authority

MSW Municipal Solid Waste

MSWM Municipal Solid Waste Management

MT Metric Tonnes

N Nitrogen

NGO Non-Governmental Organization

NH₃ Ammonia

NH₄NO₃ Ammonium Nitrate

NPV Net Present Value

NSWMSC National Solid Waste Management Support Center

NTU Nephelometric Turbidity Units

O&M Operation and Maintenance

OECD Organization for Economic Co-operation and Development

P Phosphorus

P₂O₅ Phosphorus Pentoxide

PET Polyethylene Terephthalate

PPP Public-Private Partnerships

PTA Policy Thematic Areas

PV Present Value

PVC Polyvinyl Chloride

SAR Sodium Adsorption Ratio

SIM Subscriber Identity Module

SLLDC Sri Lanka Land Development Corporation

SLR Sri Lankan Rupee

SLSI Sri Lanka Standards Institute

SO₂ Sulfur Dioxide

TKN Total Kjeldahl Nitrogen

TN Total Nitrogen

TSS Total Suspended Solids

UDA Urban Development Authority

UNEP United Nations Environment Programme

US AID United States Agency for International Development

US EPA United States Environmental Protection Agency

VAT Value-added Tax

WMA-WP Waste Management Authority of the Western Province